Hierarchical classification of Gene Ontology terms using the
GOstruct method

Artem Sokolov and Asa Ben-Hur
Department of Computer Science, Colorado State University
Fort Collins, CO, 80523, USA

Abstract

Protein function prediction is an active area of research in bioinformatics. And yet, transfer of
annotation on the basis of sequence or structural similarity remains widely used as an annotation
method. Most of today’s machine learning approaches reduce the problem to a collection of
binary classification problems: whether a protein performs a particular function, sometimes
with a post-processing step to combine the binary outputs. We propose a method that directly
predicts a full functional annotation of a protein by modeling the structure of the Gene Ontology
hierarchy in the framework of kernel methods for structured-output spaces. Our empirical results
show improved performance over a BLAST nearest-neighbor method, and over algorithms that
employ a collection of binary classifiers as measured on the Mousefunc benchmark dataset.

1 Introduction

Protein function prediction is an active area of research in bioinformatics [25]; and yet, transfer of
annotation on the basis of sequence or structural similarity remains the standard way of assigning
function to proteins in newly sequenced organisms [20]. The Gene Ontology (GO), which is the
current standard for annotating gene products and proteins, provides a large set of terms arranged
in a hierarchical fashion that specify a gene-product’s molecular function, the biological process it
is involved in, and its localization to a cellular component [12]. GO term prediction is therefore a
hierarchical classification problem, made more challenging by the thousands of annotation terms
available. Computational methods for annotating protein function have predominantly followed the
“transfer-of-annotation” paradigm where GO keywords are transferred from one protein to another
based on sequence similarity [20]. This is generally done by employing a sequence alignment tool
such as BLAST [1] to find annotated proteins that have a high level of sequence similarity to
an un-annotated query protein. There has also been an effort to recognize “good” BLAST hits,
from which annotations can then be transferred [38]. Transfer of annotation methods have several
shortcomings: transfer of multiple GO keywords between proteins is not always appropriate, e.g. in
the case of multi-domain proteins [11], and they fail to exploit the underlying hierarchical structure
of the annotation space. Furthermore, from a machine learning perspective, transfer of annotation
is a form of nearest-neighbor classifier, which is not the state-of-the-art in performance.
Prediction of protein function has been approached as a binary classification problem using a
wide array of methods that predict whether a query protein has a certain function [10, 18, 36, 24,
22]. These methods leave it to the user to combine the output of classifiers trained to recognize
the different possible functions and decide which of the annotations to accept. To automate the

task, several methods have been proposed for reconciling predictions from collections of binary
classifiers [4, 13, 19, 23]. All these approaches require training hundreds or even thousands of
classifiers, depending on the level of specificity of the predicted annotations. The most recent work
in the area is an extension of the GeneMANIA method that models the problem as a set of sparsely
coupled networks, one for each term in the hierarchy [21].

The Hughes Lab from the University of Toronto recently hosted a competition aimed at the
prediction of protein function in the M. musculus species [25]. The task was to infer functional
annotations using several sources of data: gene expression, protein-protein interactions, protein
domain composition, phenotype data and phylogenetic profiles. The competition provided a com-
mon framework for empirical comparison of the methods employed by the participants, and the
test data and the predictions submitted by the contestants have been consequently released as part
of the Mousefunc benchmark dataset [25]. Nearly all of the participants employed a collection of
binary classifiers, each trained to predict a particular GO category. Some of the participants fur-
ther post-processed the results of the binary classification using approaches which included logistic
regression [23, 19] and Bayesian networks [13]. We also note the work by Chen, et al., where the
algorithm treated functional annotations in their entirety by flattening their hierarchical represen-
tation to an indexing system, encoding the relationship between proteins as a graph, and then using
the Boltzmann machine and simulated annealing to infer new annotations [8].

We take a different approach: rather than use a collection of binary classifiers, one for each
GO term, our method is a single classifier that directly incorporates the structure of the Gene
Ontology and a notion of a good hierarchical classification into the training procedure. We choose
to model the problem of hierarchical classification using kernel methods for structured-output
spaces, a novel methodology in machine learning that is appropriate for modeling classification
tasks where the output belongs to some discrete structure [2, 33, 35]. Structured output methods
represent a learning problem using a joint representation of the input-output space, and attempt
to learn a compatibility function f(x,y) that quantifies how related is an input x (protein in our
case) with an element y of the output space (set of GO terms). Several classification methods have
been generalized to this framework, including Support Vector Machines (SVMs) [35]. Whereas
standard kernel methods use a mapping of inputs to a feature space that is represented by a kernel
function [6], in the structured output setting the kernel becomes a joint function of both inputs
and outputs [35]. Structured-output methods have been applied to a variety of problems, including
applications in natural language processing [35, 29], and prediction of disulfide connectivity [32].
Structured-output methods have been recently applied to prediction of enzyme function [3]. Enzyme
function is described by a four-level hierarchy that includes a few hundred classes, in comparison
to GO which is a deep hierarchy with thousands of terms. The empirical results in the literature
demonstrate that incorporating the structure of the output space into learning often leads to better
performance over local learning via independent binary classifiers [27, 7].

In this work we report results using several flavors of kernel methods for structured out-
put spaces, in a methodology we call GOstruct. More specifically, we focus on the structured-
perceptron [9] and the structured SVM [35]. Our results demonstrate that learning the structure
of the output space yields improved performance over transfer of annotation when both are given
the same input-space information (BLAST hits). Additionally, we obtain a large improvement in
performance on the Mousefunc dataset [25] when compared to published results.

2 Methods

-+— Nucleic acid binding

-«— DNA binding

(0,0,1,1,1,0,1,1)

Figure 1: A schematic representation of the hierarchical label space for GO term annotation. Given that
a protein is associated with a particular node in the GO hierarchy (e.g. DNA binding), it is also associated
with all its ancestors in the hierarchy (including the direct parent of DNA binding which is Nucleic acid
binding). The collection of GO terms associated with a protein (shaded in the figure) correspond to the
nonzero entries in the vector representing the annotations.

The Gene Ontology provides annotation terms that are arranged hierarchically in three namespaces
that describe different aspects of a protein’s function: molecular function, biological process, and
cellular component. Terms that appear deeper in the hierarchy provide more detailed information
(see Figure 1 for illustration). Note that associating a protein with a particular term automatically
implies the association with all the terms that generalize it, i.e. all its ancestors in the hierarchy.
In the example in Figure 1, a DNA binder is also a nucleic acid binder.

We formulate prediction of GO terms as follows. Each protein is associated with a macro-label
y = (Y1, 42, .., yr) € {0,1}*, where each micro-label y; corresponds to one of the k nodes in one of
the three GO namespaces. The micro-labels take on the value of 1 when the protein performs the
function defined by the corresponding node, and 0 otherwise. We refer to such nodes as positive.
Whenever a protein is associated with a particular micro-label, we also associate it with all its
ancestors in the hierarchy, i.e. given a specific term, we associate with it all terms that generalize
it. This enforces the constraint that parents of positive nodes are also positive. Throughout this
paper we will refer to macro-labels as labels or outputs.

2.1 Measuring performance

Classifier performance is often measured using the error rate which reports the fraction of examples
classified incorrectly. In the case of binary classification this can be expressed as an average of the
indicator function A/ (y, 9) that returns a value of 1 if the labels y and ¢ do not match and a value
of 0 otherwise. Ag/1(y,9) is known as the 0-1 loss. In the context of hierarchical classification, the
0-1 loss is not appropriate as it makes no distinction between slight and gross misclassifications.
For instance, a label where the protein function is mis-annotated with its parent or sibling is a
better prediction than an annotation in an entirely different part of the hierarchy. Yet, both will
be treated the same way by the 0-1 loss.

A number of loss functions that incorporate taxonomical information have been proposed in the
context of hierarchical classification [14, 29, 17]. These either measure the distance between labels
by finding their least common ancestor in the taxonomy tree [14] or penalize the first inconsistency

between the labels in a top-down traversal of the taxonomy [29]. Kiritchenko et al. proposed a loss
function that is related to the F; measure which is used in information retrieval [37] and was used
by Tsochantaridis et al. in the context of parse tree inference [35]. In what follows we present the
F1 loss function and show how it can be expressed in terms of kernel functions, thereby generalizing
it to arbitrary output spaces. The F} measure is a combination of precision and recall, which for
binary classification problems are defined as

2-P-R _tp R tp

P+R’ Ctp+fn’ Ctp+fp’

where tp is the number of true positives, fn is the number of false negatives and fp is the number
of false positives. Rather than expressing precision and recall over the whole set of examples,
we express it relative to a single example (known as micro-averaging in information retrieval),
computing the precision and recall with respect to the set of micro-labels. Given a vector of true
labels (y) and predicted labels (y) the number of true positives is the number of micro-labels
common to both labels which is given by y”y. It is easy to verify that

=

A~ T/\
- yy A y'y
P(y,y) = 7=, By.Y)="7F_. 1
(v,¥) Ty (v,¥) Ty (1)
We can now express Fi(y,y) as
2y’y
Fl(Yvy): A
yly +37y

and define the Fj-loss as Ap, (y,¥) = (1 — Fi(y,¥)) [35]. This loss can be generalized to arbitrary
output spaces by replacing dot products with kernels:

Substituting these expressions for precision and recall leads to the following generalization of the
Fi-loss, which we call the kernel loss:

2K (y,y)
K(y,y) + K(y,¥)’

which reduces to the Fj-loss when using a linear kernel.

Aker(yyy) =1-

(2)

2.2 GOstruct: GO term prediction as a structured outputs problem

Before presenting the GOstruct method we provide a brief overview of binary and structured clas-
sification using kernel methods. A standard approach in training predictors for binary classification
problems is to learn a discriminant function f(x) and classify the input x according to the sign
of f(x). Since linear methods usually have efficient training algorithms, it is common to assume
that the discriminant function is linear. A way to obtain a non-linear classifier, using an algorithm
designed for linear discrimination is to assume that the data is mapped non-linearly into some
feature-space using a function ¢(x). A linear discriminant in this feature space will have the form
f(x) = wl'¢(x), where w is a vector of parameters. Whenever w can be expressed as a weighted
sum over the images of the input examples, i.e. w =) . o;$(x;) the discriminant function becomes

f(x) = >, aip(x;)Td(x), which can expressed using the kernel function as Y ;K (x;,%). See a
tutorial by Ben-Hur, et. al [6] for more details and pointers on kernel methods.

A binary classifier can predict whether a protein performs a certain function. For predicting
what function the protein performs, i.e. the full macro-label (y1,y2, ..., yx), we turn to structured
output learning. In this setting the discriminant function becomes a function f(x,y) of both inputs
and labels, and can be thought of as measuring the compatibility of the input x with the output
y. We denote by X" the space used to represent our inputs (proteins) and by) the set of labels we
are willing to consider, which is a subset of {0, 1}* for hierarchical multi-label classification. Given
an input x in the input feature space X, structured-output methods infer a label according to:

§ = arg max f(x, y|w), (3)
yey

where the function f : X x) — R is parametrized by the vector w. This classification rule chooses

the label y that is most compatible with an input x. We assume the function is linear in w, i.e.

f(x,y|w) = wl¢(x,y) in some space defined by the mapping ¢. Whereas in two-class classification

problems the mapping ¢ depends only on the input, in the structured-output setting it is a joint

function of inputs and outputs.

$(x,y) More
compatible

(]

Less

compatible)

) @) Margin
© ® (x.)

O (Xily;éyi)

w' ¢(x,y)=const

Figure 2: The geometric view of structured-output classification. We consider a given input x;, and plot it
in the joint space of inputs and outputs in combination with different labels y. This figure represents the
ideal case: The correct label, y;, has the highest compatibility value with x; and the second best candidate
is separated by a margin. Our classifier defines a linear discriminant function over the joint input-output
space defined by ¢(x,y) illustrated by the line w’ ¢(x,y) = const in the figure.

To make use of kernels, we assume that the weight vector w can be expressed as a linear
combination of the training examples:

n
W = Z Z aj,y’¢(xj7y/)7
J=ly’ey

where o, is a vector of parameters indexed by j (possible input examples) and labels y’. This

leads to reparametrization of the compatibility function in terms of the coefficients «:

n

Feeyla) =YY ey K((x5,), (x,¥)),

j=ly'ey

where K : (X x Y) x (X x V) — R is the joint kernel defined over the input-output space. For the
prediction of GO terms we use a joint kernel which is a product of the input space and the output
space kernels:

K((x,y), (x,y) = Kx(x,x)Ky(y,¥'). (4)

Our intuition for using a product kernel is that two examples are similar in the input-output feature
space if they are similar in both their input and the output space representations. In preliminary
experiments, we also considered a second-degree polynomial kernel of the form K((x,y), (x',y’)) =
(Kx(x,x") + Ky(y, y’))2, which provided lower accuracy. For the output-space kernel, Ky, we use
a linear kernel in all of our experiments; the input-space kernel is described separately for each
experiment.

2.2.1 Inference

The arg max in Equation (3) must be computed over the space of all possible labels V. In the
context of protein function prediction, this consists of all possible combinations of a few thousand
GO terms. The size of the output space is thus exponential in the size of the GO hierarchy.
Explicitly enumerating all such combinations is not practical. Fortunately, a protein has only a
limited number of functions. Incorporating such a limit reduces the number to be polynomial in
the number of GO terms. In this paper, we further reduce this number in several ways.

During training we limited the space of labels to only those labels that appear in the training
dataset. We call this space), and argue that it makes sense to focus on learning only combinations
of GO terms that occur in the training data (GO terms that tend to co-occur). This subspace
contains no combinations of GO terms that are not present in the training data.

In one of our experiments we compare our approach with a BLAST nearest neighbor approach
to verify that it performs at least as well as this baseline classifier. In this case, BLAST hits are
the only features available to the classifier, so it is reasonable to restrict predicted labels to those
that are suggested by significant BLAST hits. We define Y5(x) to be the set of macro-labels that
appear in the significant BLAST hits of protein x (e-values below 107%). The output space Ya(x)
is obtained by taking all the deepest nodes represented in Y53(x) and considering the macro-labels
consisting of combinations of three such nodes at the most (the average number of annotations per
protein in the molecular function namespace). Prediction using Y3(x) amounts to using only the
annotations from x’s hits, while J»(x) considers all combinations of annotations from x’s hits. For
example, if a protein has two significant BLAST hits, where one is labeled with GO; and GO2 and
the other is labeled with GOs3, then)s(x) consists of all nonempty subsets of {GO1, GOz, GO3},
whereas V3(x) is {{GO1, GOz}, {GO3}}. These label spaces satisfy: Vs(x) C Vao(x) C).

2.3 GOstruct using the perceptron algorithm

The perceptron algorithm is one of the simplest classification methods, and its extension to the
structured-outputs setting maintains this simplicity [9]. We introduce a variant of the algorithm
that incorporates the concept of a margin, and propose to incorporate the loss function during

Algorithm 1 Structured Outputs Perceptron: GOstruct,a

Input: training data {(x;,y;)},
Output: parameters a;y fori=1,....,nandy €).
Initialize: oy =0 Vi,y. //only non-zero values of a are stored explicitly
repeat
for:=1tondo
//Compute the top scoring label that differs from y;:
y < argmaxycyy, f(Xi, y|a)
//Compute the margin:
6 — f(xi,yi) — f(xi,¥)
if 6 <y then
Qiy, — Qiy; +1
Qg < Qi3 — Aker(Yia S’)
end if
end for
until a termination criterion is met

its training. Given a set of n training examples {(x;,y;)}/_;, the margin-based perceptron algo-
rithm attempts to find a vector w such that for each input example the true label has the largest
compatibility value and the best runner-up label is separated by a user-defined margin ~:

wlo(xi,yi) — max w'o(x;,y) =7 Vi (5)
yEV\yi
The geometric intuition is shown in Figure 2.

We propose a variant of the perceptron method that incorporates the loss function in the
process of training and present it as Algorithm 1. The GOstruct method that uses it is referred to
as GOstruct,a, whereas the GOstruct method that uses the standard perceptron update is called
G Ostruct,. In the standard version of the perceptron method whenever an example is misclassified
or its margin is not sufficiently large, the element of the parameter vector a corresponding to
the misclassification is decremented by 1 regardless of whether the classifier made a big mistake
or a slight one [9, 27]. Intuitively, we would like to penalize gross misclassifications with larger
values than slight errors. We propose to update the « coefficients using the amount of dissimilarity
between the true and predicted labels. This can be done by utilizing Age,(yi,y), the loss between
the true label y; and the highest scoring candidate y that differs from it. Note that the loss value
is between 0 and 1. Thus, when there is no similarity between the predicted and the true labels,
the corresponding « coefficient will be updated by -1, as in the traditional rule. Less penalty will
be assigned for predicting labels that are more similar to the true label. In our application, the
termination criterion is taken to be a limit on the number of iterations.

2.4 The Structured Support Vector Machine

The perceptron algorithm attempts to separate the true labels from the second best candidates
by a fixed user-defined margin. Intuitively, the larger the margin, the more robust the decision
boundary is to noise. The structured support vector machine attempts to maximize the margin,
while enforcing the constraints of Equation (5). This can be alternatively formulated as minimizing

the norm of the weight vector w, while keeping the margin fixed [35]:

min §WTW

st wlo(xs,yi) — max wlo(x,y)>1 Vi
yEV\yi
Unfortunately, this generally results in over-constrained problems with no solutions. To get around
this, we employ the n-slack formulation of the problem [35], where we allow for some amount of
margin violation. The amount of violation is represented by the slack variables &;, which we add
to the minimization criterion:

1 C
. T
Jnin oW W + . ;1 & (6)

st Vi, wlov(y:) > Ay, vi) — &,

where 0¢;(y) = ¥(xi,y:) — ¥(x;,y) and y; is the highest scoring candidate that differs from y;
as before. As is the case for any other SVM, C controls the trade-off between the smoothness of
the predictor and the amount of margin violation. In this formulation, called margin rescaling, the
slack variables are offset by the loss function, effectively relaxing the constraints for closely related
outputs. The corresponding G Ostruct method is referred to as GOstructgyy,. In our experiments
we have also considered the slack rescaling formulation [35], which achieved results comparable to
those that employed margin rescaling, however took longer to compute.

To train a structured SVMs, we used the working set approach [35] with an SMO-like algo-
rithm [26] as the underlying optimizer. Like the perceptron algorithm, all structured SVM for-
mulations were expressed in terms of the dual coefficients a. We refer the reader to the original
papers [35, 15] for details.

3 Data Preparation and Experimental Setup

We performed two experiments: one comparing the GOstruct methods to homology-based transfer-
of-annotation, and another comparing its performance on the Mousefunc dataset.

3.1 Four species prediction-by-sequence-similarity experiment

To compare the GOstruct algorithms to the transfer-of-annotation method, we computed sequence
similarity using BLAST for the following four species: C. elegans, D. melanogaster, S. cere-
visiae, and S. pombe. Sequence data was obtained from the genome database of each organism
(http://www.wormbase.org/,
http://flybase.bio.indiana.edu/, http://www.yeastgenome.org/) and annotations were ob-
tained from the Gene Ontology website at http://www.geneontology.org. Our experiments follow
the leave-one-species-out paradigm [38], where we withhold one species for testing and train the
G Ostruct method on the remaining data, rotating the withheld species. This variant of cross-
validation simulates the situation of annotating a newly-sequenced genome.

To prepare the data we removed all annotations that were discovered through computational
means as these are generally inferred from sequence or structure similarity and would introduce
bias into any classifier that used sequence similarity to make a prediction [28]. This was done

Test on C. elegans D. melanogaster S. cerevisiae S. pombe Output

proteins 926 1893 1907 939 Space
BLAST-NN 0.64 0.47 0.39 0.37
GOstruct,, 0.61 0.43 0.40 0.41 V1
GOstruct,, 0.61 0.43 0.38 0.37 Vs
GOstruct,, 0.61 0.42 0.37 0.37 V3
GOstruct,a 0.58 0.38 0.38 0.37 V1
GOstruct,a 0.58 0.37 0.36 0.34 Vs
GOstructpa 0.60 0.41 0.37 0.34 V3
GOstruct spm 0.60 0.42 0.38 0.37 V1
GOstruct sym 0.61 0.41 0.36 0.34 Vs
GOstruct sym 0.61 0.42 0.36 0.35 Vs
Random 0.82 0.87 0.88 0.82

Table 1: Classification results on predicting GO molecular function terms (361 terms that have more
than 10 annotations). We compare BLAST-NN with two variants of the perceptron (GOstruct, and
GOstructya) and one SVM variant GOstruct g,y), both using the margin re-scaling formulation.
across three methods for limiting the output space. Reported is mean kernel loss per protein for
each algorithm. The number of proteins used in each organism is displayed in the second row. For
comparison, we also include the performance of a random classifier that transfers annotation from
a training example chosen uniformly at random. The standard deviations of these results are in
the range 0.003-0.01; see text for details.

by removing all annotations with the evidence codes: IEA, ISS, ND, RCA, and NR. Note that
considering only annotations that were derived by biological experiments limits the number of
species that can be considered to a very small set of well-studied model organisms, and for simplicity
we focused on the eukaryotes listed above. After filtering for evidence codes we considered all GO
molecular function terms that appear as annotations in at least 10 proteins, resulting in a total of
361 nodes. Note that method development was performed using the GO-slims ontology, thereby
avoiding overfitting our test data.

We then ran BLAST for each of the proteins in our dataset against all four species, removing the
hits where a protein was aligned to itself. We employed the nearest-neighbor BLAST methodology
as our baseline. For every test protein, we transferred the annotations from the most significant
BLAST hit against a protein from another species. Proteins which didn’t have a hit with an e-value
below 10~ were not considered in our experiments.

The GOstruct methods are provided exactly the same data as the BLAST method: each protein
was represented by its BLAST scores against the database proteins; this is known as the BLAST
empirical kernel map [30]; more specifically, features were the negative-log of the BLAST e-values
below 50, and features were then normalized to have values less than 1.0. An empirical kernel map
arises from the intuition that two similar proteins will have similar patterns of similarity to proteins
in the database, i.e. their vectors of e-values will be similar.

We ran five fold cross-validation on the training data to select a suitable value of the margin
parameters 7y (for perceptron) and C (for structured SVM) for each left-out species. In our experi-
ments, we noticed that finding the right value of v for the perceptron algorithm was not as essential
as using the loss update proposed in the previous section.

3.2 Mousefunc experiment

As a further comparison of the GOstruct method we ran it on the Mousefunc dataset, using exactly
the same data that was provided to the participants [25]. This includes two different sources of
gene expression data, protein-protein interaction adjacency matrix, protein pattern annotation data
from Pfam and InterPro, and phylogenetic profiles. We normalized the gene expression data by
subtracting the mean and dividing by the standard deviation of each feature. Additionally, we
treated missing entries in any source of data as zero. The features within each source of data were
normalized to unit vectors to normalize the contribution of each data source to the overall input
space kernel, Ky, which was computed as the sum of linear kernels over the individual datasets.
As before, the joint kernel is computed as a product of a linear output space kernel Ky and Ky
(c.f. Equation 4). In this experiment we only considered the output space); which considers only
output labels that occur in the training data since the dataset does not include labels of proteins
with sequence similarity.

We trained the G Ostruct methods to predict annotations for the subset of GO terms requested
by the competition organizers. Any training or test examples that had no annotations in this
subset were removed from the analysis. Analysis of molecular function, biological process and
cellular component namespaces were performed separately from each other.

The values of v and C were again chosen by performing cross-validation on the training data.
We noticed that the algorithms were quite sensitive to the choice of their parameters on this dataset.

4 Results

4.1 Four species experiment

The results for the leave-one-species-out experiments are presented in Table 1. The results show
that the various flavors of the GOstruct method outperform the BLAST nearest-neighbor classifier
(BLAST-NN), except for the standard implementation of the perceptron method (GOstructp),
which performs only marginally better than BLAST-NN. Before looking at the differences between
the GOstruct methods, we note that all the classifiers performed poorly on C. elegans. This is
due to the fact that a vast majority of proteins in this species are annotated as protein binders
(GOID:0005515). Such annotations contain little information from a biological standpoint and
result in a skewed set of labels.

Our first observation is that the GOstruct,n method, which uses the loss function in the update
rule of the perceptron, outperformed GOstruct,. Furthermore, excluding C. elegans, restricting in-
ference to the sets) or Vs resulted in better performance than using the set); for all the flavors
of the GOstruct method. The larger label-space,), results in the inference procedure considering
many annotations that are irrelevant to the actual function of the protein, which can reduce pre-
diction accuracy. When used in conjunction with), or Vs our structured-outputs methods can be
thought of as prioritizing the annotations suggested by BLAST in a way that uses the structure of
the Gene Ontology hierarchy. Although inference using)»(x) and YV3(x) gave very similar results,
Va(x), which provides a richer set of options, yielded better performance than Y5(x) in 7 cases,
while V3(x) provided a better result in only one case.

The SVM-based algorithm outperforms BLAST-NN and GOstruct,, but not GOstruct,a, which
is a significantly simpler algorithm. While only the margin re-scaling results are reported, similar
performance was achieved with slack re-scaling.

10

GO number test annotations

namespace | of terms | examples | train | test
MF 205 531 3.2 3.3
BP 513 626 7.1 8.0
CcC 119 307 3.4 3.7

Table 2: Statistics of the Mousefunc dataset across namespaces: molecular function (MF), biological
process (BP), and cellular component (CC). We provide the number of terms in each namespace for
which annotations were provided, the number of examples in the test set and the average number
of annotations per protein in the training and test sets.

We assessed the robustness and variability of the results by randomly sampling the data for
training and testing: 20% of the training data was chosen at random and withheld from training.
The classifier was then trained on the remaining 80% of the training data and tested as before.
This provided us with a standard deviation measure that indicated how consistent the classifiers
were at obtaining the performance presented in Table 1. We computed the standard deviations
across 30 trials for every classifier. The values for the different classifiers were between 0.003 and
0.01. The differences in performance between BLAST-NN and the GOstruct methods (except for
the naive perceptron method) are all greater than the observed variability.

In summary, the results in Table 1 support our hypothesis that learning the structure of the
output space is superior to performing transfer of annotation. The GOstruct methods have the
added advantage that other sources of relevant genomic data can be modeled in this framework as
shown in the next set of experiments.

4.2 Mousefunc experiment

We applied the SVM and perceptron-based GOstruct methods to the Mousefunc challenge dataset
whose statistics are provided in Table 2. The GOstruct method produces a set of annotations
for each protein, from which we directly computed the average kernel loss per example and preci-
sion/recall averaged across GO terms. The results are provided in Table 3. The predictions made
by competitors in the Mousefunc challenge consist of confidence scores for each GO term across all
proteins. Computing precision and recall therefore requires thresholding the predictions at some
level. We chose to set the threshold such that the number of predictions for each term equals the
number of proteins annotated with that term in the test set. In this case, precision is equal to
recall; for the GOstruct method precision and recall are very close, thereby making its results com-
parable to those of the Mousefunc competitors. Note that this gives a significant advantage to the
methods we are comparing to, as they have access to information about the test set. But despite
this advantage, the GOstruct method outperforms all the other methods except Funckenstein by a
large margin in all namespaces (Table 3). For algorithms that produce confidence scores the kernel
loss can be computed directly from the confidence scores, without thresholding the predictions. For
most algorithms (except GeneMania), thresholding the confidence measures leads to higher kernel
loss.

To further illustrate the contribution of using the structured SVM approach, we compare the
G Ostruct method to a collection of independent binary SVMs. The SVM-based GOstructsym
method outperforms the collection of binary SVMs under all the performance measures (Table 2).
The binary SVM experiment was performed using the SVM implementation in the PyML machine

11

GO Perf. Literature GOstruct SVM
nmspc. measure Algl Alg2 Alg3 Alg4d Algb5 Alg6 Alg7 | pA svm (binary)
MF kernel loss™ 0.63 0.47 0.43 0.67 0.52 0.62 0.33 0.52 0.33 0.42

precision 0.45 0.61 0.53 0.56 0.51 0.57 0.66 0.40 0.67 0.59
recall 0.45 0.61 0.53 0.56 0.51 0.57 0.66 0.52 0.65 0.59
kernel loss 0.61 0.42 0.50 0.46 0.52 0.47 0.39 0.42
BP kernel loss” 0.79 0.69 0.63 0.84 0.74 0.72 0.58 | 0.68 0.60 0.67
precision 0.15 0.25 0.23 0.27 0.20 0.29 0.31 0.15 0.28 0.27
recall 0.15 0.25 0.23 0.27 0.20 0.29 0.31 0.24 0.28 0.27
kernel loss 0.86 0.68 0.71 0.71 0.76 0.67 0.65 0.67
CC kernel loss” 0.60 0.60 0.53 0.76 0.67 0.66 0.50 | 0.62 0.50 0.59
precision 0.33 0.36 0.39 0.42 0.35 0.40 0.46 0.23 0.43 0.45
recall 0.33 0.36 0.39 0.42 0.35 0.40 0.46 0.42 0.46 0.45
kernel loss 0.76 0.62 0.63 0.60 0.68 0.62 0.59 0.59

Table 3: Prediction results on the Mousefunc dataset for molecular function (MF), biological process (BP) and cellular
component (CC) namespaces. Reported are the the mean kernel loss per protein and precision/recall Lower values of the loss
and higher values of precision/recall are better. The best value for each experiment is highlighted. There are two lines with
kernel loss results. The results labeled as kernel loss” are obtained using the raw confidence scores with no thresholding. All
the other results in the table are obtained by thresholding competitor results. GOstruct predictions require no thresholding, so
only one set of kernel loss numbers is reported. Alg 1 denotes the work by Kim, et al. [16]. Alg 2 is an ensemble of calibrated
SVMs by Obozinski, et. al [23]. Alg 3 is the kernel logistic regression, submitted by Lee, et al. [19]. Alg 4 is geneMANIA [22].
Alg 5 is GeneFAS [8]. Alg 6 is the work by Guan, et al. [13]. Alg 7 is Funckenstein [34]. GOstruct,a uses the perceptron
algorithm (Algorithm 1), and GOstructsym denotes the m-slack formulation of the structured SVMs with margin re-scaling.
The last column presents the results of running binary SVMs on each node individually. The variability in our results was
computed as in the previous experiment and yielded a standard deviation of 0.008 for the perceptron, and 0.02 for the SVMs.

learning library available at pyml.sf.net run with the default parameters, and the same input-
space kernel used to assess the GOstruct methods.

In a preliminary version of this paper we reported ROC scores (area under the ROC curve)
in addition to the kernel loss [31]. There is no accepted definition of ROC curves for structured
output methods, which here requires the definition of a confidence measure for a component of the
overall prediction—confidence in the prediction of a particular term (micro-label).

A full run of the GOstruct sy, method (including model selection) took 6 hours for the molecular
function namespace, 30 hours for biological process, and 1.5 hours for cellular component (all
numbers are user time, and experiments were performed on a 3.0GHz 8Gb RAM workstation using
a single core). The perceptron-based method took about half the time. The computation time
across namespaces is affected by the number of annotation terms: The arg max operation in Eqn 3
requires a traversal over all combinations of terms seen in the training set. Proteins are also
annotated with more terms in the biological process namespace (see Table 2) which increases the
computation time of the output-space kernel.

The perceptron-based GOstruct,a algorithm is significantly simpler than the majority of the
algorithms employed by the participants in the Mousefunc challenge. It is very easy to describe and
implement, and converged quickly (usually in as few as five passes through the training data). While
being significantly simpler than all other algorithms, it maintained competitive performance with
the other entries. Whereas in the four species experiment the structured perceptron was slightly
better than the structured-SVM, the structured-SVM was much better on the Mousefunc data. We
believe this has to do with the sparsity of the data in the four-species experiment: each protein has
appreciable levels of similarity to only a handful of other proteins; the Mousefunc data on the other
hand is not sparse. In our experience, simple algorithms (e.g. perceptron or nearest-neighbor) often
perform very well when data is sparse.

All of the algorithms we looked at in this work performed best when tasked with the prediction

12

GO Inference GOstructpa GOstruct sym
namespace method Loss Prc. Rec. | Loss Prc. Rec.
MF independent | 0.52 0.40 0.52 | 0.33 0.67 0.65
combined 0.50 042 0.52 | 0.40 0.66 0.61
BP independent | 0.67 0.15 0.24 | 0.60 0.28 0.28
combined 0.70 0.15 0.20 | 0.66 0.31 0.24
CC independent | 0.62 0.23 0.42 | 0.50 0.43 0.46
combined 0.67 035 0.37 | 0.65 0.51 0.37

Table 4: Prediction across GO namespaces. We compare our original results for classifying each namespace independently
(the first row for each namespace in the table, labeled as “independent”) with simultaneous prediction across all namespaces
(the second row for each namespace in the table, labeled as “combined”). Presented are kernel loss, precision and recall values
for two of the GOstruct classifiers.

of molecular function, followed by cellular component, with worst performance on prediction of
the biological process namespace annotations. There are several factors that may contribute to
this ranking: molecular function is often associated with specific sequence patterns (part of the
input in the Mousefunc data), making it the easiest to predict. Biological process is the namespace
that has the largest number of terms which adds to the difficulty—the classifier has more ways of
making a wrong prediction. In experiments published elsewhere in predicting individual GO terms
from sequence using a BLAST-NN approach, performance in the cellular component and biological
process namespace was very similar, and as we observe here, accuracy was much higher in the
molecular function namespace [28].

4.2.1 Performance by term specificity

As in the original Mousefunc competition paper, we investigated the dependence of classifier
performance on the number of examples available per GO term [25]. We divided GO terms
into four categories by the number of examples available for training: {3-10} examples, {11-30}
examples, {31-100} examples, and {101-300} examples, and computed average precision/recall
for each category separately. In general, terms with fewer training samples are more specific,
as indicated by them being deeper in the hierarchy (see Table S.2 in the supplementary ma-
terial at http://www.cs.colostate.edu/ asa/supplements/gostruct/jbcb/supplement.txt).
When evaluating prediction accuracy on molecular function GO terms for which only three to ten
training examples are available, the GOstructgy,, method achieves 85% precision, with the next
runner-up (Alg 2) at 64%. A similar pattern can be observed in the biological process namespace.
As the number of available training samples grows, GOstructs,,, maintains its competitive edge,
being occasionally outperformed by the other algorithms, which were again thresholded on the
basis of the test data. Detailed results from this experiment are available in the online supplement
at http://www.cs.colostate.edu/ asa/supplements/gostruct/jbcb/supplement.txt.

From our experience in predicting enzyme function, we expect very specific GO molecular
function terms to be associated with highly specific sequence patterns, allowing highly accurate
predictions [5]. But with very few training examples available, the accuracy of a binary classifier
trained to predict such GO terms suffers from the lack of training data. We believe that by learning
a single classifier for the whole hierarchy the GOstruct method is able to perform better on GO
terms for which little training data is available since it can leverage information from related terms.

13

4.3 Prediction across GO namespaces

In the results presented thus far predictions were made independently in each namespace. However,
protein annotations are correlated across namespace. For example, proteins that participate in DNA
replication are likely to be localized to the cell’s nucleus. We therefore performed an additional
experiment where we train a classifier to predict GO terms in all three namespaces simultaneously.
This directly implements the above observation, since in training we consider only combinations of
GO terms that occur in the training data.

The results from this experiment are presented in Table 4. The results labeled as “independent”
are taken from Table 3 and are included for comparison. These correspond to predicting the
keywords from each namespace separately. The results labeled as “combined” correspond to the
classifier that was trained on all namespaces simultaneously. We then measured the accuracy of
each full prediction with respect to each namespace. We observe that in all cases simultaneous
prediction has higher precision and lower recall, with the overall kernel loss being higher, except in
one case (prediction of biological process using the perceptron). This can be understood as follows:
by only considering combinations of GO terms that occur across namespaces in the training data
our predictions become more accurate; but this reduced flexibility leads to lower recall since the
GO term combinations present in the training data likely do not fully represent all the relevant
combinations of GO terms. For future work we will put together a more comprehensive list of
GO-term combinations observed in other organisms which will likely better capture GO-term co-
occurrence.

We considered a second approach for making inference across namespaces which incrementally
predicts annotations namespace by namespace, with predicted annotations serving as input for the
next stage in the prediction process. In the first stage we train a classifier to predict annotations
in a given namespace. The annotations predicted by this classifier are then used as input features
for prediction of annotations in another namespace. And finally, results from two namespaces are
used to infer annotations in the remaining namespace. For prediction of biological process using
molecular function predictions the precision and recall were 0.29 and 0.27, respectively compared
to 0.28 and 0.28 for the prediction made using an independent classifier. For prediction of cellular
component using molecular function predictions the precision and recall were 0.44 and 0.47, re-
spectively compared to 0.43 and 0.46 for the prediction made using an independent classifier. All
the other results were not as accurate as using independent classifiers (see detailed results in the
online supplement). We believe this is the result of accumulation of errors—the stagewise classifier
is useful only when using molecular function as data, since this is the namespace where predictions
are most accurate. Otherwise, the process adds too much noise.

5 Conclusions

In this paper we presented the GOstruct method for predicting GO terms which explicitly models
the structure of the GO hierarchy using kernel methods for structured output spaces, a novel devel-
opment in the field of machine learning. The GOstruct method outperforms both the traditional
transfer-of-annotation method when provided only with sequence similarity, and outperforms by
a large margin all but one of the algorithms tested in the recent Mousefunc function prediction
challenge. The only method whose performance is competitive with the performance of GOstruct
was the Funckenstein method, and only when its thresholding was computed using using knowledge
of the true number of labels of each protein.

14

Through the use of structured output methods we could incorporate into the training procedure
a loss function which allows us to directly optimize the accuracy of hierarchical classification. This
has two advantages over training a collection of binary classifiers. First, we don’t need to reconcile
potentially conflicting predictions from multiple classifiers. Second, we are not required to come
with a threshold for deciding whether a particular annotation is associated with a given protein, a
non-trivial problem faced by users of binary classifiers that report a confidence measure.

A well-known issue in the structured-output approach is the need to consider a potentially
exponential number of outputs during inference. We proposed several ways for limiting the size of
the search space, and found that this not only leads to efficient inference and training, but also
improves classifier accuracy.

In future work we plan to extend the GOstruct framework in several ways: integrate unlabeled
data through semi-supervised learning, consider additional methods for performing inference within
a GO namespace, and across namespaces, and explore ways of probing the classifier to determine
features that are responsible for the way a protein was classified.

References

[1] S.F. Altschul, W. Gish, W. Miller, E-W. Myers, and D.J. Lipman. Basic local alignment search tool. J.
Mol. Biol, 215(3):403-410, 1990.

[2] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector machines. In 20th
International Conference on Machine Learning (ICML), 2003.

[3] K. Astikainen, L. Holm, E. Pitk
“anen, S. Szedmak, and J. Rousu. Towards structured output prediction of enzyme function. In BMC
proceedings, volume 2, page S2. BioMed Central Ltd, 2008.

[4] Z. Barutcuoglu, R.E. Schapire, and O.G. Troyanskaya. Hierarchical multi-label prediction of gene
function. Bioinformatics, 22(7):830-836, 2006.

[5] A. Ben-Hur and D. Brutlag. Protein sequence motifs: Highly predictive features of protein function. In
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature extraction, foundations and applica-
tions. Springer Verlag, 2006.

[6] A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Schélkopf, and G. Rétsch. Support Vector Machines and
Kernels for Computational Biology. PLoS Computational Biology, 4(10), 2008.

[7] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical classification.
The Journal of Machine Learning Research, 7:31-54, 2006.

[8] Y. Chen and D. Xu. Global protein function annotation through mining genome-scale data in yeast
Saccharomyces cerevisiae. Nucleic acids research, 32(21):6414, 2004.

[9] M. Collins. Discriminative training methods for hidden Markov models: theory and experiments with
perceptron algorithms. Proceedings of the ACL-02 conference on Empirical methods in natural language
processing- Volume 10, pages 1-8, 2002.

[10] M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional prediction of proteins.
In RECOMB, pages 95-103, 2003.

[11] Michael Y. Galperin and Eugene V. Koonin. Sources of systematic error in functional annotation of
genomes: Domain rearrangement, non-orthologous gene displacement and operon disruption. In Silico
Biology, 1(1):55-67, 1998.

15

12]
13]
14]
15]
16]

[17]

[21]

[22]

Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet., 25(1):25-9,
2000.

Y. Guan, C. Myers, D. Hess, Z. Barutcuoglu, A. Caudy, and O. Troyanskaya. Predicting gene function
in a hierarchical context with an ensemble of classifiers. Genome Biology, 9(Suppl 1):S3, 2008.

T. Hofmann, L. Cai, and M. Ciaramita. Learning with taxonomies: Classifying documents and words.
In NIPS Workshop on Syntax, Semantics, and Statistics, 2003.

T. Joachims, T. Finley, and C.N.J. Yu. Cutting-plane training of structural SVMs. Machine Learning,
2009.

W. Kim, C. Krumpelman, and E. Marcotte. Inferring mouse gene functions from genomic-scale data
using a combined functional network/classification strategy. Genome Biology, 9(Suppl 1):S5, 2008.

Svetlana Kiritchenko, Stan Matwin, and A. Fazel Famili. Functional annotation of genes using hierarchi-
cal text categorization. In Proc. of the BioLINK SIG: Linking Literature, Information and Knowledge
for Biology, a joint meeting of the ISMB BioLINK Special Interest Group on Text Data Mining and the
ACL Workshop on Linking Biological Literature, Ontologies and Databases, 2005.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical framework
for genomic data fusion. Bioinformatics, 20(16):2626-2635, 2004.

H. Lee, Z. Tu, M. Deng, F. Sun, and T. Chen. Diffusion kernel-based logistic regression models for
protein function prediction. OMICS: A Journal of Integrative Biology, 10(1):40-55, 2006.

Y. Loewenstein, D. Raimondo, O. Redfern, J. Watson, D. Frishman, M. Linial, C. Orengo, J. Thornton,
and A. Tramontano. Protein function annotation by homology-based inference. Genome Biology,
10(2):207, 20009.

S. Mostafavi and Q. Morris. Using the gene ontology hierarchy when predicting gene function. In
Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, Canada, 2009.

S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, and Q. Morris. GeneMANTA: a real-time multiple
association network integration algorithm for predicting gene function. Genome Biology, 9(Suppl 1):54,
2008.

G. Obozinski, G. Lanckriet, C. Grant, M. Jordan, and W. Noble. Consistent probabilistic outputs for
protein function prediction. Genome Biology, 9(Suppl 1):S6, 2008.

D. Pal and D. Eisenberg. Inference of protein function from protein structure. Structure, 13:121-130,
January 2005.

L. Pena-Castillo, M. Tasan, C. Myers, H. Lee, T. Joshi, C. Zhang, Y. Guan, M. Leone, A. Pagnani,
W. Kim, et al. A critical assessment of Mus musculus gene function prediction using integrated genomic
evidence. Genome Biology, 9(Suppl 1):S2, 2008.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.
Advances in Kernel Methods-Support Vector Learning, 208, 1999.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Learning and inference over constrained output. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1124-1129,
2005.

M. Rogers and A. Ben-Hur. The use of Gene Ontology evidence codes in preventing classifier assessment
bias. Bioinformatics, 25(9):1173-1177, 2009.

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical multil-
abel classification models. The Journal of Machine Learning Research, 7:1601-1626, 2006.

16

[30]

B. Scholkopf, J. Weston, E. Eskin, C. Leslie, and W.S. Noble. A kernel approach for learning from
almost orthogonal patterns. In Proceedings of the 13th European Conference on Machine Learning,
pages 511-528. Springer-Verlag London, UK, 2002.

A. Sokolov and A. Ben-Hur. GOstruct: utilizing the structure of the gene ontology for accurate predic-
tion of protein function. In 8th Annual International Conference on Computational System Bioinfor-
matics (CSB), 2009.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: A
large margin approach. In Twenty Second International Conference on Machine Learning (ICMLO05),
2005.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Advances in Neural Information
Processing Systems, volume 16, page 51. MIT Press, 2004.

W. Tian, L. Zhang, M. Tasan, F. Gibbons, O. King, J. Park, Z. Wunderlich, J.M. Cherry, and F. Roth.
Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function.
Genome Biology, 9(Suppl 1):S7, 2008.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. The Journal of Machine Learning Research, 6:1453-1484, 2005.

K. Tsuda, H.J. Shin, and B. Schélkopf. Fast protein classification with multiple networks. In ECCB,
2005.

CJ Van Rijsbergen. Information Retrieval. Butterworth-Heinemann Newton, MA, USA, 1979.

A. Vinayagam, R. K onig, J. Moormann, F. Schubert, R. Eils, K.-H. Glatting, and S. Suhai. Applying
support vector machines for gene ontology based gene function prediction. BMC' Bioinformatics, 5:178,
2004.

17

