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Abstract. Noise robustness is a key issue in successful deployment of automatic speech recognition systems in 
demanding environments such as hospital operating rooms. Perhaps the most successful way to overcome the additive 
noise obstacle is to employ a model adaptation scheme built around a set of dedicated clean speech and noise-only 
statistical models. Existing recognizer designs generally rely on relatively simple noise models, as more detailed ones 
would increase computational demands significantly. Simple models are, however, unable to provide accurate 
characterization of highly nonstationary noise present in real-world noisy facilities and thereby provide only limited 
reduction in error rate of the recognizer. The present article describes a novel approach to nonstationary acoustical 
noise modeling via a set of hierarchically tied hidden Markov models in a classification tree structure. Proposed 
statistical structure allows detailed description of nonstationary ambient acoustical noise while maintaining low 
computational costs during recognition. Modeling performance of the proposed construction is verified on a real 
background noise recorded during a neurosurgery in a hospital operating room. 
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1. Introduction 

Recognizing speech in adverse acoustic conditions 
requires proper treatment of all kinds of nonstationary 
ambient noise that interferes with the speech signal 
produced by the speaker. Automatic speech recogni-
tion (ASR) systems trained on clean speech only show 
major drop in performance if the noise level is 
increased [18]. The primary reason for this is the 
mismatch between the training and testing conditions 
rendering available speech acoustical models inap-
plicable. Many approaches to deal with this issue have 
been developed so far providing decent results in 
laboratory conditions. Common speech enhancement 
and noise suppression strategies, however, tend to 
oversimplify the background noise characteristics. It is 
not unusual for ASR systems to have hundreds or 
thousands of parameters characterizing the speech 
statistical models and much less elaborate noise-re-
lated descriptors. More detailed noise models are often 
prohibitive due to high computational burden involved 
in their real-time evaluation. Universal recognizers 
also lack the necessary prior information of the target 
environment in the design stage hence must be able to 
quickly acquire relatively well-performing simple 
noise description during the actual recognition. 

This article explores a computationally feasible 
way to enhance noise robustness of a speech 

recognizer by utilizing a noise model based on clas-
sification tree hierarchy of hidden Markov models 
(HMM). Used hierarchical structure reduces the 
amount of model states evaluated in every time step 
during the recognition. Unlike the traditional 
hierarchical hidden Markov model (HHMM) [5], the 
proposed algorithm takes into consideration only the 
most likely set of sub-HMMs throughout the hierar-
chy. This allows reduction of computational demands 
compared to a HHMM. 

Experimental part of the described research uti-
lizes a recognizer designed for use in the specific 
acoustical environment of a hospital operating room. 
This involved obtaining a representative (several 
hours lasting) sample of the acoustical background 
noise needed for robust model construction. The 
recording took place during a neurosurgery in an 
operating room at the University Hospital in Marburg, 
Germany. 

2. Current Approaches for Noise-Robust 
Speech Recognition 

Factors affecting the performance of ASR systems 
can be divided into two main categories: 
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• Speaker-induced changes in speech due to indi-
vidual speaker characteristics, stress, emotions, 
fatigue, Lombard effect, etc. 

• Environmental noise – additive noise, convolutio-
nal noise (transmission channel characteristics). 

Additive noise is usually the limiting factor for 
ASR usefulness in noisy environments such as the 
operating room for which our system is being 
developed. Existing methods for alleviation of the 
additive noise negative impact generally follow the 
usual structure of a recognizer consisting of a prepro-
cessing stage, feature extraction and enhancement, and 
a statistical models-based recognition block. 

Noise-robust parameterization methods try to 
achieve noise invariance of parametric speech repre-
sentation by replacing usual types of features such as 
MFCCs (mel-scale frequency cepstral coefficients) 
[10] with more robust ones. For instance, the RCC 
(root cepstrum coefficients) can reportedly improve 
the relative recognition accuracy of noisy speech by as 
much as 5% [23]. A popular enhancement of PLP 
coefficients is the RASTA-PLP (relative spectra - 
perceptive linear predictive) [9] feature representation 
utilizing modulation spectrum filtering in time 
direction. By constraining spectral components’ 
dynamics according to human vocal tract capabilities, 
decent reduction in error rate of up to 34% was 
reported [9]. Experiments with broader range of 
various time-dimension filtering techniques on feature 
vectors can be found in [24]; compared to MFCCs, the 
proposed filtered coefficients yield 40-70% relative 
reduction of error rate in “factory noise” case. Com-
mon shortcoming of most feature-enhancement techni-
ques is their dependency on sufficient dissimilarity 
between the speech signal and the background noise 
and rather strong assumptions on speech properties. 

Speech enhancement methods try to filter out noise 
either in time or frequency domain (or even in feature-
vector domain) to obtain clean speech from captured 
input noisy speech signal. Popular methods include 
nonlinear spectral subtraction, cepstrum mean (and/or 
variance) normalization, and their derivatives [18]. 
More elaborate approaches use e.g. Wiener filter [16] 
or other adaptive filters. 

Model-based techniques focus on the classification 
stage of the recognizer where acoustical hidden Mar-
kov models of speech are employed in Viterbi decoder 
to find the most probable word sequence. A straight-
forward way to make speech models “aware” of 
additive noise would be to train them directly on noisy 
speech where all possible noise types would be pre-
sent. Such training would, however, lead to models 
with flat probability densities with poor discriminative 
power [22]. The multiple-model framework [22] with 
a set of noisy speech models each for a different kind 
of noise provide lower intra-class variance, neverthe-
less a separate noise type classifier is needed. Methods 
focusing on real-time modification of existing clean 
speech models provide higher level of flexibility and 

currently offer the most promising results in noise-
robust speech recognition. A very widely used 
universal adaptation method is the MLLR (maximum 
likelihood linear regression) [14]. The need for 
sufficiently slow variation of background noise pro-
perties, however, reduces the MLLR usefulness in 
nonstationary noise conditions. Similar results can be 
obtained using the MAP (maximum aposteriori 
probability) criterion-based adaptation [12] with 
slightly lower computational costs. If complete online 
adaptation is not required, i.e. if the target environ-
ment is sufficiently known beforehand, the PMC 
(parallel model combination) method [6] provides 
premium noise robustness comparable to the dedicated 
noisy speech models [20]. In PMC, a separate acous-
tical model for clean speech and additive noise is 
trained in design stage. During the actual recognition, 
both models are combined based on the current SNR 
(signal-to-noise ratio) to produce noisy speech acous-
tical model that fits well to the input signal. Other 
methods, mostly based on the VTS (vector Taylor 
series) approach [1], offer also on-line adaptation of 
the noise model and are hence more suitable for 
unknown target environments. 

In our experiments we concentrated on the PMC 
method with log-normal approximation as a basic 
framework allowing assessment of the new noise 
model performance. 

3. Parallel Model Combination Method 

ASR systems utilizing separately trained acoustical 
models for clean speech and noise provide many 
advantages compared to noisy speech-trained ones. 
They eliminate cumbersome formulation of noisy 
speech learning data to begin with and allow easy 
expansion of an existing system by simply adding a 
new speech/noise definition. Generally low memory 
requirements compared to multiple-model framework 
is also an important point. 

The PMC [6] method uses separate set of 
continuous density HMMs for speech units 
(words/phonemes) and a GMM (Gaussian mixture 
model) or entire HMM for characterization of expec-
ted additive noise. The noisy speech HMM is inferred 
on-line during recognition by properly combining 
parameters (HMM prior and transition probabilities, 
covariance matrices, mean vectors) of pre-trained 
clean speech and noise models. The combination of 
emission probabilities is carried out in linear spectral 
domain; hence transformation from cepstral domain is 
needed for MFCC coefficients. The first step is to map 
model parameters from cepstral to log-spectral domain 
using 

cl μCμ 1−=  (1) 

( )Tcl 11 −−= CΣCΣ  (2) 

where μ and Σ are the mean vector and covariance 
matrix, respectively. The l and c indices denote log-
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spectral and cepstral domain, respectively. C is the 
DCT (direct cosine transform) matrix, T denotes mat-
rix transpose. Mapping from log-spectral to linear 
spectral domain is accomplished element-wise by 

⎟
⎠
⎞

⎜
⎝
⎛ += l

ii
l
ii Σμμ

2
1exp  (3) 

( )( )1exp −= l
ijjiij ΣμμΣ . (4) 

The log-normal variant of PMC approximates the 
sum of two log-normally distributed random variables 
by another log-normal distribution. As such, noisy 
speech model parameters in linear spectral domain are 
given by 

nsy g μμμ +≈  (5) 
nsy g ΣΣΣ +≈ 2  (6) 

where indices s, n, and y denote clean speech, noise, 
and noisy speech, respectively. The gain term g 
compensates for level differences. Having the noisy 
speech model parameters in linear spectral domain, an 
inverse mapping back into cepstral domain is applied. 

Many other variants of PMC exist offering various 
trade-offs between accuracy and computational comp-
lexity. The most common ones include [6, 13] DPMC 
(data-driven PMC), FPMC (fast PMC), and others. In 
larger vocabulary recognition tasks the dynamic para-
meters (delta, acceleration) are often used. These para-
meters can also be included into PMC framework [20] 
with resulting performance better than of standard 
VTS approach in continuous speech recognition tasks. 

4. Construction of an Accurate Noise Model 

Accurate statistical modeling of nonstationary 
acoustical noise is somewhat overlooked issue. Yet, 
proper noise model plays an essential role in overall 
ASR performance, especially in low SNR. It is a 
common practice to use only one GMM or just a few-
state HMM to characterize the background noise [17, 
7, 11]. Real-world ambient noises are, however, 
nonstationary in nature and often demonstrate quite 
complex patterns even for just one target environment. 
Therefore much larger noise HMMs seem more appro-
priate. Proper initialization of such model is a nontri-
vial task and should take into account both global and 
local patterns emerging in a given acoustical environ-
ment. Individual states of the resulting HMM (normal-
ly initialized via some clustering algorithm) must well 
characterize the underlying random process. 

A straightforward way of unsupervised clustering 
of all feature vectors within a given background noise 
training sample would neglect the local signal depen-
dencies. Hence, rather chaotic dispersion of feature 
vectors amongst the clusters would result to individual 
HMM states providing little consistency in timely 
manner (notice that a HMM state should theoretically 
emit stationary signal portion). 

Our experiments are targeted towards the specific 
noisy environment of a hospital operating room. The 
obtained background noise sample shows many re-
peating patterns of local stationarity (caused mostly by 
present machinery). Inspired by human processing of 
audio stimuli known from ASA (auditory scene ana-
lysis) research field [3], a sensible first step is to 
proceed with pre-segmentation based on local spatio-
temporal patterns. Our previous study [25] proved the 
usefulness of BIC (Bayes information criterion) [19] 
based segmentation of the training recording followed 
by noise states clustering. This model-selection 
scheme is popular for its robustness and optimality. 
Applied to signal’s natural boundaries detection, BIC 
is used to perform a statistical test deciding whether 
the current signal portion is better described by only 
one normal distribution or as a split pair of two. Given 
a parameterized signal portion starting at time a, 
ending at time c and possibly having a boundary 
between a and c on the position b, the ΔBIC score can 
be computed [19] 

( ) −−=Δ acaccba Σlog
2
1),,BIC(  

( ) ( ) −−−− bcab bcab ΣΣ loglog  

( ) ( )acNNN −⎟
⎠
⎞

⎜
⎝
⎛ −+ log1

2
1

2
1 λ  (7) 

where Σac is the covariance matrix of a normal 
distribution computed from the (a;c) interval, Σab the 
covariance matrix of the (a;b) interval, and Σbc the 
covariance matrix of the (b;c) interval. N is the width 
of the used feature vector. Coefficient λ sets the level 
of detail of resulting segmentation. If ΔBIC(a,b,c) is 
higher than zero, a boundary at b for a given interval 
(a;c) is found. 

Once natural boundaries in a signal are identified, 
resulting segments can be clustered into predefined 
number of groups serving as templates for HMM 
states. 

High number of noise HMM states can provide 
good characterization of the background noise; re-
sulting computational costs in a model combination 
procedure might, however, be a limiting factor in prac-
tical usability. Therefore a way to reduce the number 
of noise states evaluated in every time step of Viterbi 
decoding is needed. 

5. Proposed Hierarchical Noise Model 

Using decision tree hierarchy has proved useful in 
several areas of audio processing. A hierarchical pho-
neme classifier [4] outperformed previous approaches; 
West and Cox [21] utilized a tree structured classifier 
with pairs of single Gaussians for node splitting in a 
musical signals classification task. The used structure 
performed better than a usual flat set of GMMs (one 
for each classified music type). We propose to extend 
this scheme to multiple-states HMMs instead of 
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simple Gaussians, where each HMM state serves as a 
distinct splitting point as well as an emitting node. The 
resulting hierarchically tied set of HMMs somewhat 
resembles the well-known hierarchical hidden Markov 
model (HHMM) [5], nevertheless the classification 
tree principle considerably limits the number of states 
to be evaluated in every time step. Of course, boosting 
the evaluation speed by limiting the searched set of 
states introduces certain compromise to the achievable 
modeling performance compared to an elaborate 
HHMM. In the proposed structure, the most funda-
mental constraint inheres in strict top-down depen-
dency, i.e. lower layers have no impact on the upper 
layers as dictated by the classification tree principle. 
Consequently, sub-trees growing from individual 
states of a HMM in one layer do not interfere with 
each other. Hence, decisions made in certain position 
of the tree influence only nested nodes down the 
current tree context. Figure 1 illustrates an example of 
the proposed noise HMM tree structure. 

 

1 2 3

3.1 3.2 3.31.1 1.2

3.1.1 3.1.2 3.1.3
 

Figure 1. Noise HMM tree structure 

All nodes in the entire tree are emitting ones 
(contrasting to HHMMs where abstract nodes are 
usually used in all but the last layer). The root HMM 
consists of 3 states that compose the layer 1 of the 
hierarchy. Each of these states expands to a new 
HMM lined in layer 2. The white states of layer 2 
HMMs expand further to layer 3. The dark grey nodes 
do not have associated sub-HMMs and inherit output 
distribution of the parent state. From the emission 
probability distribution point of view, entering such 
state is effectively returning parse to the parent HMM 
hence limiting the nesting depth. Yet, no explicit 
bottom-up dependence is introduced preserving the 
classification tree principle. This allows flexible auto-
matic choice of model degree of generality based on 
currently observed noisy data in relation to the trained 
noise characteristics. 

 

5.1. Noise Model Training 

The layered structure of the proposed model is 
intended to catch up both general global as well as 
detailed local noise properties. As the hierarchy 
unrolls, more detailed and localized HMMs take place. 
Setting the model structure properly is essential for 
good performance, yet no exact solution to this issue 
is available. We decided to set the model hierarchy on 
the basis of unsupervised iterative hierarchical top-
down segmentation employing the aforementioned 
BIC criterion. The segmentation algorithm is as fol-
lows (symbols correspond to Eq. 7): 
1) Start with (a; c) interval covering the entire trai-

ning noise recording defining the highest perspec-
tive in which a boundary shall be searched for. 

2) If a boundary within (a; c) is found, break the 
interval into according pair and perform a new 
BIC search on each subinterval, i.e. (a; b) and (b; 
c). If there is no boundary among (a; c) detected, 
divide the interval into two equal parts and run 
the BIC search on each of the two subintervals. 
Proceed recursively on all new subsections. 

3) If the (a; c) interval in any iteration falls below a 
preset number of segments 2ε, quit the current 
thread. The ε must be set reasonably to provide 
enough data for meaningful local statistics. The b 
search within (a; c) should also be limited to (a+ε; 
c-ε) interval so that the Σab and Σbc matrices have 
enough training data. Utilization of diagonal 
matrices instead of full ones reduces the parame-
ters fluctuations and allows lower ε values. 

The segmentation process is illustrated in Figure 2. 
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0   
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Figure 2. Top-down iterative BIC segmentation of noise 

recording 

Lower part of the figure shows noise spectrogram 
(frequency axis in logarithmic mel scale); blocks in 
the upper part demonstrate hierarchical structure of 
evaluated intervals starting with first layer on the top 
of the figure. Vertical black lines indicate identified 
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boundaries with corresponding depth of segmentation 
hierarchy they occurred in. 

Once the hierarchical segmentation is completed, 
assignment of noise signal frames to HMM states can 
be accomplished. Our current implementation of noise 
model comprises 3 layers; each layer is set a prede-
fined average HMM state duration (5 s, 1 s, and 0.2 s, 
respectively) to ensure intended "generality gradient" 
through the layers. Based on the predefined durations, 
a horizontal cut in segmentation hierarchy gives a set 
of BIC boundaries for the given HMM layer. Starting 
from the top layer, signal chunks defined by BIC bor-
ders are clustered via k-means algorithm according to 
the intended number of HMM states. Portions of noise 
signal assigned to each HMM state are then concate-
nated and used for GMM estimation by the 
split-merge EM (expectation maximization) algorithm 
[2] forming the state’s emission probability distri-
bution. From layer 2 on, only signal portions associa-
ted to corresponding state in preceding layer are used 
for sub-HMM construction, hence the parent state uses 
a superset of training samples assigned to individual 
states of the current layer HMM. Transition probabi-
lities and priors are obtained via expected likelihood 
estimation (ELE) [15] from observed bigram frequen-
cies. This ensures nonzero probability even for spar-
sely observed transitions. Utilization of ELE plays a 
key role in defining the probabilities of entering the 
non-expanding states that are clearly never observed 
within the training data. ELE introduces additive 
smoothing to empirical probability )(ˆ yP  which is 
computed from the observations of random variable Y 
with sample space of ny possible values and (absolute) 
observed frequency f(y) by 

Ynkn
kyfyYP

⋅+
+

==
)()(ˆ . (8) 

The factor k=0.5 is dictated by the Jeffrey-Perks 
law [15]; n is the total number of observations. 
Resulting individual HMMs are ergodic ones with 
emitting states only. 

An alternative training data/HMM state assign-
ment was also considered based on Baum-Welch rees-
timation and Viterbi forced alignment. After defining 
one layer, the resulting HMM was reestimated and 
new BIC segmentation was executed on all parts 
devolved to each state according to Viterbi alignment. 
Such a procedure, however, yielded worse perfor-
mance than the proposed global BIC segmentation 
approach. 

5.2. Speech Recognition Using the Noise Model 

Our testing system performs isolated voice com-
mands recognition by utilizing whole word left-right 
HMMs with usual trailing non-emitting states (see 
Figure 3). During the recognition, all speech HMMs 
are combined with the current noise HMM in current 
layer resulting in ergodic HMM with emitting states 
only. The combined model thus contains all combi-

nations of speech and noise states as well as noise-
only states to account for pauses between words. 

 

 
Figure 3.  A word HMM (3 emmiting states,  

2 non-emitting) 

Given three layers of noise model, three Viterbi 
decoders must run in parallel. The first decoder uses 
noisy speech model where noise HMM comes from 
the first layer only. The Viterbi decoding selects the 
most probable sequence of noisy speech HMM states. 
From this sequence, the path through noise-only 
HMM is extracted (see layer 1 in Figure 4). According 
to parent noise HMM states in layer 1, the second 
Viterbi runs on noisy speech models composed of 
corresponding noise sub-HMMs of 2nd layer and 
speech HMMs (see Figure 4 – decoded noise-only 
HMM states in layer 2). Analogically, the third 
Viterbi uses noisy speech model comprising layer 3 
noise HMMs according to decoded noise HMM states 
in layer 2. A non-expanding state is illustrated in layer 
2 (see state 2.5 in Figure 4). 

 

Figure 4. A 3-layer noise HMM with decoded state 
sequence 

The final outcome of noisy speech recognition, 
i.e. the speech HMM states sequence (and 
corresponding words sequence), is obtained from 
Viterbi decoding of noisy speech HMM associated 
with the last layer of noise HMM hierarchy. Speech 
states decoded within the upper layers are ignored as 
the noisy speech HMM served only for obtaining the 
most probable noise HMM states alignment. 

Proper decoding of layers 2 and 3 requires certain 
modifications to the standard Viterbi algorithm [15]. 
Let the variable δlj(t) stores the most probable path 
through the trellis that leads to a node Xl

t = j, 1 ≤ j ≤ N 
at time t in layer l 

)|,,(max)( 1111
11

λjXooXXPt l
tt

l
t

l

XX

l
j

t

== −−
−

δ  (9) 

where ot denotes observations and λ represents HMM 
parameters. The number of states N of the combined 
noisy speech model is given by 

NNS NNNN +⋅=  (10) 

1 3 2 1

1.1 1.2 3.1 2.1 2.5 1.1

1.1.1 1.2.1 1.2.2 3.1.1 2.2.1 1.1.1

layer 1 – decoded states of noise HMM: 

layer 2: 

layer 3: 

signal frames time 
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where 

∑
=

=
W

w
wNN

1

SS  (11) 

is the sum of the number of emitting states of all W 
words (each whole word left-right HMM having NS

w 
emitting states apart from one non-emitting state on 
each end) and NN is the number of states of the current 
noise HMM (ergodic structure, only emitting states). 

Each time the noise HMM in preceding layer 
enters a new state, a boundary of two different noisy 
speech HMMs caused by unrelated noise HMMs in 
current layer appears (e.g. between noise states 1.2 
and 3.1 in Figure 4). Yet, the “speech” portion of the 
noisy speech HMMs on each side of the boundary 
must seamlessly continue. Hence the current layer’s 
trellises on the left and right side of the boundary must 
be properly “connected”. Notice that due to variable 
number of states of neighboring noise HMMs the 
noisy speech HMMs’ number of states (and likewise 
the trellis vertical sizes) Nleft and Nright may vary. An 
iteration of δlj(t + 1) over the boundary follows the 
induction step of Viterbi decoding 

)()(max)1( 1
1

+
≤≤

=+ tjij
l
i

Ni

l
j obatt

left
δδ , rightNj ≤≤1  (12) 

where bj(ot+1) is the likelihood of observing ot+1 in 
state j. Factor aij represents transition probability from 
state i of the left trellis to the state j of the right one. 
Depending on the contents of the nodes i and j, 5 
different formulas for obtaining aij come into question: 
1) If state i within the left trellis belongs to a noisy 

word h(i) and state j within the right trellis 
belongs to the same word h(j) = h(i), then 

( ) ( )+= )g()f(),f( NS
)h( jjia jij πA  

( ) ( ) ( ))g()f(out),f( NS
)h(S

)h(

S
S

)h( jj
NW
p

i j
j

j ππA ⋅
⋅

⋅ . (13) 

2) If state i within the left trellis belongs to a noisy 
word h(i) and state j within the right trellis 
belongs to a different word h(j) ≠ h(i), then 

( ) ⋅
⋅

⋅= S
)h(

S
S

)h( out),f(
j

jij NW
pia A  

( ) ( ))g()f( NS
)h( jjj ππ . (14) 

3) If state i within the left trellis belongs to a noisy 
word h(i) and state j within the right trellis 
belongs to a noise-only state g(j) (i.e. pause 
between words), then 

( ) ( ))g()1(out),f( NSS
)h( jpia jij πA ⋅−⋅= . (15) 

4) If state i within the left trellis belongs to a noise-
only state g(i) and state j within the right trellis 
belongs to word h(i), then 

( ) ( ))g()f( NS
)h(S

)h(

S

jj
NW
pa j

j
ij ππ⋅

⋅
= . (16) 

5) If state i within the left trellis belongs to a noise-
only state (regardless which one) and state j with-
in the right trellis belongs to a noise-only state 
g(j), then 

( ))g()1( NS jpaij π⋅−= . (17) 

In the preceding equations, f(i) returns a word 
HMM state index given noisy speech HMM state i; 
g(i) returns noise HMM state index given noisy 
speech HMM state i; h(i) returns the word index (out 
of W words available); AS

h(j)(u,v) is the uth row and vth 
column of word h(j) HMM transition matrix (symbol 
“out” represents transition into trailing non-emitting 
state); πS

h(j)(u) is the uth element of word h(j) HMM 
prior probability vector; πN denotes noise HMM prior 
probability vector; pS is the probability of observing a 
word; (1 - pS) is the probability of observing a pause 
between words (noise-only portion of the signal). The 
above equations exploit the simplifying assumption 
that decoded states in all upper layers (from the point 
of view of the current layer) are all considered certain 
events, hence they do not explicitly figure in formulas 
(13) to (17). This assumption is dictated by the 
classification tree nature of the proposed noise model. 

If the preceding layer in the current time step con-
tains a non-expanding state, the noisy speech HMM 
for the current layer takes a special form. Since the 
noise-only HMM states in upper layers are now fixed, 
only the “speech” part of the noisy speech HMM is to 
be decoded. Thus the noisy speech HMM is formed by 
speech HMMs combined with only one noise HMM 
state – the one decoded in the preceding layer. 

The backward Viterbi run follows standard algo-
rithm with appropriate processing of the mentioned 
borders. 

6. Experimental Results 

All experiments were conducted using a 2 hours 
long audio recording of an operating room back-
ground noise recorded during a neurosurgery at the 
University Hospital in Marburg, Germany. The avail-
able sound data were divided into training and testing 
sets of equal sizes; the training set was then used for 
noise model construction as described earlier. HMMs 
in all layers were restricted to have a maximum of 5 
states; smaller HMMs were occasionally inflicted by 
the available amount of training data assigned to the 
respective parent HMM state. In all experiments, 
feature vectors comprised of 19 MFCC coefficients 
computed from 32 ms frames with 10 ms advance. 

In the first experiment, we verified the ability of 
the constructed hierarchical noise model to fit to the 
training noise data (Table 1) and testing data (Table 2). 
Resulting performance was assessed by the negative 
log-likelihood of the last node in recognition trellis 
computed by the Viterbi algorithm. To get a measure 
independent of the recording length, the likelihood 
was divided by the number of frames in the recording. 
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Obtained likelihoods can be found in the tables. The 
split-merge EM algorithm used for GMM estimation 
of the noise HMMs emission probabilities sets 
automatically the appropriate number of Gaussians. 
We, however, limited the maximum allowed number 
of Gaussians in several steps ranging from 1 to 40 to 
see the impact of model complexity on the overall 

performance. It can be seen, that with the number of 
Gaussians increasing up to approx. 20, the negative 
log-likelihood decreases and then levels off. The tests 
were first conducted starting with single-layer model 
and then repeated with two-layer and three-layer 
model, respectively. Obtained likelihoods show better 
fit as the number of layers increases. 

Table 1. Results of model fit ability to the training portion of the noise recording 

Max. number of Gaussians in 
GMMs 1 5 10 15 20 25 30 35 40 

layer 1 11.51 10.54 10.22 10.06 10.02 9.91 9.87 9.89 9.87 
layer 1+2 10.48 9.52 9.31 9.25 9.27 9.23 9.25 9.23 9.26 Negative log-lik. 
layer 1+2+3 9.47 8.82 8.75 8.73 8.70 8.69 8.70 8.70 8.71 

Equivalent flat HMM neg. log-lik. 10.61 9.66 9.45 9.39 9.39  9.37 9.33 9.35 9.34 
layer 2 48 56 92 458 373 547 604 606 425 No. of frames in 

non-exp. states layer 3 609 1411 1278 1749 1434 1778 1825 1719 1698 
layer 1 69.2% 73.7% 74.1% 74.8% 75.4% 76.5% 76.5% 76.0% 76.0%
layer 2 55.8% 60.9% 61.4% 62.3% 62.5% 63.4% 63.4% 63.1% 62.9%Trained/recog-

nized agreement 
layer 3 44.7% 48.8% 49.2% 50.0% 50.1% 50.8% 50.8% 50.6% 50.4%

Table 2. Results of model fit ability to the testing portion of the noise recording 

Max. number of Gaussians in 
GMMs 1 5 10 15 20 25 30 35 40 

layer 1 11.82 10.95 10.64 10.53 10.45 10.41 10.38 10.39 10.37 
layer 1+2 10.84 9.98 9.83 9.78 9.78 9.77 9.78 9.76 9.77 Negative log-lik. 
layer 1+2+3 9.89 9.36 9.31 9.28 9.26 9.25 9.26 9.27 9.26 

Equivalent flat HMM neg. log-lik. 10.92 10.07 9.93 9.81 9.90 9.86 9.85 9.85 9.84 
layer 2 43 83 86 217 330 370 334 263 285 No. of frames in 

non-exp. states layer 3 660 1580 1660 1865 1868 1914 1866 1768 1834 
 

The same task was also carried out using a 
traditional noise-trained flat-structured ergodic HMM 
with the number of states equivalent to the sum of 
maximal number of states in each of the three layers 
of the hierarchical model within one branch. Decoding 
using such HMM therefore involves equivalent com-
putational demands. Achieved likelihoods are compar-
able to something between one- and two-layered hie-
rarchical model. This clearly shows, that the tested 3-
layered structure provides better performance/com-
putational demands ratio. 

Tables 1 and 2 also show the number of frames 
within which the Viterbi decoder chose the non-ex-
panding states in 2nd and 3rd layer (out of approx. 48k 
frames total). With increasing number of Gaussians, 
the models are getting more specific and, subse-
quently, more often the lower layers provide “over-
fitted” models. This results in automatic reduction of 
the average depth of the used noise HMM hierarchy. It 
is also apparent that testing set data were more often 
modeled by upper layers, which corresponds with the 
fact that training data are logically more congruent 
with the given model. 

The rows in Table 1 showing percentages of agree-
ment between the prescribed noise HMM labels im-
posed during training and actual recognized states in a 
given signal frames demonstrate the dependence 
among layers. Each lower layer depends on the upper 
layers, thus the amount of "hits" is ever decreasing as 
the depth grows. These numbers suggest that the 
maximum usable number of layers is not arbitrarily 
high and should be properly balanced according to the 
available amount of training data. 

The next experiment demonstrates an application 
of the proposed hierarchical noise model in an isolated 
words recognition task with added operating room 
noise. The model combination method used during 
recognition was the log-normal PMC. The speech 
database comprised of 12 acoustically similar German 
numbers pronounced by 8 native speakers (6 males 
and 2 females) in 10 repetitions. Half of the available 
variants were used to train whole word speech HMMs, 
the other half for testing. Each whole word model uses 
7-Gaussian GMMs and varied number of states (7 to 
9), depending on the average word duration. The 
testing sound file was constructed by putting the 
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testing words in a random sequence divided by 
approx. 1 second pauses. The operating room noise 
was then added to the testing sound in time domain 
under several SNR ratios. Note that the indicated 
SNRs are only approximative broadly averaged va-
lues, as the local power levels of the operating room 
noise fluctuate significantly. Table 3 summarizes ob-
tained WERs (word error rates), i.e. the number of 
insertions I, deletions D, and substitutions S relative to 
the total number of words M in the recording 

M
IDSWER ++

= . (18) 

Table 3. Results of noisy speech recognition 

SNR (dB) 3 6 9 12 18 
layer 1 16.8 12.9 11.4 8.8 6.0 
layer 1+2 14.4 11.0 9.7 8.2 4.8 WER 

(%) 
layer 1+2+3 14.4 10.0 8.4 7.8 4.7 

The results in Table 3 support the premise of 
consistent performance gains with increasing number 
of layers used in the noise model. It is, however, also 
apparent that the deeper the hierarchy goes, the less 
pronounced the gains are. An appropriate number of 
layers should be therefore carefully weighted for a 
particular application of the proposed model based on 
the available amount of training data and tolerable 
computational demands. 

7. Conclusion 

The proposed nonstationary noise statistical model 
composed of classification tree hierarchy of HMMs 
presents a feasible way to increase noise robustness of 
ASR systems without seriously impacting the com-
putational demands. Unlike traditional HHMMs, the 
total number of states to be evaluated in every time 
step is limited by the sum of maximal number of states 
within one branch over the given number of layers. 
Classification tree nature of the noise model thereby 
allows omitting most of the available stored HMMs 
and considering only the most probable ones. Experi-
ments conducted on highly nonstationary operating 
room acoustical background noise proved better 
modeling ability compared to a single flat HMM with 
equivalent computational demands. The proposed 
model can be employed in any noise-robust ASR 
system targeted for a specific environment using a 
model combination approach. 
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