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Abstract—We present hierarchical change-detection tests
(HCDTs), as effective online algorithms for detecting changes
in datastreams. HCDTs are characterized by a hierarchical
architecture composed of a detection and a validation layer. The
detection layer steadily analyzes the input datastream by means
of an online, sequential, change-detection test (CDT), which op-
erates as a low-complexity trigger that promptly detects possible
changes in the process generating the data. The validation layer is
activated when the detection one reveals a change, and performs
an offline, more sophisticated, analysis on recently acquired data
to reduce false alarms.

Our experiments show that, when the process generating
the datastream is unknown, as it is mostly the case in the
real world, HCDTs achieve a far more advantageous trade-off
between false-positive rate and detection delay than their single-
layered, more traditional, counterpart. Moreover, the successful
interplay between the two layers permits HCDTs to automatically
reconfigure after having detected and validated a change. Thus,
HCDTs are able to reveal further departures from the new, post-
change, state of the data-generating process.

Index Terms—Change-Detection Tests, Stream Data Analytics,
Hierarchical Architectures, Cognition-Inspired Systems, Cogni-
tive Fault Detection, Big Data Analytics.

I. INTRODUCTION

One of the most important challenges in datastream analysis

is the online detection of changes affecting the data-generating

process. Changes might reveal critical situations, such as a

fault affecting a sensing apparatus, an anomalous event, or

an unforeseen evolution of the surrounding environment, to

name a few examples. As such, a prompt detection of these

situations is essential for undertaking suitable countermeasures

like repairing/replacing a sensor, raising an alarm, or activating

adaptation mechanisms [1].

Datastreams can be conveniently monitored by online and

sequential techniques characterized by a low computational-

burden; this is particularly true in big data scenarios, where

massive amounts of data steadily arrive over time. Methods

designed to detect changes in datastreams are typically referred

to as change-detection tests (CDTs) [2]; in the classification

literature [1] changes in the data-generating process are re-

ferred to as concept drift [3].

Due to their statistical nature, CDTs intrinsically introduce

false-positives, which might prompt costly and unnecessary

reactions to the detected -not existing- change. For instance, in

contaminant-detection systems [4], alarms activate emergency

procedures or disruptive interventions, and frequent false

alarms induce cry-wolf effect. Even in less critical scenarios,

where false alarms are harmless, they might unnecessarily

activate adaptation procedures or request human intervention.
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Therefore, CDTs need to be suitably configured to operate

at low false-positive rate (FPR). Unfortunately, a reduction of

the FPR comes at the expenses of an increased detection delay

(DD), since each CDT is characterized by an intrinsic FPR vs

DD trade-off controlled by its own parameters.

To achieve more advantageous FPR vs DD trade-offs it

is necessary to design a new change-detection algorithm.

To this purpose, we propose hierarchical change-detection

tests (HCDTs), powerful algorithms that combine different

techniques to detect and validate changes. More specifically,

each HCDT features a two-layered architecture consisting in

a detection layer and validation layer, and implements an

automatic reconfiguration mechanism. The detection layer is

designed to steadily analyze the datastream at a low com-

putational cost, by means of an online and sequential CDT.

Once the detection layer reveals a change, it activates the

validation layer that performs an offline analysis based on

an hypothesis test (HT) to determine whether the detection

corresponds to an actual change in the data-generating process

or not (false-positive detection). When the change is actu-

ally confirmed, the validation layer automatically identifies

a sequence of data generated in the post-change conditions

to be used to reconfigure the HCDT. Differently, when the

change is not confirmed, the HCDT restarts in its initial

conditions. This self-reconfiguration phase makes HCDTs able

to autonomously track data-generating processes that evolve

through stationary states. In turn, HCDTs reconfiguration can

be also used to pilot other adaptation mechanisms like those

governing adaptive classifiers [1], [5]–[7].

Here we show that the change-detection performance can

be often improved by introducing a validation layer. In fact,

our experiments reveal that HCDTs often achieve a far more

convenient FPR vs DD trade-off than their single-layered coun-

terpart, namely the solely CDT operating at the detection layer.

In particular, HCDTs outperform traditional (single-layered)

CDTs in monitoring scenarios where the pre/post change states

of the data-generating process are unknown, as it is the case

in most of real-world applications. Thus, provided a suitable

configuration of the detection layer, HCDTs achieve substan-

tially lower FPR than their single-layered counterparts, while

preserving similar DD values. Such performance improvement

comes at a marginal computational overhead. In fact, when the

HCDT is properly configured, the validation layer is rarely

activated and its computational load is largely due to the

detection layer, thus HCDTs represent viable solutions for

online monitoring datastreams.

A. Related Works

Hierarchies of mechanisms/algorithms have been considered

in many research fields, where hierarchical architectures are
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often presented as solutions to trade-off effectiveness and

efficacy. Without intending to be exhaustive, we recall the hier-

archy of memories in computer architectures [8], hierarchical

algorithms in computer vision (e.g., [9], [10]) and hierarchical

routing algorithms in wireless sensor networks (e.g., [11]).

Recent studies [12], [13] have shown that also some mech-

anisms in the human brain can be modeled as a hierarchy of

sub-systems, characterized by different activation times and

response accuracies [14]. Sub-systems in lower levels (e.g.,

the amygdala) are characterized by automatic processes that

continuously monitor the external stimuli and promptly trigger

potential threats to activate quick reactions (e.g., increase the

heartbeat or the respiration rates or the release of stress-

hormones). Differently, sub-systems in upper levels (e.g.,

the prefrontal cortex) are generally activated in response to

detections raised by lower levels and are characterized by more

complex conscious processes, aiming at improving, integrating

or even correcting the actions/decisions made by the lower

levels. A detailed description of automatic and conscious

mechanisms for emotional processes can be found in [13].

Interestingly, hierarchical approaches received a very lit-

tle attention in the change-detection literature. In fact, even

though the idea of combining online and offline change-

detection techniques to increase the reliability of the decisions

was originally discussed in [2], to the best of our knowledge, a

general hierarchical-architecture for change-detection purposes

has never been investigated.

It is worth mentioning the CDT presented in [5], which

implements a two-thresholds mechanism to analyze the aver-

age error of a classifier to detect concept drift. As soon as

the error exceeds the lower threshold, a warning-level alert is

raised; when the alert state persists and the error exceeds the

higher threshold, a drift-level detection is triggered. Drift-level

detections force the classifier to update, whereas warning-level

alerts that do not trigger a drift-level detection are considered

to be false alarms. In [15] a similar mechanism is used to

detect concept drift by analyzing the average distance between

misclassified data. While these algorithms are able to perform

automatic reconfiguration, they do not feature a hierarchical

architecture. A two-layered CDT was presented in [16], where

a validation procedure was employed to reduce the FPR. This

CDT has been also used for contaminant-detection purposes

in smart-building scenarios [4].

Our work extends [16] and provides the following original

contributions. At first, we present HCDTs from an high-level

perspective, detailing a general methodology for designing

HCDTs based on different change-detection and validation

techniques; second, we develop the automatic reconfiguration

(Algorithm 2) of HCDTs; third, we perform a larger experi-

mental analysis to investigate the improvements that HCDTs

provide in terms of FPR vs DD trade-off. To this purpose,

we designed and assessed the performance of three different

HCDTs, while [16] presented a single HCDT implementing

the ICI-based CDT [7].

B. Paper Structure

The rest of the paper is organized as follows. Section II

formalizes the change-detection problem, while Section III

describes the general methodology for designing HCDTs. Sec-

tion IV overviews suitable techniques for designing specific

HCDTs, and meaningful examples of HCDTs are provided in

Section V. Experiments are presented and discussed in Section

VI, while Section VII provides concluding remarks.

II. PROBLEM STATEMENT

Denote by {s(t), t = 1, . . . } the datastream to be inspected

for changes, s(t) ∈ R
p being the data acquired at time instant

t. We assume that, provided some suitable preprocessing func-

tion P (e.g., those mentioned in Section IV-A), it is possible to

extract a stream X = {x(t), t = 1, . . . }, x(t) ∈ R
d, of change

indicators that, in stationary conditions, are independent and

identically distributed (i.i.d.) realizations of a random variable

X having probability density function (pdf) φ0. In the sequel,

we address the problem of monitoring the stream X to identify

changes in stationarity of X which, in turn, indicate a change

in the process generating the datastream {s(t), t = 1, . . . , }.

A common model for changes in stationarity of X is

x(t) ∼

{
φ0 t < T ∗

φ1 t ≥ T ∗
, (1)

where T ∗ is the unknown change point (or change-time

instant) and φ1 6= φ0 is the pdf characterizing the postchange

distribution of the data. Model (1) corresponds to an abrupt

and permanent change affecting φ0.

Define the detection time T̂ as the earliest time instant when

the CDT claims that the sequence X
T̂
= {x(t), t = 1, . . . , T̂}

contains a change point. Following (1), the CDT promptness

can be computed by the detection delay:

DD = E
X

[T̂ − T ∗|T̂ ≥ T ∗, φ1], (2)

namely, the expectation of the detection latency T̂ − T ∗

conditioned by the fact that the change was successfully

detected, (i.e., T̂ ≥ T ∗). Expectation in (2) is computed over

realizations of sequences X generated by model (1). When

the sequence X
T̂

contains i.i.d. data (thus no change-point),

the CDT had a false-positive detection at T̂ . As mentioned in

Section I, the FPR, namely, the probability of a CDT to yield

a false-positive detection on a given i.i.d. sequence, has to be

also considered when assessing the CDT effectiveness1.

III. HIERARCHICAL CHANGE-DETECTION TESTS

Figure 1 illustrates the architecture of HCDTs, indicating

the interplay between the detection and the validation layers.

The general formulation of HCDTs is detailed in Algorithm 1,

while the reference methodology for deriving specific HCDTs

is presented in the sequel.

1In the sequential monitoring literature, CDT performance is also assessed
as the expected time between false positives, namely, the average run length

ARL0 = E
X

[T̂ |φ0], and the mean delay ARL1 = E
X

[T̂ |φ1].
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Fig. 1. A scheme illustrating the HCDT architecture. When the datastream {s(t), t = 1, . . . , } can not be modeled as a sequence of i.i.d. random values,
it is necessary to perform a preliminary processing P yielding the stream of i.i.d. change indicators X = {x(t), t = 1, . . . , }, otherwise s(t) = x(t).
The detection layer runs a CDT on the input stream X , and activates the validation layer as soon as it detects a change at time T̂ . Then, the validation

layer identifies a suitable validation sequence V ⊂ X
T̂

and runs an HT to assess whether V contains a change point or not. When the change point T̂ ∗ is

found, the detection is confirmed, and a subsequence of the datastream R = {s(t), t = T̂ ∗, . . . , T̂} is identified to reconfigure the HCDT and possibly the
preprocessing. Differently, when the change is not validated, R remains the original training sequence and the HCDT is restarted in its previous conditions.
This automatic reconfiguration makes the HCDT able to continue the monitoring activity after each detected change, thus being able to detect any further
departure from the post-change conditions.

A. Preprocessing

When the datastream follows trends or, more generally,

exhibits specific structures or dynamics (as it often happens in

the real world), the HCDT can not be directly applied, since

the datastream {s(t), t = 1, . . . } violates the i.i.d. assumption.

Thus, suitable preprocessing-techniques, like those mentioned

in Section IV-A, are typically envisioned to compute a stream

of change indicators X that follows (1). In these cases, pre-

processing P is the first operation to be performed (Algorithm

1, line 3) and the stream of change indicators X becomes

the input of the HCDT. The preprocessing phase has to

be designed so that changes in the datastream modify the

distribution of change indicators; examples of preprocessing

techniques are given in Section IV-A. When preprocessing is

not needed, x(t) = s(t), and P in Algorithm 1 becomes the

identity function.

B. Detection Layer

The detection layer steadily analyzes the input stream X
to detect changes that might occur at anytime. In particular,

the detection layer answers, at each new input arrival, the

following question: “are all data received so far generated by

a stationary process?”. As far as the answer to this question

is positive, no detection/alarm is raised, and the monitoring

activity continues. In contrast, a negative answer implies the

detection of a change in the data-generating process.

ALGORITHM 1: General formulation of the HCDT.

input: R, the training sequence from the datastream

1. Configure the HCDT on R (Algorithm 2)
2. while (s(t) is available) do
3. Apply preprocessing P yielding x(t)
4. Run the CDT at the detection layer
5. if (CDT detects a change at time t) then

6. Set T̂ = t
7. Activate the validation layer
8. Identify the validation sequence V ⊂ X

T̂

9. Run the HT to find a change point in V
10. if (a change-point is found) then

11. Confirm the detection T̂ and change point T̂ ∗

12. Define R = {s(t), t = T̂ ∗, . . . , T̂}
13. Reconfigure the HCDT on R (Algorithm 2)

else
14. Restart the HCDT as configured over R

end
end

end

Streaming data have to be monitored in an online and

sequential manner, by means of suitable techniques that poten-

tially consider the whole sequence XT = {x(t), t = 1, . . . , T}
before claiming a change at time T . The best candidates

for addressing change detection on streaming data are the

online and sequential CDTs, namely statistical techniques
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Fig. 2. a) The validation sequence V ⊂ X
T̂

is defined as V =
P(R) ⊔ P(W ), being P(R), the sequence of change indicators that was
used to configure the CDT at the detection layer and P(W ) the output of the

preprocessing over the window W = {s(t), t = T̂ − δ, . . . , T̂} that contains

the most recent data. b) R = {s(t), t = T̂ ∗, . . . , T̂} is a subsequence of
the datastream that is used to reconfigure the whole HCDT after the change,
according to Algorithm 2.

able to detect changes in data sequences characterized by an

increasing length. Sequential CDTs can detect subtle changes

more effectively than one shot techniques applied to the last

recent data.

In HCDTs, the CDT at the detection layer monitors each

incoming x(t) (Algorithm 1, line 4). At time T̂ , when the

detection layer reveals a change in X (line 5), the validation

layer is activated (line 7).

Given its online processing modality, the CDT must be

characterized by a low DD and a low computational burden.

Having low DD is fundamental because any delay at the

detection layer reflects on the overall latency and reaction time

of the HCDT. The CDT at the detection layer has to be compu-

tationally light since it is executed at each new sample arrival

and, to support online operations in big data scenarios, the

inner statistics of the CDT have to be computed incrementally

over-time. Examples of CDTs that can be employed at the

detection layer are given in Section IV-B.

C. Validation Layer

The validation layer gets activated every time the CDT

at the first layer detects a change, to assess whether X
has actually changed or the CDT provided a false-positive

detection. To this purpose, a suitable validation sequence is

extracted from X
T̂

and a statistical test is formulated to answer

the following question: “does the validation sequence contain

a change-point?”. Therefore, change validation consists in a

retrospective and offline analysis over a given sequence having

a fixed length and, to this purpose, the validation layer makes

use of HTs.

Identification of the Validation Sequence: the validation se-

quence V ⊂ X
T̂

is isolated from X after each detected change

(Algorithm 1, line 8). To properly perform change validation,

V has to include –when X actually underwent a change– both

data generated before and after the unknown change-point.

Therefore, we select a window containing the last δ > 0
arrivals of the datastream, i.e. W = {s(t), t = T̂ − δ, . . . , T̂},

which is expected to refer to the post-change conditions, and

the training sequence of the HCDT, which certainly refers to

the initial stationary conditions. As shown in Figure 2.a, V is

defined as V = P(R)⊔P(W ), where P(R) is the sequence of

change indicators that was used as a training set for the CDT at

the detection layer, P(W ) is the sequence of change indicators

extracted from W , and ⊔ denotes the juxtaposition operator.

This option enables change validation without having to store

all the input data, which is often unfeasible in datastream

analysis.

Change Validation via Hypothesis Testing: two strategies

can be pursued to determine whether V contains a change-

point or not. The first one consists in analyzing V to compute

T̂ ∗, a refined estimate2 of the change point T ∗, and then

defining

V0 = {x(t) ∈ V, t < T̂ ∗} (3)

V1 = {x(t) ∈ V, t ≥ T̂ ∗} .

These sequences yield a partition of V (i.e., V = V0⊔V1) that,

when the change has actually occurred at T̂ ∗, is expected to

provide the largest evidence for claiming V contains a change

point. The detection can then be validated by formulating an

hypothesis test like the following:

H0 : “data in V0 and V1 are identically distributed” (4)

H1 : “data in V0 and V1 are from two different pdfs” .

When the test statistic provides enough statistical evidence

to conclude that V contains a change point, the detection at

T̂ is confirmed together with its estimated change-point T̂ ∗

(Algorithm 1, line 11). Conversely, when there is not enough

statistical evidence, the detection raised by the CDT is dis-

carded and considered to be a false-positive detection. Several

test statistics could be employed to design such hypothesis test,

the most relevant ones are reviewed in Section IV-C, together

with techniques to estimate T̂ ∗.

The second strategy consists in change-point methods

(CPM) [17], namely HTs that simultaneously validate the

change and estimate T̂ ∗. In particular, each point in V is

tested to be a change point, thus the HT in (4) is executed

for all the possible partitions of V , to determine whether any

of these yields enough statistical evidence for rejecting the null

hypothesis. Once the change has been validated, the partition

yielding the largest evidence of the change identifies T̂ ∗.

Detection and validation layers are characterized by differ-

ent requirements. Since the validation layer is only sporadi-

cally activated, its computational load is not a critical issue

as for the detection layer. Differently, the HT employed at

the validation layer has to be powerful (in statistical terms),

namely should reject with high probability the stationary

hypothesis when a change has actually occurred in X . In

particular, the validation layer has to be able to confirm the

decisions of the detection layer even when V contains few

data after the change.

2CDTs are typically characterized by an intrinsic delay since they require
enough certainty before claim the presence of a change in the input stream,

thus T̂ ∗ 6= T̂ .
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ALGORITHM 2: Reconfiguration of the HCDT.

input: training sequence R

1. if (P has to be configured from training data) then
2. Split R = R0 ⊔R1

3. Configure P on R0

4. Compute RX = P(R1)
else

5. Compute RX = P(R)
end

6. if (not enough samples in RX for reconfiguring HCDTs) then
7. Gather more recent data S from the datastream
8. Set RX = RX ⊔ P(S)
9. Run the validation layer on RX

if a change point is found in RX then

10. Set R = {x(t) ∈ S, t > T̂ ∗}
11. Restart from line 1

end
end

12. Configure the CDT at the detection layer from RX

D. HCDT Reconfiguration

At each confirmed change, the validation layer provides a

new sequence R = {s(t), t = T̂ ∗, . . . , T̂} that is supposed

to contain data generated after X has changed (see Figure

2.b, and Algorithm 1 line 12). This sequence can be used

to automatically reconfigure the HCDT to the post-change

conditions. Such automatic reconfiguration can be performed

at each detection, making HCDTs able to autonomously track

data-generating processes evolving through a sequence of

stationary states.

HCDT reconfiguration involves the CDT at the detection

layer and possibly the preprocessing phase P , but not the

validation layer. Both the initial configuration (Algorithm 1

line 1), and the post-detection reconfiguration (Algorithm 1

line 13) of the HCDT can be performed by the general

procedure reported in Algorithm 2 and described in what

follows.

First of all, the training sequence R is conveniently split

into two parts (Algorithm 2 line 2), the former (R0) is used

for reconfiguring the preprocessing (line 3), the latter for

computing the change indicators RX = P(R1) (line 4) that

are used for configuring/reconfiguring the CDT at the detection

layer. This step is necessary to prevent overfitting [18] when

the preprocessing is configured from training data – e.g. when

P involves an approximation model that is fitted to the training

data. In fact, change indicators computed from the same data

used for configuring P might be poorly representative of the

change indicators computed during operational life, thus they

should not be used for CDT configuration. When P does not

need to be configured, P can be directly applied to the whole

training sequence RX = P(R) (line 5); similarly, when no

preprocessing phase is needed, P becomes the identity and

RX = R.

When RX does not contain enough training samples to

allow the reconfiguration of the CDT, the activation of the

HCDT is postponed to gather additional training data (line 7).

However, data received after T̂ have not been tested by the

HCDT and, hence, we cannot guarantee they are stationary.

Therefore, after having computed the change indicators by

means of P (line 8), it is safer to perform an additional

validation step to make sure that the new training sequence

is stationary (line 9). To this purpose, RX is further tested

by the validation layer, and used for reconfiguring the CDT

when no change points are found (line 12). Otherwise, R
is defined as the part of the datastream generated after the

change, and the whole reconfiguration is repeated (lines 10

and 11). This additional validation is meant to prevent the

HCDT reconfiguration on nonstationary data, e.g., sequences

containing gradual drifts or an abrupt change.

It is important to remark that, when the validation layer

does not confirm the detection at T̂ , the CDT is reset to its

original conditions. In the practice, all data acquired before the

false-positive detection are ignored and the CDT is restarted

to detect any departure from RX after T̂ (Algorithm 1 line

14).

E. Pairing the Detection and Validation Layers

To guarantee the successful interplay of the detection and

validation layers, the CDT and HT that constitute a HCDT

should be selected with special care. This is particularly

important in nonparametric monitoring, where, as we will

show in Section IV, both the CDTs and HTs typically rely on

test statistics that are meant to detect/validate specific types of

changes (e.g., changes in the mean or in the variance). Then,

for the HCDT to be successful, the HT at the validation layer

should be able to validate each type of change that the CDT

at the detection layer is able to detect. The three HCDTs in

Section V have been designed with this constraint in mind.

Another important remark is that the detection and valida-

tion layers have clearly different roles, and that the validation

layer cannot be used to online monitor the datastream (even

though this leverages a powerful HT). In fact, activating the

validation layer at each new input x(t) might yield, beside

computational issues (as we show the validation layer is often

much more computationally demanding than the detection

one), unacceptable FPR [19] since HTs are typically one-shot

techniques.

IV. TECHNIQUES FOR IMPLEMENTING HCDTS

Here, we provide an overview of some consolidated tech-

niques that can be used to design specific HCDTs.

A. Preprocessing Techniques

The literature presents several data-processing solutions to

compute change indicators that are distributed as in (1). Most

often, preprocessing is performed by computing the resid-

uals with respect to approximation/predictive models [20]–

[22] or decorrelating/detrending the datastream [23], [24].

Feature extraction is another viable option to compute change-

indicators: examples are the sample moments of the datastream

(computed over non-overlapping windows to guarantee the

temporal independence of the change indicators over time), a

measure of datastream self-similarity [25], and the Hellinger

distance of the empirical distributions [26] computed with
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respect to a reference training sequence. In the classification

literature, concept drift is typically detected by monitoring the

classification error on supervised samples [1], [3], [5], [15],

[27], thus φ0 and φ1 are two Bernoulli distributions whose

parameters are the average classification error before and after

the change, respectively.

B. Change-Detection Tests

CDTs in the literature can be divided into parametric,

which assume that φ0 and φ1 are a priori known, and in

nonparametric which do not make such assumption. Among

parametric CDTs we mention the sequential probability ratio

test (SPRT) [2] and the cumulative sums (CUSUM) test [28],

while for a survey on recent developments in the quickest

change-detection literature, we invite the reader to refer to

[29].

We are mainly interested in nonparametric CDTs since, in

the real world, the post-change distribution φ1 is rarely known

because of the change unpredictability or lack of training

data. Only few nonparametric CDTs have been proposed in

the literature, like the NP-CUSUM test [30], which is a

nonparametric extension of the CUSUM designed to detect

shifts in the expectation of an unknown random variable.

The CI-CUSUM test [31] aims at detecting more general

distribution changes by extracting features like the sample

moments, projections over the principal components and the

Mann-Kendall statistics from a sliding window. Thus, the

problem of detecting arbitrary distribution changes of X is

transformed into the problem of detecting changes in the

magnitude of the feature vector components (by means of

a cumulative-sum mechanism), which are also very likely to

change when X changes. This idea is further developed in

the ICI-based CDTs [7], where features are carefully designed

to follow a Gaussian distribution. CDTs of this family lever-

age the Intersection of Confidence Intervals (ICI) rule [32],

[33], a statistical technique to define adaptive supports for

polynomial regression, to detect changes in the monitored

features. The CDT in [34] detects distribution changes by

directly estimating the likelihood ratio between φ0 and φ1,

without explicitly estimating the two distributions. Differently

from the other CDTs discussed here, this latter CDT does not

refer to a unique (initial) stationary state, and detects changes

by comparing data over two different sliding windows. A

batch-wise nonparametric CDT that monitors the Hellinger

distance between the empirical distributions computed from

the current batch and the training set is presented in [26].

Simple thresholding-based CDTs as well as other change-

detection solutions designed for fixed-length sequences have

not been considered here.

C. Validation Techniques

In what follows we describe the main techniques for per-

forming change validation on a given sequence V (defined as

in Section III-C), namely the techniques to estimate T̂ ∗ and

the HTs.

Estimating T̂ ∗: To formulate the hypothesis testing problem

(4) the validation layer has first to compute T̂ ∗ from V . In the

parametric scenario (where both φ0 and φ1 are known), T̂ ∗ is

obtained as in [2] by maximizing the likelihood of the change

hypothesis over V , i.e.,

T̂ ∗ = argmax
t∈[T̂−δ,T̂ ]

log


 ∏

x(i)∈V,i<t

φ0

(
x(i)

) ∏

x(i)∈V,i≥t

φ1

(
x(i)

)

 .

(5)

In contrast, in the nonparametric case, T̂ ∗ has to be estimated

through heuristic approaches, such as running the CDT at the

detection layer over V , after having adjusted its parameter

to provide prompter detections. Then, T̂ ∗ is defined as the

detection time from this latter execution over V . ICI-based

CDTs [7] naturally increase their detection promptness when

operating on shorter data sequences: this has motivated the

design of the refinement procedure (see [7], Algorithm 3),

which can be directly used on V to estimate T̂ ∗.

Change Validation via Hypothesis Testing: Both the HTs

(4) and CPMs can use nonparametric statistics such as the

Kolmogorov Smirnov [35] or the Cramer-Von Mises [36] ones,

which compare the empirical cumulative density functions of

V0 and V1. Since it is very likely that a change in X would

also affect its moments, it is often more convenient to look

for changes in the sample moments of X or other meaningful

statistics. In fact, tests based on statistics that detect changes

in the distribution are typically less powerful [37] than tests

based on statistics meant to assess specific sort of changes

(e.g., changes in the sample moments). Examples of statistics

typically employed in HTs like (4) are the Hotelling T-square

[38], which detects changes in the mean, the Bartlett [39],

which detects changes in the variance, the Mann Withney [40],

which detects changes in the location of the distribution (thus

also in the mean), the Mood [41], which detects changes in

the scale of the distribution (thus also in the variance) or the

Lepage [42], which detects changes in both the location and

scale. In [43], change points are located by estimating the

density ratio before and after the change.

The change-point formulation has been recently extended

to perform online and sequential-change detection, by iterating

the CPM at each new data arrival. Thus, at each new input, the

test statistics have to be computed for all the possible partitions

of X like (3). The computational load of these algorithms

depends on the length of Xt, thus increases over time. This

issue becomes a serious problem when the test statistics cannot

be computed incrementally. Approximated expressions of the

test statistics have been recently proposed in [23], [44], to

bound the computational and memory requirements. However,

these algorithms are far more computationally demanding than

the CDTs in Section IV-B, since the test statistics have still

to be computed on all possible partitions of a sliding window

opened over the datastream. This is the main motivation why

not havnig online CPMs at the detection layer.

V. EXAMPLES OF HCDTS

To substantiate the general methodology described in Sec-

tion III we present three examples of HCDTs. For each HCDT,
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we compare the computational load of the detection and

validation layers.

The fist algorithm we report is a parametric HCDT built

over the CUSUM test, the second one is a feature-based (non-

parametric) HCDT that implements the ICI-based CDT, while

the third one is another example of nonparametric HCDTs

that is based on the NP-CUSUM test. The corresponding

validation layers have been selected according to the criteria in

Section III-E, while the reconfiguration is performed following

Algorithm 2. We have made available for download MATLAB

implementations of these HCDTs3.

A. Hierarchical CUSUM Test

Detection Layer: The CUSUM test [28] is a parametric

CDT that monitors the behavior of the log-likelihood ratio

s(t) = log

(
φ1(x(t))

φ0(x(t))

)
. (6)

When x(·) ∼ φ0, (6) is expected to be negative, thus its

cumulative sum

S(t) =
t∑

i=1

s(i), (7)

follows a decreasing trend. The stopping time of the CUSUM

test is defined as

T̂ = min
{
t : ( S(t))

+
> κ

}
, (8)

where (·)+ = max{0, ·} and κ is the CUSUM threshold

parameter that has to be properly tuned.

Validation Layer: After each detection, T̂ ∗ is estimated by

maximizing the posterior probability of the change hypothesis

[2] over V as in (5). Given T̂ ∗, V is partitioned as in (3) to

perform change validation by means of a suitable parametric

HT (4), since both φ0 and φ1 are known. For instance, in case

of Gaussian distributions, changes in the mean can be validated

with a one-sided z-test, while changes in the variance with the

chi-square test. Since the CUSUM test does not require any

training sequence, the hierarchical CUSUM uses RX only to

build the validation sequence V .

The computational load of the Hierarchical CUSUM test is

mainly determined by the cost in computing the likelihood

with respect to φ0 (i.e., assessing φ0(x(i))) and φ1. The

CUSUM at the detection layer requires only 2 likelihood

computations at each sample arrival. Differently, an activation

of the validation layer involves (5), which requires approx-

imatively (δ + 1)n/2 likelihood computations, where n is

the cardinality of the validation sequence (n = #V ). Thus,

the validation layer is substantially more computationally

demanding than the detection layer.

B. Hierarchical ICI-based CDT

Detection Layer: The ICI-based CDT presented in [45]

monitors two features computed over non-overlapping win-

dows of ν > 0 change indicators. In what follows, we use j

3http://home.deib.polimi.it/boracchi/Projects/

to index sequence of feature values. The first feature is the

sample mean:

M(j) =
1

ν

(j+1)ν−1∑

t=jν

x(t), (9)

while the second one is a power-law transform of the sample

variance

V(j) =




(j+1)ν−1∑

t=jν

(
x(t)− M(j)

)2

ν − 1




h0

, (10)

which approximately follows a Gaussian distribution [46]. The

exponent h0 is computed as described in [46].

During operational life, both features are independently

monitored by the ICI rule [32], which determines when the

sequence of feature M or V cannot be suitably fit by a zero-

order polynomial. In particular, let µj be the polynomial fit of

{ M(1), . . . , M(j)} (the same applies to { V(1), . . . , V(j)}), and

let σj be the standard deviation of the corresponding estimator,

such that the confidence interval around the j-th estimate is

Ij = [µj − Γσj ;µj + Γσj ] , (11)

where Γ > 0 is a tuning parameter that in practice rules the

FPR vs DD trade-off in the the CDT. Then, the CDT detects

change within the j-th window as soon as Ij does not intersect

all the previous confidence intervals, i.e., when
⋂

k=1,...,j

Ik = ∅.

The intersection of confidence intervals (and often also µj) can

be incrementally computed, while σj is given by analytical

expressions.

Validation Layer: We present two different validation layers

that are able to assess changes both in the mean and in the

variance of X , since these are the changes that the above ICI-

based CDT is designed to detect. The first option consists in

estimating T̂ ∗ inside V by means of the refinement procedure

[7] of the ICI-based CDT applied over the feature detecting

the change, and then running an Hotelling T-square test [38]

on two-dimensional vectors [ M(·), V(·)] – which are treated as

realizations from a multivariate Gaussian random variable4.

The second option consists in running a CPM based on the

Lepage statistic L = U + M [42], which is the sum of the

Mann-Whitney statistic U [40] and Mood statistic M [41]. As

mentioned in Section IV-C, L is a nonparametric statistic able

to assess both changes in the location (thus, also the mean)

and/or the scale (thus, also the variance) of X . The training

sequence RX is used to configure the ICI-based CDT and

build the validation sequence V .

The ICI-based CDT is computationally light, since it re-

quires around 4ν operations every ν data arrived. The valida-

tion layer that estimates T̂ ∗ at first and then runs the HT based

on Hotelling T-square statistic (4) is also computationally light,

since the refinement procedure requires few iterations of the

ICI-based CDT over V , and the HT involves few operations

on the feature vectors in V (that are n/ν and that have

been previously computed). Differently, the validation layer

4Alternatively, changes can be validated on the sole feature detecting the
change by means of a t-test.

http://home.deib.polimi.it/boracchi/Projects/
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implementing the Lepage CPM on V is computationally more

bulky, since the statistics M and U require to sort V0 and

V1, thus O (n log (n)) operations, and have to be computed

(n − 1)-times (namely, for all the possible partitions of V ).

The CPM is more computationally demanding than the CDT

also because typically n >> n/ν.

C. Hierarchical NP-CUSUM Test

Detection Layer: The NP-CUSUM test was introduced in

[30] to detect shifts in the mean of a datastream drawn from an

unknown distribution. This CDT monitors the score function

Su(t) =
(
Su(t− 1) + x(t)− µ0 + c

)+
, t > 1, (12)

where µ0 is defined as the mean over RX , c > 0 is a tuning

parameter, and Su(0) = 0. The score function Su detects

positive shifts in the mean of the stream; to detect shifts in

both directions, a second score function Sd(t) =
(
Sd(t −

1)−x(t)+µ0+ c
)+

has to be simultaneously monitored. The

stopping time of the NP-CUSUM test is defined as

T̂ = min {t : Su(t) > κ or Sd(t) > κ} , (13)

being κ another tuning parameter.

Validation Layer: The validation layer implements a CPM

based on the Mann-Whitney statistics U to assess location

changes in the distribution of data inside V , thus also those

changes in the mean that the NP-CUSUM is designed to

detect. Here, the training sequence RX is used to compute

µ0 and build V .

The computational burden of the detection layer is rather

negligible, as it requires only 8 operations per input data. The

bulky component of this HCDT is the CPM at the detection

layer, which has to compute (n−1)-times the statistic U that,

as previously discussed, requires sorting values in V0 and V1.

VI. EXPERIMENTS

To quantitatively assess the advantages of HCDTs over their

single-layered counterparts (in what follows simply referred

to as CDTs), we designed two experiments5. The first one

is meant to illustrate the superior performance of HCDTs

when detecting a subtle abrupt change in a dataset of syn-

thetically generated sequences. The second one refers to a

dataset acquired from an industrial monitoring application,

where each sequence exhibits six consecutive abrupt changes

that has been prepared to investigate the effectiveness of

HCDTs reconfiguration. Experiments are performed by using

the HCDTs presented in Section V.

A. Test on Synthetically Generated DataSet

This dataset contains 10000 sequences defined as

x(t) ∼

{
N (1, 1) t ≤ 30000

N (1.5, 1) 30000 < t ≤ 60000
, (14)

to test the detection of a subtle change in the mean of φ0

(namely 0.5 times the standard deviation of φ0). We generate

5The comparison among different HCDTs is not in the scope of this paper.

sequences that are long-enough after T ∗ to make sure that

the change is –in practice– always detected. All the HCDTs

in Section V have been configured on a training sequence

containing the first 400 samples, and are able to detect changes

in the expectation of a random variable. Since the stationary

data are i.i.d. as in (1), there is no need of preprocessing.

The figures of merit to assess detection performance are the

FPR and DD, defined in Section II. When comparing HCDTs

and CDTs it has to be considered that the performance of both

algorithms depend on specific tuning parameters regulating

the FPR vs DD trade-off (namely, κ for the CUSUM and

NP-CUSUM tests, Γ for the ICI-based CDT). Therefore, the

performance of HCDTs and CDTs are assessed by comparing

the FPR vs DD curves obtained by considering a suitable

range of values for the tuning-parameters. In particular, we

tested the CUSUM using κ ∈ {7, . . . , 13}, the ICI-based

CDT using Γ ∈ {1.5, 1.75, . . . , 3} and the NP-CUSUM using

κ ∈ {50, 100, 150, 250, 350, 450, 550, 750, 950}, since these

values covered a suitable region of the (FPR, DD) plot. We

manually tuned c in the NP-CUSUM test and set c = 0.1
to guarantee suitable detection performance for the range of

change magnitudes considered in [16]. All the hypothesis

tests (i.e, the z-test, the Hotelling T-square, the Lepage CPM

and the Mann-Withney CPM) were configured by setting the

confidence α = 0.05, namely the probability of type I errors

in hypothesis testing. To enable a fair comparison, the DD of

HCDTs is computed only in those sequences where the CDT

had no false positives.

To illustrate the advantages of using HCDTs, we report the

number of false-positive detections discarded by the validation

layer. In particular we compute, for each value of CDT

parameter, the average number of validation-layer activations

by false-positive detections (averages are computed over 1000

samples). Even though this value heavily depends on the FPR

of the detection layer (the larger the number of detections,

the larger the number of validation-layer activations), this

figure of merit provides: i) a qualitative assessment of how

often false-positive detections are discarded when monitoring

long sequences, and ii) an indication of the computational

overhead introduced by the HCDTs. These values, together

with comments reported in Section V about the computational

load of the considered HCDTs, should be taken into account

when configuring the HCDTs.

Figure 3 indicates that the curve of hierarchical CUSUM

coincides with that of the CUSUM test at the detection layer,

and that the validation layer is never activated for discarding

a detection raised by the CUSUM test. This is because the

likelihood ratio (6) at the detection layer is a very powerful

statistics, which makes the validation introduced by the z-test

useless6.

In contrast, introducing a separate validation layer is clearly

beneficial in nonparametric scenarios, as demonstrated by the

distance between the FPR vs DD curves in Figures 4 and 5.

The curves of the 25th and 75th percentiles of the empirical

distribution of T̂ (for a given value of FPR) indicate that the

6The effectiveness of the CUSUM can be also appreciated by comparing the
DD of this parametric solution against the nonparametric HCDTs in Figures
4 and 5.
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Fig. 3. The FPR vs DD curve computed for the CUSUM test and the hierarchical CUSUM test when κ ∈ {7, . . . , 13} (left); the average number of
activations of the validation layer over 1000 samples (right). The overlap between the FPR vs DD curves and the lack of validation layer activations before
detection indicate that, in this parametric scenario, introducing a separate validation layer yields no improvements: the z-test always confirm the detection
raised by the CUSUM test at the detection layer, because the likelihood ratio (6) is a more powerful statistic.
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Fig. 4. The FPR vs DD curve computed for the ICI-based CDT and the hierarchical ICI-based CDT when Γ ∈ {1.5, 1.75, . . . , 3} (left); the average number
of activations of the validation layer over 1000 samples (right). In this nonparametric scenario, the HCDT provides a marked improvement over its single-layer
counterpart. We report the performance of both solutions using the HT based on the Hotelling T-square statistic and the Lepage CPM at the validation layer.

performance gap between the two solutions is substantial, and

cannot be simply achieved by adjusting the tuning parameters

of the CDT at the detection layer. In these cases, the validation

layer is often activated to discard false-positive detections:

this is particularly evident at low values of Γ or κ, where

the CDT at the detection layer operates at large FPR values.

Figure 4 reports both the HCDTs based on the Lepage CPM

and the Hotelling T-square test at the validation layer. The

FPR vs DD curves of the two HCDTs are very similar,

with a lower number of validation layer activations required

by the Lepage CPM, which is probably more powerful for

validating changes in V . However, as remarked in Section

V-B, the validation layer implementing the Lepage CPM is

far more computationally demanding than the validation layer

based on the HT based on the Hotelling T-square statistic.

The comparison between NP-CUSUM and hierarchical NP-

CUSUM tests in Figure 5 confirms the advantages provided

the additional validation layer when performing nonparametric



10

Hierarchical NP-CUSUM test

κ= 50 κ = 50κ= 150 κ = 150

κ= 350 κ = 350

κ= 550κ = 550

κ= 950κ = 950

FPR

D
D

FPR vs DD

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500
HCDT

Single-layered CDT
percentiles HCDT

25th, 75th   percentiles CDT
25th, 75th   

50 100 150 250 350 450 550 750 950

Average Number of Validation Layer Activations

κ
0

0.05

0.1

0.15

nr
. o

f V
al

id
at

io
n 

La
ye

r A
ct

iv
at

io
ns

Fig. 5. The FPR vs DD curve computed for the NP-CUSUM and the hierarchical NP-CUSUM tests when κ ∈ {50, 100, 150, 250, 350, 450, 550, 750, 950}
(left); the average number of activations of the validation layer over 1000 samples (right). As in Figure 4, the HCDT achieves a marked improvement over
its single-layer counterpart.

monitoring.

B. Test on an Industrial Dataset

This dataset contains 1000 sequences of photodiodes mea-

surements acquired by an X-ray machine for industrial mon-

itoring and safety inspection. Each sequence includes 21000

samples and has an abrupt change every 3000 samples. These

sequences were prepared to yield changes having similar

magnitude7. In these sequences, changes typically affect also

the shape of the data distribution (e.g., the skewness might

also change and some peaks appear in the pdf after the

change) as shown in the illustrative example in the first two

rows of Figure 6. Note that these histograms refer to the

sequence provided as example in the second row, and that

other sequences of the dataset are generated from different

distributions. No preprocessing on these sequences is needed

since, thanks to the specific acquisition process, data can be

properly described by (1).

In this experiment we considered, as a reference example,

the HCDT exploiting the ICI-based CDT and the Hotelling T-

square statistic (see Section V-B), where we set Γ = 2.5 and

α = 0.05. The initial training sequence contains 160 samples

and this is also the minimum number of samples required in

R to reconfigure the HCDT after each validated change.

The empirical distributions of T̂ and T̂ ∗ for the hierarchical

CDT are reported in the third and fourth rows of Figure 6, and

indicate that the reconfiguration phase of this HCDT was very

successful. In fact, the change-detection performance is stable

and does not degrade when several changes arrive, since the

distribution of detection times and of change-point estimates

are very similar for all changes. Table I confirms that the DD

and the FPR are in practice constant for all the six changes

for the HCDT.

7In particular, if we denote by µ0 and σ0 the mean and the standard
deviation of the empirical distributions before the change (and by µ1 and
σ1 for the post-change mean and standard deviation), we have selected only

changes that satisfy the following conditions: 2 <
(µ0−µ1)

2

σ2

0

< 4 and

2 <
σ2

0

σ2

1

< 4.

TABLE I
CHANGE-DETECTION PERFORMANCE ON THE INDUSTRIAL DATASET

HCDT
HCDT

(reconfiguration only)

change nr DD FPR FNR DD FPR FNR

1 246.9 2.2% 0.2% 246.6 11.0% 0.2%

2 230.0 2.9% 0.3% 227.8 11.5% 0.1%

3 238.1 2.6% 0.3% 237.5 13.0% 0.2%

4 227.1 1.6% 0.4% 227.0 11.8% 0.4%

5 234.0 2.6% 0.1% 233.8 10.7% 0.1%

6 239.9 2.3% 0.3% 239.3 12.7% 0.3%

To remark the importance of performing change validation,

we report the performance of the same hierarchical CDT where

the validation layer always confirms a detection. In practice,

this HCDT leverages only the reconfiguration mechanism, and

for this reason we refer to HCDT reconfiguration only in

Figure 6 and Table I. The values of FPR reported Table I

shows that the validation layer at the HCDT has discarded

several several false-positive detections, and the same emerges

when comparing the empirical distribution of HCDT and

HCDT reconfiguration only (third and fifth rows of Figure

6, respectively).

C. Remarks

It is worth mentioning that, given a specific configuration

for a CDT, any HCDT implementing the same CDT at the

detection layer cannot achieve lower DD than its single-

layered counterpart. This clearly emerges in Table I, where

the DD of the HCDT are larger HCDT reconfiguration only,

which does not perform change validation. In fact, introducing

the validation layer might eventually increase (while surely

not decrease) the DD, due to false negatives of the HT or

the request of additional samples in V (see Algorithm 2).

False negatives of the HT might increase the false negative

rate (FNR) of the HCDT that is also possibly larger than its

single-layered counterpart (and in general larger than solutions

not performing change-validation, as shown in Table I8).

8In the industrial dataset sequences are not long enough to avoid false-
negative detections and FNR is sometimes different from zero.



11

18000

0.95

1

1.05

1.1

× 10
4

3000 6000 9000 12000 15000 t

fr
e
q
u
e
n

c
y

Empirical distribution of detection times (HCDT)

0

2

4

6

8

× 10
-4

180003000 6000 9000 12000 15000 t

An example of sequence from the industrial dataset

fr
e
q
u
e
n

c
y

0

2

4

6

8

180003000 6000 9000 12000 15000 t

Empirical distribution of detection times (HCDT, reconfiguration only)

fr
e
q
u
e
n

c
y

0

0.5

1

1.5

180003000 6000 9000 12000 15000 t

Empirical distribution of the change-point estimtates (HCDT)

× 10
-4

× 10
-3

1.15
0

0.5

1

1.5

× 10
4

× 10-3

0

0.5

1

1.5

2

2.5

0

1

2

3

0

0.5

1

1.5

2

0

0.5

1

Empirical distribution of the data-generating processes in the sequence below

0.95 1 1.05 1.1 1.15
× 1040.95 1 1.05 1.1 1.15

× 1040.95 1 1.05 1.1 1.15
× 1040.95 1 1.05 1.1 1.15

× 1040.95 1 1.05 1.1 1.15
× 1040.95 1 1.05 1.1 1.15

× 1040.95 1 1.05 1.1
0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

Fig. 6. First row: empirical distributions of the data-generating process in a sequence from the industrial monitoring dataset (reported in the second row).

Third row: the empirical distribution of the detections T̂ of the hierarchical ICI-based CDT using the HT based on the Hotelling T-square statistic, and the

estimated change-points T̂ ∗ (fourth row). Both these histograms show that the reconfiguration of the HCDT is always successful, since all the changes are
detected with similar performance (check also Table I). The fifth row refers to the same HCDT where the detection layer always confirm the detections raised
by the CDT at the first layer (HCDT, reconfiguration only). In this case, the peaks of the histograms are lower and detections are more spread in stationary
regions, indicating a large number of false-positive detections (as shown in the FPR columns in Table I).

This increase in DD (and FNR) is not in contrast with the

results shown in Figures 3 - 5, because the dramatic reduction

of FPR provided by the validation layer makes it possible

to configure the CDT at the detection layer to yield very

prompt detections, while still guaranteeing acceptable values

of the overall FPR of the HCDT. This clearly emerges in the

comparison of the FPR vs DD curves in Figures 3 - 5.

Another important remark is that, although HTs operate at a

predefined percentage α of false positives (type I errors), their

use at the validation layer typically results in a percentage

of false positives larger than α. This is due to the fact that,

in HCDTs, the hypothesis test is activated on sequences V
that have been previously selected by the detection layer, thus

cannot be considered as drawn from the distribution generating

i.i.d. sequences of i.i.d. samples (where the control over type I

errors applies). Nevertheless, even though α does not exactly

correspond to the probability of type I errors, it still can be

used to tune the HT.

VII. CONCLUSIONS

We have presented a general methodology for designing

hierarchical change-detection tests, powerful change-detection

algorithms characterized by a two-layered architecture that en-

ables the validation of each detected change. Our experiments

demonstrate that introducing such validation phase is often

beneficial and that HCDTs achieve a marked improvement
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over traditional, nonparametric, CDTs. Furthermore, HCDTs

can track evolving processes since they are naturally able to

reconfigure after each change to detect further departures from

the new, post-change conditions. In a broad sense, HCDTs pro-

vide an abstract processing level to make intelligent systems

adaptive in dynamic and evolving environments.

The combination of a prompt and computationally-light

CDT at the detection layer with a more sophisticated HT

at the validation layer makes HCDTs suitable for operating

on datastreams, addressing the emerging big data scenarios.

Remarkably, the peculiar architecture of HCDTs recalls the

emotional processes in the human brain, where different

regions of the brain, characterized by different activation times

and response accuracies, interact.
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