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| ABSTRACT o
‘ :'As progress in-new sensor technology continues, mcreasmgly hlgh resolutlon*
imaging sensors are being developed. HIRIS, the ngh Resolution Imaging

o Spectrometer for example, will gather data. simultaneously in 192 spectral bands .

in‘the 0.4 - 2.5 micrometer wavelength region at. 30 m- spatlal resolution. AVIRIS,
the Airborne Visible and Infrared Imaging Spectrometer covers-the:0.4 - 2.5
micrometer in 224 spectral bands. These sensors give more detailed and complex
data for each p|cture element and greatly increase the dlmenSIonallty of data over’
past systems : : - -

In applying: pattern recognltlon methods to remote sensrng problems an mherent
limitation is that there is almost always only a small number of training samples
with which to desngn the classifier. Both the growth in the-dimensionality and the
number of classes is likely to aggravate the already significant limitation: of training
samples. Thus ways must be found for future data analysis which can perform
effectively iin-the face of large numbers .of classes wrthout unduly aggravatlng the
l|m|tat|ons on tralnlng Co , . , :

A set of requurements for a valld Ilst of classes for remote sensmg data |s that the }
classes must each be of informational value (i.e. useful in a pragmatic sense) and
the classes be spectrally or otherwise Separable (i.e., distinguishable based on the
- available data). Therefore, a means to srmultaneously reconcile a property of the -
~ data (bemg separable)- and a property-of the application (informational value) is
important in developing the new approach to classifier design. In this work we
propose decision tree classifiers which have the potentlal to be more efficient-and
“accurate in this situation of high dimensionality and large numbers of classes: In
- particular, we discuss three methods for designing a decision tree classmer a top
down approach, a bottom up. approach, and a hybnd approach

Also remote sensnng systems which perform pattern recognltlon tasks on hlgh
dimensional data with small training sets require. efficient methods for feature
extraction and prediction of the optimal number of features to achieve minimum
classification error. Three feature -extraction techniques are . implemented.
“Canonical and extended canonical techniques are mainly dependent upon the
mean difference between two classes. An autecorrelatlon technlque |s dependent
‘upon the correlatlon dlfferences

Y'The mathematlcal relatlonshlp between sample srze dlmensronallty, and nsk value '
~ is derived. It is shown that the incremental error is simultaneously affected by two

factors, dlmenswnallty and separablllty For predicting the optlmal number of -
features, it is concluded that in a transformed coordinate space it is best to use the .
best one feature when only small numbers of samples are. available. Empirical
results mdrcate that a reasonable sample size is six to ten tlmes the dlmensmnallty



CHAPTER 1. INTRODUCTION

1. 1 Prellmmary Remarks

As the progress in new sensor technology contlnues mcreasmgly hlgh resolutlon
imaging sensors are being developed. For example HIRIS, the High Resolution
Imaging Spectrometer will have 192 spectral bands ‘which gather data
simultaneously in the 0.4 - 2.5 micrometer wavelength region at 30 m. _spatial
resolution. AVIRIS, the Airborne Visible and Infrared Imaging Spectrometer covers
the 0.4 - 2.5 micrometer in 224 spectral bands. These sensors.give more detailed
and complex data for each picture element and increase the dmensnonallty of data.
The growth: of dimensionality and the higher spectral resolution provides the
opportunlty to identify a larger number of classes within a scene than in the past

_For h|gh dlmen5|onal muItl class pattern recognltlon problems a decrsnon tree
classifier (hereafter referred to as DTC) instead of a single layer classifier is the
most appropriate scheme, because a DTC divides the complex global decision-
making process in high dimensional spaces into a number of simpler and local
decisions at various levels of the tree. As a result, proper subsets of features at
‘each node can be chosen to improve ‘the classification accuracy while at the same
time possibly reducing the required amount of computation.

A decision tree is a means for showing the relatlonshlp of intermediate decisions in
a complex decision process in order to reach a final decision. Decision trees
consist of three parts, the root node, intermediate nodes, and terminal nodes. The
root node has only descendent nodes while terminal nodes each have only a
unique ascendent node. Intermediate nodes have both descendent and ascendent
nodes. If an acyclic graph is defined to be one which contains no cycle, a tree is a
connected acyclic graph. A tree thus defined has the property that a path from the
root node to any given node is unique. Single layer classifiers test the degree of
membership of the unknown sample against all classes and finally assign the -
“unknown sample to one of those classes. Decision tree classifiers test the degree
of membership of the unknown sample against subgroups which contain several
classes at the intermediate nodes and assign the unknown sample to one of the .
subgroups. If the subgroup is not one of the final classes, classification procedures
are contlnued until reaching the termlnal nodes o
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Figure 1.1 A Simple Decision Tree |

The primary objectit/e of this work is to ,devnelop _a‘j-DTC design procedure WhiCh |

leads to .a DTC that'is more efficient and more accurate in case of high
L drmensmnallty, I|m|ted training set sizes, and Iarge numbers of classes , .

A second objectlve of thls theS|s is to frnd means to. extract optlmal features and-
predict the optimal number of features in remote sensing. situations. The estimation
of the optimal number of features is an essential part of the DTC design process as
the d|mens10naI|ty grows. Probability of correct classnflcatlon is cIoser related to
desrgn sample srze dlmen3|onal|ty, and noise. o

1 2 A Revnew of Related Work

', The DTC has been studred for a number of appllcatlons Examples are remote‘

sensing, character recognition, blood  cells classification. The presumed

- advantages: of the DTC are reported as computatlonal efficiency and improvement
~in ‘classification accuracy with finite samples. Disadvantages of DTC are -
‘ écomplexrty, error accumulatlon and desrgn dlfflculty for an optnmal DTC.-

“The study of the DTC may be categonzed into three phases the desngn phase the | o
~ feature selection phase, and the decision rule. However, to be truly optlmal these ,
ooare not sequentlal but must be smultaneously accomphshed .

"-”For the purpose of ldeal de3|gn Wu et al. (1] developed an evaluatlon functlon’
‘which consists of a computation time factor and classification accuracy. The

'“"'{classmcatlon error is estimated by assuming that the direct descendent nodes are -
o smgle Iayer olassmers Kanal. [21] defined two types of admlsslble search strategnes



to obtain the optimal decision tree structure, namely S-admissible and B-
admissible which use a cost of path and risk function in a state space graph model.
In an S-admissible search, the risk function depends only on the features
measured along the path from the initial state-to final state. In a B-admissible
search, the risk function depends on all features, not just those on the path to the
final state. Using these functions, it is impossible to-evaluate successfully every
comblnatlon of tree structure to determine the overall- optrmal tree classrﬂer

For p_ractrcat design purposes, minimizing the classnflca’uon error is frequently
pursued at each node, although that procedure does not guarantee that the overall
structure will be optimal. For the same reason, computational effrcrency |s often
considered as an mdependent performance index. o

Wu et al [1] and Swaln and Hauska [8] suggested a. hlstogram approach Wthh
~ plotted means and covariances for all classes for each feature. A suitable boundary
was sought to separate the subgroups which might be homogeneous with a
particular feature. However, since this approach uses onIy one feature, the inter-
relatlonshrps wrth other features are dlsregarded e :

You and Fu [13] designed brnary trees by spllttlng a set of classes |nto two non-
overlapping subgroups at every node. The two subgroups are found by comparing
the measure of separability for different pairs of subgroups over various subsets of
‘feature space with fixed numbers of features. To reduce the possible combinations
of tree structures; they suggested two restrictions. The first restriction was to limit
the number of features selected at each node. For the sake of accuracy, the second
restriction was the size of the tolerable error probability at each node. However, if
the numbers .of classes are large, the number of possible tree structures is still -
large. In the case of limited tralnmg samples the measure functlon itself may be
poorly estlmated , .

Sethi and Sarvarayudu [27] suggested a‘"tree design based upon the mutual
information obtained about the pattern classes from the observatlon event X, which
can be written as , .

2 2 | R .'
g |X,)} e 14
where C represents the set of pattern classes C1 and Cz havrng a priori
probabilities p(C1) and p(C2). p(C., Xj) is the joint probability of occurrence of C;j
-~ and Xj and p(Cij|Xj) is the probability that the observation comes from class.Cj given

“the -outcome. Xj of event X. Let Pg be the probability of error allowed in recognition;

then the following mequahty determines the limit on the equrvocatron H(C|X) of C
with respect to X; L S ,

H(CX) < (Pe)+Pe|°92(n1) e R e



. where H(Pe) is the error entropy and mis the number of pattern classes Smce the
Vaverage mutual information can also be wntten as, R .

emeworwen by
- ;we obtam the followrng mequahty, T T e

I(C X) > H(C) H(Pe) Pe 1092 (n 1)

ZP(C |092 +PlogzP +(1 P)loga( | ) Plog(n‘l)

S

"‘ SO (14)

Equatron (1. 4) thus relates the probablllty of error and the correspondlng minimum
value of average mutual information required for a recognition process. Their
method generated ‘a partltlonal tree -for a specified probability of error by
~-.maximizing the amount of average: mutual information gain or minimizing the
average error of recognition for the given size of tree. The above algonthm was
|mplemented by a non- parametrrc procedure . ,

Casey and Nagy [30] developed a blnary tree for optrcal character recognmon
- using an. information theoretic approach. The effectiveness of a node-by-node

~ design scheme is highly dependent on the rule by which pixels are evaluated for

~ assignment to a given node. The first pixel to be tested is predetermined for the root
“node., A measure based on. entropy is used for a pixel selection criterion. The rule
employed for plxel selection is to choose the prxel that minimizes entropy, i.e, the
one that maximizes the information gain. A priori class probabilities and. class
conditional- frequencres of individual pixels are estimated from labeled samples
'Thelr approach isa speC|al case of blnary tree character recognmon ‘

: Landeweered et al. [29] suspected that binary tree classrfrers |mproved the correct
~recognition rate: compared with-the application of single layer classifiers.- A binary
~tree was constructed in a stepwise, bottom-up fashion, such that in each step the

two classes with the smaller Mahalanobis distance were merged to- form a new
group. Since their binary tree classifiers might not be the optimal tree structure in

. some sense, they did not take a look at the |mprovement of correct recognition rate
'compared wrth the result of the single layer classmers in-some cases. :

»?For the feature selectuon phase in the |deal case, feature selectlon should be

simultaneously considered with decision tree design parameters. . Practlcally,, -

~.Swain and Hauska- [8] chose a feature selection criterion based on pairwise
y separabrlrty over all parrs of classes after desrgmng the decrsron tree classuflers

“»Muasher and Landgrebe [2] experrmentally studred an effectlve feature orderlng
~technique in cases where the the number of trarmng samples was I|m|ted in
classifying multrvanate two class normal drstrrbutlons i



For the decrsron phase parametrlc and non- parametrlc procedures may be used
Maximum likelihood Gaussran classrflers are. usually used at each node-in-a
parametric approach. ‘ . - :

M. W. Kurzynski [28] dealt with the decrsron rules of tree classrflers for performrng’ '
the classification at each non-terminal node, under the assumption of complete
probabilistic information. For a given tree structure and feature subsets to be used,
the optimum decision rules were derlved whrch mrmmlzed the overall probabrllty of
mlsclassrflcatlon : : e . ‘

When the classrfler desrgn is to be based upon flnlte sets of samples from the
“various classes and features, the estimation of the class-condltronal densities of the
measulrement vector is necessarily a key step. These estimates are then used for
the classrflcatlon ~One might initially assume that as the. dlmenSIonallty of the
'sample vectors is increased, classification accuracy would: ‘generally rncrease’
because the information available is mcreased If the .added sample - vector
dumenS|onal|ty does not contribute in any way to classification results, one might
- suppose that the classification error rate should at least stay the same. In practice,
the performance of the classifier based on estimated parameters improves up toa
certaln ponnt then begms deterloratrng as further features are added EER

ln a Bayesran formulatlon some pnorr densmes on the parameter of P. are
assumed, and class- conditional densities Pj(x) can be calculated. On the other
hand, one can arrive at maximum likelihood estimates of the density function. After
obtaining the maximum likelihood estimates of the unknown parameters,:Pi(x) can
be obtained by substituting those estimated values instead of true parameters.
Therefore, the classification performance depends on the estimation procedure,
- .and problems pertaining to the relationship between dlmenS|onal1ty and sample
- size are in the context of the method of estlmatlon - L '

Hughes [22] consrdered the. behavror of a finite sample Bayesnan classrfler with

- respect to increasing measurement complexity. Even if a Bayesian procedure is

‘used which -is. optlmal in the sense that it minimizes the probability of

o misclassification, one could. get into frouble by. using too many measurements’

v ,when the number of training samples is small. It was shown that if the
measurements are independent and binary [55], or first order nonstationary Markov
‘dependent and binary [56], then there wil be no peaking of performance in the
-Bayesian context with respect to the measurement complexrty for-a fmrte sample’
size [57] o : ,

- When the approach to classrfrer desngn is non- Bayesxan e. g parameters are

.-estlmated by maxnmum llkelrhood methods peaklng effects occur Whrle the

Hcaused by the non- optlmal use of added mformatlon ‘overrides the advantages of
~extra information. Foley [11] investigated the design set error rate for a two class
problem wuth multlvarlate normal distributions, and derlved |t as a function of the



oy ‘fsample srze per class and dlmensronaluty The desrgn set error rate was compared'

'~ to both the corresponding Bayes error rate and test set error rate: It was shown that

R '.the desrgn =set error rate is biased below the true error rate and the test-set error

. rate is biased above the true error rate of a classifier when the ratio of sample size

" to feature size is small. Jain [58] showed that when features have multinomial or
univariate Gaussian distributions, the estimate of the Bhattacharyya distance | is

“biased and consistent. The bias and the variance of the estimate are not onlya -
C function of the number of tralnlng samples but also depend on the true parameters '
B _of the densrtles , . R g -

1 3 Problem Statement

| In applymg pattern recognmon methods in remote sensmg problems an mherent |

limitation is that there is almost always only a small number of training samples . R

- with which to desrgn the classifier. The growth in both the dimensionality and the

ﬂ;number of classes:is llkely to aggravate the already. significant limitation of training

- samples. Thus, ways must ‘be found for future data analysis which can perform

 ‘effectively in the-face of large numbers of classes wrthout unduly aggravatmg the
) ,_l|m|tat|ons on tralnrng i : i Tl =

- ‘Untll now, decrsron tree classrflers for remote sensmg have been desrgned by only= '
_considering one- property of the data, that of separability. In that case, the final

- decisions do not necessarily. coincide with classes of informational value. In =~

‘addition to belng adequately exhaustlve the requlrements for a vaI|d IIS'( of classes _

- for remote sensung data are:

' 1 The classes must each be of rnformatlonal value (| e. useful in a
’ pragmatlc sense) _ : ‘

2 The classes must be spectrally or otherW|se separable (i'.".'»,ja«'_
drstlngurshable based on the avallable data) ' T

}}Therefore a means to reconcrle a property of the data (berng separable) and a '
- “property of the application (mformatlonal value) |s the mam objectlve in developmg'
- anew approach to tree desrgn e P L e

’, "ln desrgnlng the classmer one would like to know how many features one should -
“use to.maximize the classmcatlon accuracy The number of features, the number of -
“samples, and the correct classification -accuracy-are related;in a: complex fashion.

N - In-remote sensrng, the reflected and emitted electromagnetlc energy of each plxel_ N
. of'a'scene in a number of wavelength bands is measured by a multispectral remote -

- sensor system mounted on board an aircraft or spacecraft The output of the sensor
- system for a given scene pixel may be represented as a point in a multidimensional
-~ space. The number of training-samples is frequently limited because-it is-expensive
to' accumulate -the information by which to label many samples. In the case of

~?l|m|ted tralmng samples and multrdrmensuonal space the estlmates of the flrst and o



second order statistics cannot accurately depict -all the information which is
contained in the data. In particular, the estimate of the covariance matrix may be
. _poor. Therefore how to relate the maccuracy of estlmate with: classrfrcatron error

“directly is another objectlve of this work. :

S

1.4 Outlme of the Report

To obtam an optimal DTC, one must consider three components srmultaneously,
which are the tree structure, feature extraction, and the decision rule. The chosen
- criterion for tree structure results from the kind of decision rule selected at non-
terminal nodes for the specific application. Also, a criterion for feature extraction will
be chosen based upon the decision rule. Therefore, once a decision ‘rule is
determined, both a criterion for tree structure and for feature extraction can be
chosen to obtain the best-performing tree structure and best classification results.

In chapter 2, three methods for tree design, the top down bottom up, and hybrid
‘approaches, will-be discussed. In a top down approach, the entire feature space is
sequentially subdivided into mcreasrngly local decision regions. Suppose that we
decide to use the maximum likelihood rule as the decision rule; we may then use
clustering at each non-terminal node to divide the data into appropriate subgroups,
and we might select the sum of squared error criterion as a clustering criterion. for
~ the ‘tree structure. Since there is no information about the covariances,
mrnrmrzatlon of Euclidean distance is used. : : :

In a bottom up approach just the opposnte procedure from the top down method is
pursued. Joining of local decision regions to make. increasingly global decision
~ regions is ‘used. Since we have the estimated mean and covariance of
informational classes, the Bhattacharyya distance may be chosen as.the criterion
for the tree structure. In the hybrid approach, top down and bottom up approaches
are sequentially used to achieve the combined effect of the two approaches. The
normalized sum of squared error for top down and the Bhattacharyya distance for
bottom up are used sequentially as the criteria for tree structure

, In chapter 3, two feature extractlon methods canonical analysrs and extended
canonical analysis, are reviewed. Also, ‘another feature extractlon method
autocorrelation analysrs is proposed.

-In chapter 4 a risk function is presented for estimating the error rate due to small -
numbers of design samples which cause the variability of estimated parameters
Results show that if the dimensionality is increased without increasing the

- separability between classes, the incremental error is increased by a factor of the

square of the dimensionality. On the other hand, if the dimensionality is increased

~with separability as usual, the incremental error is simultaneously affected by two

-factors, dimensionality and separabrhty An optrmal number of features which give

the smallest risk value (or error rate) is predicted. Also, a relationship between error

- rate and the estimated decrsron boundary is studied empmcally



~In chapter 5, experimental results are presented which show comparisons between

trees, and between the single layer and a tree classifier, DTC for multisource data,
~and feature selection are described. It is found that a hybrid DTC with the best
single feature in transformed coordinates has better performance compared to
other methods such as a single layer classifier, top down and bottom up DTC's.

In chapter 6, the final conclusions are summarized.



CHAPTER 2. TREE CLASSIFIER DESIGN

2 1 Introductuon

Optlmal DTCs have been studled previously [1 21] However the exrstmg methods—
for tree design, e.g., use of an evaluation function or admissible search, are not -
always feasible since the complete conditional density functions are often not
available and a very large amount of computation time would be needed to
evaluate all combinations of the tree classifier parameters. Practically, the methods
of minimizing the classification error -at each node are implemented to obtain:
: Iocally optlmum results and the overall- performance are not gIobany optrmal [13]

When a remote sensing data set is categorized by partrtlonrng the measurement
space (or feature space) into non-overlapping decision regions, spectraI classes
which are discriminable because the multispectral propertles of the corresponding
ground covers are different, are defined. Remote sensing is successful if these
spectral classes coincide with informational classes, i.e., classes of ground covers
WhICh are meamngful such as crop specres maJor land uses, sorl types etc ) N

To be a vahd class, a dlstrlbutlon must be srmultaneously of: mformatronal value_
~and separable from other classes. Supervised procedures-can guarantee the
former, but not the latter. Unsupervised procedures can provide the latter, but do
not guarantee the former. Thus, a practical classification scheme for the DTC must
contain both procedures in such a way that the simultaneity of satrsfactaon |s :
guaranteed

As far as DTC deslgn is concerned, there exist only alternatives whrch are top_
down or bottom up approachs. Terminal classes must be both separable and of
informational -value. Non-terminal nodes are not required to be classes of
informational value, but they must still be separable. Thus clustering, which insures
separability, may be used in a top down approach, while correspondence with
training sets is only requrred at the bottom and thus is related toa bottom up -
approach : : _

In the DTC literature [1,8,13,21 29] the top down approach has most often been
~studied. Only when the informational classes are easrly discriminated in
multlspectr_al data, can the unsupervised classification of top down analysrs be -
expected to produce reliable results. The most critical problem which occurs in the
unsupervised top down analysis is termlnal classes which do not comcnde wrth the
~informational classes. : :
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As stated previously, tree structure, decision rules, and optimal feature sets should
be ‘simultaneously considered to obtain an optimal DTC, however, due to the
complexity of the problem, some compromise with respect to absolute optimality is
-appropriate. For a parametric approach, the decision rule may be selected first
- ‘because the criterion for desugnrng a DTC is determined by the decision rule. For
our work here; the binary tree is chosen as a DTC structure, since any tree can be

reducedto a binary tree, and the most effective feature subsets can be obtained for =

‘a binary tree. In order to achieve the other requirements of terminal classes of

informational value and spectral separability, a hybrid DTC will be proposed. We

shall begin by investigating top down and bottom up approach approaches for

: companson purposes, and because certain of thelr characterlstlcs will be needed
in the hybrld scheme : : - » :

_'22 Top Down Approach

A complete DTC can be deslgned in a natural fashion. by flrst deﬂnlng a structure ‘

for the ‘root node. Next, for each subset associated ‘with the root node, it is’
necessary to define -another node which performs a further decomposition into
smaller subsets. In a top down approach, a clustering algorithm may be used to
obtain two subgroups at each node. The initialization and the separatlon cnterlon
‘are two |mportant factors for clustering. - , . ,

'F|rst we shall consrder the lnltlallzatlon method for clusterlng How to determlne
the initial cluster centers is an important factor because the clustenng results differ
‘depending on the initial cluster centers. MacQueen [46] chose the first k- points in
the sample as the initial k- cluster mean vectors. Beale [47] started with a trial value

of k- larger than was thought necessary, and set up cluster centers regularly - |

~spaced at intervals of one standard deviation on each variable and then reduced
_the:number of groups untll a crlterlon based on the resldual sum of squares is
’SatISerd o . - : o : .

Another common way for choosing initial cluster centers is as follows Let x4, X5, ...,
X, be n- sample vectors ‘which are g- dimensional, and assume they are to be
-grouped into C-classes. Let ¢;. u;, and s; (all g-dimensional vectors) be the ith
cluster center, ith cluster mean, and it" cluster standard deviation, respectlvely, for
the ith cluster. To establish an initial set of cluster centers, compute the mean vector
m and variance vector s2 for the entire set of n- sample measurement vectors. A
rectangular parallelepiped, which usually will contain a large percentage of the

_measurement vectors, has edges oriented -parallel to the coordinate axes and
given by mytsy, ..., mits;, ..., mgts,. The initial cluster centers are chosen to be

<un|formly spaced along a pnncupal dlagonal of thlS paralleleplped [54]

,'Next the criterion for cIusterlng should be consrdered The sum of squared -
,_error(SSE) cntenon is deflned by S t
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SSE = ZZ(x m) (x-m) e E @.1)

=1 XECG

where m; is the mean of the ith cluster and x € G; is a pattern aSS|gned o the ith
cluster. SSE is the cumulative distance between each point in the data set and the
- mean of the cluster to which that data point is assigned. To minimize the sum of
squared error as a clustering criterion, each point (or pattern) should be assigned
to the cluster which has minimum Euclidean distance from that point. This squared
error can be expressed in many ways, such as the sum of the within and between
class squared errors used in discriminant analysis [6] The minimization of within
class or maximization of between class squared error is identical to m|n|m|zat|on of
the sum of squared error criterion.

For for our method of designing the binary DTC, the mean vector m and variance
vector s2 for the whole training set are computed to establish the two initial cluster
centers. One initial cluster center is assigned to a g-dimensinal vector, m,+0. 531, -

,» m+0.5s;, ..., m_+0.5s_. Another initial cluster center is assignedto another q-
dimehsional vector, m;-0.5sy, ..., M-0.5s;, ..., m-0.5s, as shown in Figure 2.1.
X2
: e
. m2+.582 | — /
2 —
m . / : _//
m2-.5s2 ¢ /,/
\\~_. _'_;,/,
A

© mi-5s1 mi rh‘1+.55l1f
Flgure 2.1 Initialization of Two Cluster Centers.

Once the |n|t|al cluster centers are estabhshed each training sample is asmgned to
—‘one of two cluster centers which minimizes the Euclidean distance to the training
sample. After all training samples are allocated to the nearest cluster center, the
new class mean and class variance vectors for each cluster are computed, and
those class mean vectors become new cluster centers. Again, all training samples
are aSSIgned to the new cluster center WhICh minimizes the Euchdean dlstance
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When the nUmb'er of training samples which are moved from one cluster to another
- cluster: passes through a minimum and begins to. mcrease “the clustermg
procedure is complete as shown in Figure 2. 2 : U

( Start )

Choose two initial cluster centers 1

\

Change = Number of training samples e

Assign training samples to one of cluster centers

If a sample is assugned to another cluster
Count = Count +. 1 » ‘

.:Ch_ah‘ge‘.:/coum 1 fe

Compute new cluster centers

- F'igure_ 22 Clg'}sterlng Algorlthm_::_ Fa

The clustenng results produce two subclusters After tralnlng ‘samples for each
class are compared to two subclusters, each class is:assigned to one of two
subclusters. Then each subcluster becomes a descendent node. Each subgroup is
tested to determine if it is an informational class. If the subgroup is an informational
- class, the subgroup does not have a descendent node at the next level. If not, the

‘whole clusterlng procedure is repeated for each subgroup as. shown in Flgure 2.3.

’ »lf the number of tramlng samples from aclass |s spllt between two subgroup almost

“equally, that class is referred to as an overlapping class. If there is an overlapping

~ class, that class. is assngned to both subgroups. Whether a class |s deemed an
-overlapplng class or not is determlned by the desngner ,
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(Start with root node) -

[ Compute mean and standard deviation

7| as initial cluster centers for assigned node B

Clustering produces two subclusters - |

Clompare training samples to sq_bcluste’rs ; '

| Assign classes to one of subclusters

EaCh subcluster becoﬂmes descendent node \

Yes

Check i‘f descendent node covnsists of more than 2 classes
: ~No —

, l—— Check if descendent node consists of 2 classes
No o Yes “

Divide descendent node. into infomational classes

 Assign descendent node to informational class

"Check if every final node is informational class 1— N’o“
Yes D

~ (Complete)

- Figure'2.3 Top: Down Design Algorithm
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:23 Bottom Up Approach

w"'The bottom up approach begrns with distinct rnformatronal classes as compared to o

':. overlapping ‘informational classes: which the top down approach sometimes

produces. In the top down approach, the decision boundary which has the largest
~ distance measure between groups is chosen since the effect of the error rate of the
“root node is minimized. In the bottom up approach once the criterion values such

as separabilities between every class pairs are computed, the two classes which |

have the smallest criterion value, join together and become a new class i. e, the-
new subgroup at the next higher level. cE

: ln obtarnlng the new. subgroup, the updated crrterron values between the new”

subgroup and the remaining classes are needed. When the updated criterion
values are determined from the prevrous criterion values, this will be referred to as

‘a ‘static minimum criterion spanning tree procedure. On the other hand, if the

updated criterion values are newly computed, this erI be called a dynamrc:-- 5
3 mlnrmum cnterron spannrng tree procedure ; .

2, 3 1 The statrc mrnrmum spannlng tree

A graph G is an ordered parr (V(G) E(G) ) consrstrng of a non empty set V(G)'
whrch represents the vertrces and a set E(G) whrch represents the edges Sl

;Defrnrtron 1 Two vertrces u and 4 are sard to be connected rf there is a path-'“
'Defrnrtron 2 An undrrected tree is-an undrrected graph whrch is connected
‘ " and acyclic. A rooted undirected tree is an undirected tree in R
. which one vertex is distinguished as the root. A spannrng tree rs;"
iR an undlrected tree that connects all vertrces |n V T

Lemma1 : ‘Let G= (V E) be a connected, undrrected graph and S (V T) a’,_ -
P . spanning tree for G. Then, _ R
a) forall u’ and v.in V, the path between u and viin S is unlque o
and, " ' -
ib) if any edge in E T s added to S, a unrque cycle results

Y.Proof) See [39]

| _Lemma 2. gLet G = (V E) be a connected undlrected graph and ca cost 0
~ o function onits edges. Let{(V1, T1), (Va, Tg) ........ (Vk, Tk)} be any _

| ‘spannrng forest for G with k> 1. Let T= uu 1 T . Suppose 6 = (Vv
w) is an edge of lowest cost in E—T such that ve V,and w ¢ V,.

~ Then there is a'spanning tree for G which includes T U {e} and IS,
. ‘of as’ Iow a cost as. any spannrng tree for G- that mcludes T. ‘
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Proof) See [39]. |
By Lemma 1 and 2, If G = (V, E) is a connected, undirected g‘raph with a criterion
value mapping edges to real numbers, a spanning tree is an undirected tree that
connects all vertices in V. The cost of a spanning tree is just the sum of the cost of

its edges. A spanning tree of minimum criterion value for G is the static minimum
spanning tree.

The set of classes to be classufied may be consrdered as a set of classes in a
multidimensional space. The distance measure for every pair of classes is
calculated. The set of classes and the distance measures are represented by a
complete valued graph in Figure 2.4 which is a connected; undirected graph. A
spanning tree can be extracted from this complete valued graph. Among the
spanning trees, the minimum spanning tree is of particular interest. The static
minimum spanning tree can be realized by the following single Iinkage method.
The cost of its edge is represented wnth the similarity measure.

_ CIaSs 1

CIéSs 5 Class2

Class4 90 ~ Class3

. Figure 2.4 Complete Valued Graph

Classes are combined according to the similarity measure between their nearest
members. Each matrix decreases by one after joining two classes. For the single
linkage (nearest neighbor) method, then, new similarity measures between
subgroups can be obtained by the similarity measure between their closest
- classes. : : : :
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Suppose five classes are to be classmed and the matnx of dlstances between the
classes is as follows ' , v .

]

"0 6.0 1.0 50 80 |
60 0 70 40 30
D=| 10 70 0 9.0 120
50 40 90 0 20
| 80 30 120 20 0 _

In this matrix the elemgnt. in the ith row and jth column gives the distance, di,
between classes i and . The minimum dij is d13 = 1.0 so that classes 1 and 3 are
joined to minimize the error rate at the upper levels and the new classes are (1, 3),
(2), (4), and (5). New distances between these subgroups are obtained from D as
- follows: . " :

d@)(1, 3) = min {da, des} = 1 = 6.0,
d(4)(1, 3) = min {da1, d3} = d41 = 5.0,
d(5)(1, 3) = min {ds1, s} = d51 = 8.,

and we may form a new dlstance matrix D1 g;vmg mter |nd|V|duaI dlstances and

70 60 50 807
60 0 40 80
1150 40 0 20|
80 30 20 od

~The smallest entry in D1 is now d45 =2.0 and so classés. ’4 and 5 are combined and
new subgroups become (1, 3), (2), and (4, 5), and distances now become

dd, 3)e, 5) = min {d(4)(1, 3), dE), 3} =, 3) = 5.0,
d(2)(4, 5) = mm{d42 d52} ds2 = 3.0. ’

These may be arranged in a matnx D,,
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The smallest entry now is d(2)( 5) = 3.0, so that class 2is Jorned to subgroup (
5) and the subgroups are now (1 3) and (2, 4, 5). Finally, the combination of the
two subgroups at this stage takes place to form a single group containing all five
classes. The tree showrng these processes is shown in Figure 2 5

(11 21 31 41 5)

Wy 249
1 32 @5
4 5

Figure 2.5 = Decision Tree Corresponding to Single Linkage

f The complete linkage {farthest n'eigyhbor):'meth'od is exactly the opposite of the
single linkage method in that the distance between two subgroups is defined in
terms of the Iargest drssrmllarrty between a member of ¢1 and a member of C2,
namely

d(c )(02) = max {dij Ve c1,»J € 02} 3 _ ' = (2'2)

- Using this technrque for the distance matrrx D, we begin as with the srngle linkage |
method by combining classes 1 and 3. The distances between this subgroup and
the three remaining mdrvrduals 2, 4, and 5 are obtarned from D as foIIows
: d(2)(1 3) = max {d21 d23} d23 =7 O
d( )(1 3) max {d41 d43} - da3 = 9. 0

(5)(1 3) max{qsr,.,dss}adsse12.0,
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0 80 1.0 50 80]
|60 0o 70 40 30
‘p=[ 10 70 0 90 {20
|50 40 90 0o 20|
| 80 30 120 20 o0 | -

: thv‘é'-:n}iew ’diétance’ matr‘ix,is :
T o 70 90 1207
70 0 40 30 |
7] 90 40 0 20
| _'12.‘0 30 20 0 J

The smallest entry is: d45, so that classes 4.and. 5 are Jomed and new subgroups
- become (1,3), (4, 5) and( ) with , ‘

. dq, 3)(4 5) max {d( )(1 3) d(')(1 3)} d( )(1 3)_120
. d(2)(4,5) = max{d42,d52} d42_4o o ' ~

_a'n.q e

[ o 70 120
D=l 70 0 40|

The smallest entry is d(2)(4, 5) = - 4. 0 o) that class 2 is Jomed to subgroup (4, 5) and
the subgroups are now (1, 3)-and (2, 4, 5). The:final result is shown in Figure 2.6.
'which is: 'seen to be |dent|cal in shape to that resultlng from the smgle Imkage X
\method |nC|denta|Iy . S :
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(1":'2?'; 3,4,5)

qQ, 3 (245) S

Frgure 2 6 Decnslon Tree Correspondrng to Complete Lrnkage T

".2 3 2 The dynamrc mrnlmum spannrng tree

' The Bhattacharyya drstance measure is selected as the crrterron for the bottom up, e

DTC The Bhattacharyya drstance measure for two: Gaussran classes is as follows. -

AT E Y R
- 8(m1 mz) l: } (mji m:)+ -In

> | ,:_,
Bl ,/lz =l gy

where m; is the mean vector of class i and X ; is the covariance matrix of class i.

B

" The first term of the Bhattacharyya distance reflects the separation due to mean

differences between two classes and the second term reflects the covariance
difference. The Bhattacharyya distance measure is more closely related: ‘with.
classrfrcatron accuracy than other measure functlons such as. drvergence[50]

ln the statrc minimum spannrng tree, the mean and covarrance vectors for each
“class are computed just one time throughout the design of the decision tree
classifier. But new subgroups based upon combining two classes or subgroups

- have new mean and covariance matrices. Two classes are combined according to

. the similarity measure between their nearest members. Groups or classes are
- decreased by one. After combining the smallest Bhattacharyya distance pair, the -
“new mean and covariance matrices are obtained. Then the new Bhattacharyya

distances are computed between the new subgroup and the remaining classes or

subgroups. The above procedures are contlnued untrl all classes become two

'subgroups , TR : ST
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St

“Compute mean and'cov_‘ariance for each informational Class

- [Compute Bhaliacharyya distance fo"r every pair of classes

[ Cormbine to classes which have the smallestdisance |

| Two classes become one combined class at ascendent node

A% No,, "_V'Check’_iff?. number of classes is lessthan 3| -

| Yes:

( ‘Complete ) |
Flgure 27 Bottom Up Desugn Algorlthm

"24 Hybrld Approach

" Tobe a vahd class a class must be sumultaneously of mformatnonal value and
- separable from all other classes. The top down approaches make use of the

characteristic of class separability while the bottom up approach starts with

“informational classes The hybnd approach uses bottom up and top down methods«
sequentlally : :

o The bottom up approach may produce subgroups The number of subgroups is
determined by the designer. Those subgroups may give the subgroup information

which is used for the top down approach. In the top down approach, how to use the - o

‘ “subgroup information which ‘is generated by bottom up approach is dependent :
; upon the algonthm WhICh is apphed for the top down approach e

~In nonsuperwsed classmcatlon algonthms lnltlallzat|on mformatlon has arole’in

- determining the final results. Correct initial information facilitates obtaining the |

correct results. The bottom up- approach is used as the method to obtain this .
: »|n|t|aI|zat|on mformatlon (mean vectors and covanance matnces) For the hybnd :
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approach the normallzed sum of. squared error (NSSE) criterifon,.defined. as
follows is used R

NSSE = sy [(x m.)TE. (x mi)+In|Z; |] SRR __(2.4)_._;
: I—1xeC1 : v S S
The sum of squared error criterion produces the spherrcal cIusters [37]. However, if
the clusters are not spherical in shape, variance effects must be accounted for. In -
the normalized sum of squared error criterion, variance effects are considered. In’
the hybrid approach subgroup means and covarrances are obtarned from bottom
up results , T DA

The hybrrd desrgn thus proceeds as follows

' 1 Drvrde the entire data set rnto two subgroups for descendent nodes by the-
bottom up approach , .

2 Compute the mean and covarrance vectors of the two subgroups and re- lelde"
the classes into two subgroups usrng the Normalrzed Sum  of Squared Error
, Clusterlng (Appendlx B) . S

3. If the separated subgroups are lnformatlonal classes desrgn is complete ;
Otherwrse return to step 1 for.each subgroup WhICh is not an mformatronal class

There are several advantages to the hybrrd approach lt is more lrkely to converge
to classes of informational value because the initialization provides early guidance
in that direction while the top down approach does not guarantee such.
convergence. It can use overlapping classes while there are no. overlapprng
~ classes in the. bottom up approach. Covariance information can be applled m the
hybrid approach to separate non- spherlcal subgroups. : : .

- 2.5 Tree Classifier for Multisource Data

" Modern data sets include not only spectral data but may- also mclude other types of
- data, such as forest type maps, ground class cover maps, radar data, and
o topographlc information e.g., elevation, slope, and aspect data. These are called
“multisource data. Such data are not necessarily in common units, and therefore
scaling problems may arise. Further, the data may not even be numerical. As a
- result, multisource data cannot be modeled conveniently by multivariate
distributions, thus conventional multivariate classification methods cannot be used
satisfactorily in processing multisource data. ‘Several methods have been
proposed to classrfy the multrsource data L , S

| -Hutchrnson [51] proposed ambiguity reduction technlques If the data are classrfled
- based on one or more data sources, the remaining amblgurtres from the results of
_ classrflcatlon are resolved by other sources. .
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| ___9| N Obtain two subclusters by bottom upapprol"acl:‘h‘ﬁ' -

| Compute mean and covariance for each subcluster

‘| Assign mean to initial subcluster center |

“Clustering produées"two subclusters

v | Compare’_tréiningisamp,les to subclusters | B

- | Assign classes to one of subclusters |

Each subcluster becomes descendent node | -

Yes o

| :_C'_heck if descendent node consists: of more than 2 classes H i
- T TNo T T

CheCk if de's/céhdeht.npde consists of 2 classes ‘»

Divide descendent node into infom’ati'OneiI'CIasses ]

;]Asst'i,gn} descendent node to informational class | ’
"Check if every final node is informational class

 Figure 28 Hybrid Design Algorithm =~~~

" No
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The stacked vector approach, which consists of a concatenation of all components
of data sources, ‘has also been used [52]. This-method is strarghtforward and
simple, however, the method is not applicable when the vanous sources cannot be.
modeled by the multlvanate d|str|but|ons Cale g :

' Swaln chhards and Lee [58] proposed a stat|st|caIIy based analysrs In general:

‘there may not.be a simple relation between the user-desired information classes
* and the set of data classes available. One of the requirements of a multisource -
~ analytical procedure is'to devise a method by which inferences about information
classes can be drawn from the collection of data classes. They defined a set of
global membershup functions that collect together the inferences concerning a
single information class from all of the data sources. They use the global
membership function in the nature of a discriminant function, so that a pixel is then
classified according to the usual maximum selection rule. In that case, the inter-
- source |ndependence assumption is often made,. however that assumptlon is not
usuaIIy fully satisfied in the case. of real data . .

In the DTC approach each source may be consudered separately, somethrng not
possible in a single layered scheme. The basic idea is that the optimal source and

o classification rules are determlned to minimize the classification error at each node.

To- separate the subgroups evaluation functions are- defined as a- functlon of-
m|n|mum ‘error: and mlnlmum overlap The overlap is deflned as foIIows s

d zn n

'where n; is the number of samples of cIass i. The evaluatlon functron is glven by
- Shoem

where o is weighting factor.

(2 5)

‘For a'hybrid' DTC‘w,ith a Gaussian maximum likelihood rule, two initial subgroups
can be obtained by the bottom up approach with respect to-each source. The
subgroup consists of more than one informational class. To obtain new subgroups,

~ 'the Normalized Sum of Squared Error is applied for two clusters with respect to R
each source. To determine the best source, the evaluation function for each source - =

is computed by evaluatlng the results of two clusters. Every node has the
~ appropriate source to minimize the evaluation function. If a subgroup is not an
“informational class, the hybrld desugn procedure is: applled agaln to obtaun two
descendent nodes : , : : ’
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' '26 Computatlonal EfflClency

-Computatlonal efﬂmency is potentlally one of DTC's advantages over a smgle Iayer e

- classifier. As far as the number of decisions is ‘concerned, a DTC needs less
numbers of decisions than a single layer classifier. When a DTC is well balanced, =
,onIy (Iog2 n) compansons are required if n classes are glven Even though a DTC- .

n-1
s completely unbalanced (__M_Z compansons are. requ1red ThlS is- less than

 the (n-1) compansons are requnred ina smgle layer: classnfler and therefore a DTC
is expected to have better computatlonal efficiency. : .

To lmprove the classmcatlon accuracy- in the limited tralmng sample SItuatlon a

rreduced number of features may be used in transformed coordinates. In a DTC, (n-

- 1)-transformations of a test sample are needed while in a single layer classifier,
- only one transformation of a test sample is required. In other words, a DTC needs

- less comparisons but more mappings while a single layer classifier requires more
.‘comparlsons but less mapping. Therefore, neither of the two classnflers always has ,
o superlor computatlon efﬁcuency B , , o
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 CHAPTER 3. FEATURE EXTRACTION

| '.'31 Hughes Phenomenon

-Hughes[22] showed that recognrtron accuracy can first mcrease as the number of
measurements. (or features) increases. However, in the presence-of a limited
training sample size, as the dimension of the data increases beyond the optrmum
value the. classrfrcatron results declrne e . . v

If there were.no such drmensronalrty phenomenon the srngle Iayer maxrmum
likelihood classifier (assuming proper prior class probabilities) would provide better
performance than the any other DTC because the conventronal Bayes cIassrfrer _
gives the mrnrmum cIassrfrcatron error. . .

‘ However when the number of tralnrng samples are Ilmrted the Hughes
phenomenon i.e. the dimensionality problem, must be considered. In such cases,
‘the conditional density functions are incorrectly estimated because -of the lack of
adequate training samples. The poor estimates cause complex decision boundary
‘to be biased. A properly designed DTC may have better performance than a srngle
layer classifier because the decision boundaries in a DTC are much slmpler than |n
a srngle Iayer c|assrf|er . o

In . most DTC s untransformed subsets of features are used snnce a reductron of

.- dimensionality is required to increase the classification accuracy. A typical

- procedure might be to calculate the pairwise Bhattacharyya distance or divergence
-at each node, then the subsets of features having the Iargest distance are selected
for ‘'dimensionality reduction. Since the estimated means and covariances

- themselves are randomly biased in the limited sample situation, a better way to -

- pick the best subsets of features is requrred , , ,

32 Canonrcal Analysrs o

, Frshers suggestron[37] was to look for the Irnear functron whrch maxrmrzes the rat|o-
of the between class scatter to the within class scatter. Canonical analysis finds a
- set of linear combinations of the variables whose values are as close as possible

within classes and as far apart as possible between classes. In canonical analysis,
within-class and between-class scatter matrrces are used to formulate a crrterron of
‘class separabrhty ’ . : . .
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: ‘A Wlthln-C|aSS scatter matrix shows the scatter of samples around thelr class mean -

o ‘vector m., and is expressed by

cod g e e
8w = 21 P(Wi) E{(x-mi)(x-mi)Tiwi}

S LA R L D R
Y;éEyNWﬂZr; ) 1$r-~[,757f45ﬂ"f,

N ,The matnx SW is proportronal to the sample covanance matnx A between-classf’?r"'i e

g scatter matnx is given by

- rank(Sb)

n
3
'L

rank(Sw 1 8p) = m—1

‘where m; is. the mean of |th class and m, is the g|obal mean. AII these scatter__'
‘matrices are invariant under coordinate shifts. We define the ratio of the between
o ;class scatter to the wnthln class scatter as follows: AN ,

dTSud e
dT Sy d | s B4

" The vector d, which maximizes the ratio de is called the F_i‘sh'e':r's"rlinear'
~discriminant functlon or the first canonlcal vanate oS e

. The spectral decomposntlon aIIows us to express the inverse of a square matnx in |
terms of its eigenvalues and eigenvectors, and this leads to a square root matrix.
Let Sy be ann by n posmve defrnlte matnx wnth the spectral decomposntlon _

}Zlee,

‘Let the normallzed ergenvectors be the columns of matrrx P = [ e1 92, en] :
' Then g : , - R S
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S, =) \e el=P'AP P
W I I : o .
=1 e - - (3.5)
A0 ... 0
ey o
where Sy=1| R w_i.thlizo.-
| 0 ... 0% _
Ty 1T |
SW=R A P= 188 : , .
e S - (3.6)

- .
s2 Z\/_k_ee—PAzP

Let M 2A22...2As20 denote the nonzero elgenvalues of * Su Sb and e, e,, ...,

the correspondmg normalized eigenvectors where s is less than or equal to m and/
- 1(m is the number of classes and n is dimension of the matrix or the total

number of features) The symmetnc square root matrix

1
j Zﬁee_PAP

and its inverse -

(3 7)

R
2 T 2

s, 2=PAZP
| 11

d's,d=ds’ sf;d 38)
11 11 !

d's d - dejsw S, S, S.d 9)

1 S

2

Let bea Swd then
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L T &
R ) T 2 - 2
d S d a S, Swa a | S “
d S d a a i : (3 10)
Flnally, the problem reduces to- maxrmlzmg equatlon (3 10) Wlth respect to a. This-

is the so called Raylelgh ] quotrent From Raylelgh ] pnnc1ple[40] the maximum of |
‘ .1_ : 1 ‘

'the rat|o lS 7» which is the Iargest elgenvalue of s s S, when a is equal to e1 '

When a lS equal to eigenvector ey, which is orthonormal to e1, and correspondlng_ o

to Ao, @ maximizes the ratio secondarlly Therefore xk is the kth Iargest value wh|ch ‘

corresponds to elgenvector ek - .
v ) _lv '-l,
SWZ"S’b _S",'v2 e=Le - | (3."11) '

26 % 6 %5 s's (8 2e1-8"S dend
S, S SS e_S. .,S(S e)=S, Sd-?Ld (3.12)

The. elgenvector dI Wthh corresponds to elgenvalue l, is drrectly obtalned fromSS |
, W

" The eigenvector dI is called the ith canonical variate. If we have only two classes
" the ratio -has only one nonzero eigenvalue. The other n- 1 features do not
‘contrlbute to the ratio. The final solutlon for two classes is - SR e

dS(m m)‘ (313)

t ThlS is also called Flshers linear drscnmrnant functlon Wthh has'the maxumum' ,
‘ratio of - between-class scatter to w1th|n class scatter. . ‘

3.3 Extended Canonical Analysis

The followrng method was developed by Foley and Sammon[‘lZ] In the two class '

aq(mq - my)-

rproblem Fisher's vector is glven by d1 _T where oy 1S chosen such
w. ,

that d17d - = 1. The next. best dlrectlon can be found for maxrmrxrng Flsher cntenon”. ,".

' subject to- the constralnt that d, and d, are orthogonal. Using: the method. of

Lagrange. multipliers, we wish to maxrmlze the - Flsher crlterlon subject to the
‘,constralnts that d,Tdn_Oforl _1 2 .,N-1. LetC be SRR o
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{ (m -'m, )} i - e
»-?s.dd -ieAdd L
n-1 "»n-1

'.j, dnSwdn'V

(3.14)
-Settihg the partiallorfi (o} W_ith resipe‘ct}_ o d .eq'ual_to ZerO, : -

2Ky(m, - m)) - K2S,dy-hd, o d =0 3.15)

| 'dﬁ_tls-{-(.',, -.m");'x1 g ey ] D
- Applying the constraints, and letting B.= 2Ki | - dlswd; then
SR o . S P S

» 51“.1|31 .’f_3v1252 oo+ Sy B =1 lay
Sitby+ ... +8in.By.1 =0 |
‘Le't-B:T}= [[3'1 - Ba- 1] thenB s [ a, 0. 0] A rec‘ursive‘deﬁnition fc}'r,fhé,nth _

-dis}lc,r"ifminant Vector is

-—

N

) oL
dy=on5;'q (mg-my-fa,d_ st} O fo

_ » B 1. _‘(3_‘113) k
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| "_‘34 Autocorrelatlon Analysrs

o The Flsher concept can be apphed to an autocorrelatlon matrix. In a two class e N
: problem ‘the criterion which maximizes S, and minimizes S srmultaneously or-l,--. :

- e »wce versa can be defmed An autocorrelatlon matrlx IS deflned by

S 7_,+mmT (319)
o d%d de

.' The crltenon functlon is deflned by r = ar S The optrmally separable, o
' Sd de RN

feature set is a feature set such that S1 is’ mlnlmlzed and Sg is maxrmlzed or vrce.""j_i o
©oversa after the transformatlon The ratro r |s maxrmrzed by the selectlon of feature d

N :»rf gd = 0. That -equation can be reduced to (S1 - rSz) v}o,ﬂwwhac‘h_ is 9‘3”9d a

(S_' 'S, A= _ ° f e
- We can drago}nahze two symmetnc matnces aS‘ ‘ | | 8 S
e .S; D.',_' . o ",::ﬁ(é’;ﬁzfzfilﬁ.;ff’i'_ :
, _;,where DandR are the elgenvector and elgenvalue matrlces of 31 -1 Szl To fmd the;» R

' *.,orthonormal elgenvectors of S1 1S2 as

‘31 '-S2d.t#sr.d. and d'd.=5. AT
: V.\':/e:Shou.ld changethe ‘:Scai‘l"e of d,tosatisfy

T | '1. .I”::, B

- Therefore, the ith orthonormal eigenvector is
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% (326)

di=——""—3
(diTS1di)2
For each dlscnmlnant vector di, there corresponds an r, grven by
d{TS4d; o .
i ~d; TSZdl : (327)

Each r re'presents' the value of the discriminatory criterion for the corresponding

'drscrrmrnant vector d;. - The discriminant vectors can be ordered accordmg to their

respectlve ratio values such that
22220 0 (328)

~ However, we want to maximize the reiative ratro between S and Sy whrch is
: greater than one. if anrjis less than one, we should use the mverse value of r. to

compare the relatlve ratio. We may defrne the relatlve ratlo as follows

q.'-1 » N i+1 . ‘ :_ ' ; | ' (329)

The best feature or effective basis function for both classes is the eigenvector
correspondrng to the largest relative ratio. The autocorrelation analysis can be
used in place of canonical analysrs when the mean drfference between two classes
is almost zero. :

When the mean difference is zero canonical analyS|s and extended canonical .
analysis can not be used since the feature vector is defined by the mean difference.

Autocorrelation analysis is useful when the mean difference is small and the
covariance difference is dominant while canonical analysis and extended
canonical analysis are more effective than the autocorrelation analysis when the
mean difference is dominant. After extracting features, the mean difference and the
- covariance difference in a subspace may be checked to use one of the two
‘methods, extended canonical analysis or autocorrelatlon analysrs for the next
feature extractlon ' . o
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' CHAPTER 4. ESTIMATION OF OPTIMAL NUMBER OF FEATURES

It is well known that classifier accuracy expressed as:a function of the number of
features used shows a maximum at some finite dimensionality [22]. For a given
‘class-conditional density function set, the occurrence of this peak is dependent
upon the training sample size [3], as a. result of the accuracy dependence upon the
qualrty with which: the denS|ty parameters are estimated.

A Iong -known fundamental barrler to the optimal desxgn of classmers is the lnablllty

~to'be able to directly calculate the expected accuracy of a trial classifier design. As’

a result, a common practlce is to use a statistical measure, e.g. Bhattacharyya -

.. distance, to estimate the expected accuracy. However the relat|onsh|p of such

distance measures to.classification accuracy, though monotonic, is not precusely
one-to-one, and thus, if such a distance is to be used in the design process, it is
important to clearly understand just what the relationship is between expected
accuracy and a specific distance measure used to estimate it. It is this relatlonshlp
which is studied next, paying specific attentlon to the effects of sample S|ze and
parameter estlmatton varlabllrty o

4.1 Optlmal Number of Features L

‘The quahty ofa densrty parameter is specnfled by followung theorems

| _Theorem 1 (Rao Blackwell)

| Suppose T(x) is sufﬁment for @ and that Ee[IS( )|]v'<f co forallfe
0. Let T'(x) = E[S(x)|T(x)]. Then for all 8 € ©, Eg[T" (x) - q(8)]2 <
Eo[S(x) - q(6)]2. If Varg[S] < =, strict inequality holds unless Tf’(x)":
S(x) ' : , . : -

Proof) See [59] pp.121.

_Theo.rem 2 (Lehmann-Soheffe)

If T(’x-)"is a complete su‘ffi’cie‘nt statistic and S(x ) |s an unbrased"
estimate of q(6), then T'(x) = E[S(x)|T(x)] lS an U. M. V. u.
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(uniformly .minimu_m variance unbiased) estimate. of q(e) If
Varg[T"(x)] < o for all 8, T"(x x) is the umque U.M.V. u. estlmate of

| 'q(e). .
Proof) See pp. [59] 122

The |dea of suffrcnency is to reduce the data with statistics whose use mvolves no -
loss of information. A statistic T(x) i is called sufficient fora parameter 8, if and only if,

‘the ‘conditional distribution  of x given T(x) =t does not involve 6. Thus once the
value of a sufficient statistic T is known, the sample X = (x1, e _ )_does,not

'contaln any further mformatlon about 9.

A statlstlc Tis sald to be complete |f the only real vaIued functron g deflned on the
' range of T which satlsfles : : '

Eolg(T )]_o foraue

s the functron g( ) = 0. Completeness is evrdently a property of the famlly of -
.d:strrbutlons of T generated as 0 varies. - :

Theorem 3

. Let {Pe 9 € @} be a k parameter exponentlal famlly as glven by

P(x {exp[ ZC ) .S(jx)' } lfA(x)' T
SuppoSe that the range of C= (c1(9) ck(e)) has a non- empty interior. Then .

T(x) = (T4(x ). Tk(x)) is complete as weII as sufﬂcnent

Proof) See [59] pp 123

Let x (x1, i xn) be a sample from a N(u (52) populatron where both i and 02 are
: unknown The drstnbutlon of x forms a two parameter exponential famlly in q =

(m.0?).

T<x>=(§xi, 21 X?] e
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“is complete and sufficient. Since X is a function of T, it must be the U. M. V. U,
estimate of p if 62 is unknown. :

| =1 a2
is also a functlon of the complete sufficient statistic T and the U.M.V.U. of 62 ifuis

- unknown.

The risk functi,On of an eStiméte T(x) is defined by - =
RO ) = E; L6 T(x))] = Lo T o xe) i

where L(6, T(x )) is loss functlon One may choose the mean squared error as a loss _
" function such that -

en=e-1° @

Then

| r e

R, T) = E (T - (6)) J

Let T(x) = M and q(0). = m. T(x) is the unbiased estimate of m. Then -
R(m,fh) = %—2-

Let T(x) = 5 and q(6) = 62. T(x) is the unbiased estimate of 62, Then -
R(©,6°) = Var (8) |

o 2Va{(n-1)62} |
(n-1) o
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n-1 AR I (47)

_Therefore the quality of an estlmate is dependent upon the size of the tralnlng set
and the variance. However, the above risk value cannot show what the
: relatlonshlps are between the amount of error and the qualrty of the estlmates _

“Usually, it is very difficult to obtain the risk value of a functlonal directly. Therefore,

Taylor series expansron techniques may be applied to approximate the risk value
S of the functional’. The Taylor series expansion can be wntten as follows :

f(a+h b‘ K) = f(a,b 4 hi'+k— fx.y). o | +
(a+h, '."’)— (a, )+ ox —dy (x’y)X=a,Y.=b‘+,";"'f'. e

1 h—8——+k5} o _
( 5x - Oy _f(x’-y)«lxéa,‘y=b.f ‘(4;8)

~where a+h, b+k are’ estlmates and a b are real parameters If a+h and b+h are»

unblased estimates, E[h] 0 and E[k] 0 Then, E [f(a+h b+k)] is as follows

R | S o @9

Then Var [f(a+h b+k)] |s as follows

Var [f(a+h b+k]—-E [f a+h, b+k) Eli(a+h b+h)l]

N

. | = E {[(hax +kaYJ ( ,Y)lx a, Y b + E[ha +. kay , f(X,Y)lx _'-“ a,y= b

'EE[( "ax +kay] fx ,y>|x e bﬂ

v .

A Slmllar denvatlon of the lunctlonal relatlonshlp has appeared [60] since the denvatlon which -
follows was fnrst obtamed : _ .
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= ay]f‘ ey - S e
Bayes error &* Qén be ‘eXpressed by
o= j min[P, p, (x), P,p,(x)] dx L
R AL @.11)
and bounded by S

o If the class condltlonal denslty functlons are Gaussran then

e ; vatPéfeXp[fB]:' (4.13)

Z +Z

» 1 Z +Z] ' R 7
»B=‘é'(m m)T[ 1 (m, m2) A2l

,/IE Iz,

It the Bayes error is assumed to be directly related to the Bhattacharyya distance,
the estimated- Bhattacharyya distance behavior can  show that the increment of
Bayes error has as its orrgrn the inaccurately estimated Bhattacharyya distance.
However, the Bayes: error is not-bounded by the Bhattacharyya drstance but by a

| ‘ ,_functlon of Bhattacharyya distance.’

The transformed Bhattacharyya drstance is defrned as foIIows
o X =1- ,P P ex -B | |

" , The transformed Bhattacharyya distance is assumed to: be drrectly related to
classification’ accuracy. Assume that the Bayes error is approxrmately equal to the
upper bound that i is characterrzed by Bhattacharyya distance, then o



- The transformed Bhattacharyya distance is a lower bound of the correct
~ classification accuracy. If Py and P, are equal, the: estlmated error of the classrflerl '

deS|gned by trarnmg samples can be expressed as

é\ e B

S

| (4 .1'6) *

in multlvarlate statlstlcal analysrs a most- powerful property is that the o
‘Bhattacharyya distance is invariant. under any one- to -one mappmg By the_,,_,,---

- srmultaneous dlagonalrzatron |
mi=0,mPoms"=1s%2 @

The number of parameters for the estlmated Bhattacharyya dlstance is. 2(q +. q2)

R R SRS o ()Xm ()—__,
R Y ’?“11 12 " Ay
1 m | 1) (1)
‘ . . A
| oo Y Y
RO YU R R
m ka—_- . -
| SN (1) |
Mg ot e
- | IR ‘(4.1_8)' o

'The estlmated transformed Bhattacharyya dlstance can be expressed as. R
L e e e e
¢ ;f(m1 mq m1 mq ,211,1..’5:“;» 11-"",,-199)9 ‘» (419)

The estlmated Bhattacharyya dlstance isa blased estlmate The blas of estlmated |
Bhattacharyya distance is well denved in [58 60] L o

"Ef['(:ﬁt_,‘ )Zk”]-o k_1 23 - (420) o
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: - xék :
o . n (4.21)
X k ﬁ k]———u:j,l k,j=lpri=_|,j=k .
2h2 2l .
=—=—, i=j=k=
n-rs @ 22)

For the computatlon of the derlvatlves of the Bhattacharyya dlstance contammg
. matrix, three basnc matrix differential equatlons are needed.

Tt ] S

~.—=-E - = Z,Z'1T 4.23
IZTAL _ -
— = UIj zT +3 U;I; (4.24)

where U; has all zero valued components except that ith column and jth row
component is one. " "

- PB)_ @) 5% 91(B) B 0B

axax oB 8xaxJ 828 axi axj | (4.25),
. @ ()
9B 9B M -m
(1) am@ T 2(1 +x..), Ceal
" a | ,a»i ' o (4.26)
P8 B 1
M2- . @2 2(1 +A) o
. ami i ami ul | (4i27):
o8 MM R
97»:,-1) 40 +2)(1+2) " 20142 " 4

_'(4.278);
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B _ MM 5% 5

e T4+ )+ x) 21 1) 4L |
T | | (4.29)
| e | |
B _ % Mo, L
5,0, ) 4(17-1»%,“)(1-,«rxﬂ)_"lgs-kii 1+x§L 4 2(1+h)(1+1)
[ . | (4.30)
) . . — 2 2 ] . .
s 5 AT BT T i
87».(’.2)87;;(.2) 4(1 +Kii)(1 +}‘jj)_1+7‘ii , 1+7\.n._ | 4}"ii}"jj - 2(1 +7Lﬁ)(1 +A.H) o
U | | (4.31)
. ST - 2 2] ﬁ .
9B = oM T +_8'_1 . % -
axﬁ)xm (1-+}‘i'i‘)(1+ljj);'1i+??ii' 1 +7LJ.L 4 2(1+xii)(1+7»jj)~
' = (4.32)
. . = 5 2 - ‘_ oo
%8 TR U L B DA . T
ax‘z)x(z) (1+xﬁ)(~i+>LJ_],‘)_,1+7bii 1+xﬂ._ A 201+A)(140) |
SR ol (4.33)
BQB’ . 5, [ ] f 4
ax ax 4(1+2.)( 1+xL T A, 2(‘1+7;“)(1+7ng)
v v ERCEDN

The computation of the denvatlves of the transformed Bhattacharyya distance can
be derived as follows

B8 " 'omt N - I

;aZeB’ JeB 2B a2e-5( B 1

- 428 N =eB||— (4.36
~om{"? 7 9B g1 T oB2 am§1’J 2(1+k) | 2(143) | )
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© 9%B  g9eB B 2B, 9B N m 1
= + = gB - - 4.37
om{ 9B am{® - 982 (am‘i‘z’fu [[2(1 ) ) 2(1+%) }‘ "

v 829-5 - .0%B : B | o 1 _ 1 1
Mo () P (M =71 2 - N BTN S

: B ml
R ) } ass
4(1+?\,, 1+7\u L1 +7\1I 1+7\11 ,

2

9%B %8B 1 1
@ 0 @@= A o | T 2ten (e an
2~|] ij d ij OAji 4(1+>‘1;)(1+)‘1]) , +7\| +7‘11)‘ Ai i

1 s oo  (4.39)
a(1+%) ”’W*’“‘ g ||

S oy Hem? o R |
o ' , , + —=- 7| (4.40)
N | (2(1%)}(1%) 2(1+x)2 4 PR

» aZe-B F_B. ‘ 1 1 o _ 2 ‘ ' | |
a2 20w an |20 | |
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oomm; -

 (9eBY 2eBdeB (00BYV 0eB eB P e e
20| AT @ | T @@= ey | 4
: i ij ji i ij O (1+2)( "'}‘11) : S
. Je-B\2. 19 m; R : :
(2] et . L -1 (4.42)
9N 20 T L 2(1+) O T U
9eBY . 1 1 m ) . . -
- __§(_2_) =e2B|- 1 - 1 R |  (4.45)
oA 1200+N) 4N (200+N) [ c

The biasof the. transformed ‘Bhattacharyya distanée éan} be 'thaine'd a$ follows.

~a-B. Bl
E[g > 2€
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where q is the dlmensmnahty, n is the number of samples and B is the
Bhattacharyya distance. ,

The variance of the ,trahs"fOrmed Bhattacharyya distancé can be obtained as
follows. SR o

o o 22
P mi2 mm,(1+m”)

o " - 1- 8] é-2B : 3
e Va{1 2° :l 16n ; (1+%) +vi; =1 2(1+%)%( 1*‘)‘11)2

, i#j
m ¥
q 1 1 i
2 L=
+i=z1 (1) 2 2(1+3)
mZ Y ~
+§j - (4.47)

i=1 (14) 2% 2(1+x)2 | |

Although the Bayes error from the estimated classifier is not the actual error, we
want to find the risk value of the transformed Bhattacharyya distance because
increasing the risk value makes the classification error increase. The risk function
of the transformed Bhattacharyya distance is

R(Xg, %) =%(E[G'B - e‘h])z + Var[1 - 159-'8]

—

- 1(E[es : o-8])° o S -_  _(4.‘48)'
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in equatnon (4. 48) one may note that the exponentral term, 75— 160" reduces the value

- of the rlsk function whlle the rest of the terms cause the value of the rrsk functlon':., S

~ ‘increase. To' minimize the risk value with a constraint to. maximize the .
‘ Bhattacharyya distance, the dimensionality must be reduced ‘when the number ot N
,trammg samp!es |s small. .

If the: teatures are ordered in decendmg order the tsrst feature reduces tuc rsk .
function and’ expands the Bhattacharyya distance the most. As the number of
features is increased, the summation terms increase more rapidly than the
expone tntnat term. The strategy for the predrctron problem can be establichad as
follows. If one wants to use ‘as small a number of features as possible and achieve

as a large Bhattacharyya distance as possible, one should take advantage of the

transformed coordinates. The best one feature having the smallest risk value and
largest Bhattacharyya distance between any two classes can be extraoted m the .
transformed coordmates in the case of small tralnrng sample srtuatlon S

It may be noted from equatron (4 46) that if only the mean drfference term is - |

" considered as in the case of a linear classifier with a fixed Bhattacharyya distance,
the bias increases Imearly with the dimensionality, while if both the mean and

covariance terms are considered with a fixed: separablllty for the case of a_ '

';quadratlc classrfrer the blas mcreases quadratlcally with the drmensronalrty

: f 4 2 Empmcal Approach

v Frgure 4.1 shows in hypothetrcal fashlon classrflcatlon error for several cases. Case
(a) shows the true class condrtrona! density and (b) and (c) are estimated. class-
conditional densities. The area (1) is the true Bayes error. The area (2) or (3) is the
" ‘estimated Bayes error which is obtained by the estimated parameters. The area (4)
~or (5) is the summation of Bayes error and increment error when the classifier-is
designed by training samples and-the error rate estimated by test samples. In
Section 4.1, the difference between area (1) and area (2) or area (3) is minimized.
in this. section, the mcremental error due:to the .inaccurate estimates which is
~shown-in the area (4) or (5) is studied. empiricalily. Fukunaga and . Krile[5]
‘developed an. algonthm for calculating recognltron error when applying pattern -
vectors to an optimum Bayes classifier. When the q-random varlables of the vector '
_x are: lndependent the mrnus Iog Ilkehhood ratio. h( ).is as tollows :

S g o
b=t

(asg)
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' Decision bounery due to case (b)

Decisfon bounary due to case (¢)

p2(x)

~ (a) True Class densities

(b) Class densmes est1mated !
—— from & flmte tramlng set

\(©) Class densities estlmated‘f“-»
—~ from another tralmng set

B () True Bages error

' (2) Estimated Bayes error |

_(3,)" Estimated Bages error‘_ o

- (4) True error due to clas:sif:ier'(b)’} '

|   (5) True error due »t0,¢]a‘s'_$1ifi;_er”‘(c)', o

Fugure41 Class-conditional Densities and Decision Boundaries for a
- Hypothetical 2-class Case (a) True Class Densmes (b) (c) Class Densities
Estlmated from a Finite Tralnlng Set ' : , o :
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- The characteristic function of h{x) for class i is

_,.¢i(w)=.- E{éiwmx). | cIaSS‘i} J‘ th(x)p (x)

4 50)

| .ly deﬂmtton once the Charactensttc function of h(x) is obtamed the densaty funetion
~of h(x) isits inverse Fourier transform. ' : ‘

(4 51)

When the dlstrlbunons are normal two covariance matnces can be dlagonallzed
simultaneously by linear transform. In the transformed coordinate system, all
features are independent. The errors are invariant under any transformation
because the "likelihood ratio is independent of any coordinate system.
Characteristic functions of the minus log likelihood ratio for class 1 and class 2 can
- be easily computed because the q random variables of vector x are independent.
This approach reduce the g- dlmensmnal mtegral toa . one- dmensnonal mtegral for
the error from each class o _ .

2 .0
=Pij'p1(h.),dh +_P.2'[p2(h) dh S
0 e | B | (4.52)
The increment"e‘r’re,'r' due to the inaccurately»trai'ned classifier may be expressed as .
CAe=E-e
Chrfress s e Yo ) L a e
=|P1 [ps(R)dh + P2 pa(P)dh |- [P1 jm dh+Pz Jpz dh (459
o T R I U ) N

| To investigate the global ‘relationships between the di}mens’ionality';"the' sample
size, and the correct classification accuracy, a Monte Carlo simulation is used here.

- The true Bayes' error can be computed numencally by Fukunaga's algorithm if one

~has perfect information of the mean and covariance for Gaussian classes. Although’
" only 1-dimensional numerical integration is needed for Fukunaga's algorithm, it is
difficult to obtain accurate Bayes' error easily in high dimensions. Therefore, a
’more snmple means to estlmate the Bayes error is needed to study relataonshlps
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between sample size, dlmensmnahty, and added error empirically. Whitsitt and
Landgrebe [50] suggested that if we let f = erf, then we are assured that the locus of
(pe, f) contains pe = f, and in this sense, f approximates the error. The Chernoff
bound for a multivariate normal distribution is given by

. ' . _1
(9= g1 -s)m, - m) 11 -5+ S, -m)
I I( -S)Z, + %]
+ —In -
Bl

 (4.54)

The Bhattacharyya dlstance B = C(O 5). The error function Bhattacharyya distance
is defined by o S

E= 05 OSerf(x/E) v o = (4.55) :
The error functlon transformed Bhattacharyya d1stance is deflned by |
Ep=1-E =05+ 0.5erf(B) : . (456)

where the error function is given by

erf(\/E); f’i/pz[—'f] dx
e

Ambiguity and linearity are two significant characteristics of separability measures.
It is empirically illustrated that the probability of correct classification and the error
function transformed Bhattacharyya distance have a linear relationship. Figures
4.2, 4.3, and 4.4 show why the error function Bhattacharyya distance has linear
relationship with Bayes' error, as explained in the following. The q is the
dlmensmnahty and n ns the number of samples.
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o

Expovertiat-Byrattacharyyapistands
——&—  Error Flnctiort Bhattdcharyya Distgnce

04

‘Estimated Ereor

0.2. i ‘ :

0:1

- 0.0

Bhattacharyya Dlstanée

Figure 4.2~ Simulation " Result for Exponential ‘Bhattacharyya
Distance vs Error Function Bhattacharyya Distance (g=10, n=e)
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1.0
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0.7+
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"Tra‘n"sférmed‘ 'Bhéttac‘ha'ryya Distance

0.5 . — —
0.5 . .. 0.6 - 0.7 0.8 0.9 1.0

Classification Accuracy .

Figure 4.3  Simulation Result for F’c Vs Xg (= 10, n = os)

An empirical simulation was performed for ten and thirty dimensions. One thousand
test samples are used to estimate the classification accuracy. The number of
simulations in Figures 4.3 and 4.6 is one thousand at a given number of training
- samples. The error function Bhattacharyya distance is a tighter bound than the
exponential Bhattacharyya distance as shown in Figure 4.2.
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Classmcation Accuracy
Flgure 4. 4 Slmuiatlon Result for P vs EB (q‘.. 10 n = oo)

E In Flgure 4 3 classmcatlon accuracy versus transformed Bhattacharyya dlstance IS._

- plotted where the dimensionality is. ten. In Figure 4.5, classification accuracy versus-

transformed Bhattacharyya distance is plotted where the dlmenSlonallty is thirty.

The classification accuracy is obtained by Fukunaga's algonthm By using the error

~ function Bhattacharyya distance, classification accuracy versus: error function
- transformed. Bhattacharyya distance are illustrated. in Figures 4.4 and 4.6. The
- probability of correct classification and. the errfor function transformed
. Bhattacharyya distance are seen to have a linear relationship,’ and the error.

~function ‘Bhattacharyya dlstance |s a tlghter bound than the exponentlai-‘

N ‘v Bhattacharyya dlstance
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Figure 4.5 Simulation Result for Povs Xg (=30, n =)

Therefore, Eg is selected to study relationships between sample size,
dimensionality, and classification results, and to observe the Hughes phenomenon
to determine the optimal number of features in two class cases. In Figure 4.7, the
dimensionality problem such as the Hughes phenomenon is observed. The
classification accuracy shown ‘in Figure 4.7 is much less than the ldeal
claSSIflca’uon accuracy |n Flgure 4.6. , ,
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Figure 4.7  Simulation Result for P.vs EB (g=30, n=60)

Figure 4.7 shows that the estimated classification accuracy is well below the real
classification accuracy when only 60 training samples are used to estimate the
class-conditional densities in 30 dimensions. An empirical simulation ‘was
performed for from thirty to one hundred dimensions. One thousand test samples
were used to estimate the classification accuracy. The number of simulations in
Figures 4.8 and 4.9 is fifty for each given number of training samples. The
correspondlng number in Figures 4.7, 4.10, and 4.11 is one thousand.
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Flgure 4 8 Classn‘lcatlon Accuracy vs EB (q 50)

As the number of tralnmg samples is mcreased P gradually approaches the ideal
P In Flgures 4.8 and 4.9, two times, ten times the- dumensuonahty and power of two
vof the dlmensmnahty of the data are used to estimate the class-conditional |

- densities in the simulations. When two times the dimensionality of the data are

~ used, the estimated classification accuracy is well below the real classification

“accuracy. When ten times the dimensionality of the data are used, the estimated o

classification accuracy is almost the same as the real classification accuracy. When,_
~“the power of two of the data are used, the estimated classmcatlon accwacy is
, ‘sumllar to the result in case of ten tlmes the. dlmenswnallty of the data. SURRE
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To |llustrate the one-to-one rela’uonsh|p between estimated classification accuracy
-and Eg, the average classification accuracy are plotted in Figures 4.10 and 4.11. As

a result, it appears that approximately six to ten times the number of trammg' |
samples with respect to the dimensionality are needed to achieve a satlsfactory
de3|gn at thls dlmen3|onallty . : :

As the d:mensnonahty is increased, the separablllty is also mcreased since the
‘added features give more information. When the dimensionality is increased with a
fixed separability, the added error increases quadratically [60]. However, when the
dimensionality and the separability increase together, it is difficult to find a simple
relationship because the increased separability reduces the added error and the
increased dimensionality cause the added error to increase, as in equation (4.48).
in this eectlon the cases of increasing both dimensionality and separability are
’res‘ied :
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The increment error is simultaneously affected by two factors, dimensionality and
separability. For predicting the optimal number of features, we conclude that the
optimal number of features in transformed coordinates is just one when only small
numbers of samples are available. Empirically, it is shown that a reasonable
sample size is six to ten times the dlmen5|ona||ty if the dlmens:onahty and

- separabllnty smultaneously mcrease
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 CHAPTER 5. DATA PROCESSING AND ‘EXPE'R'I'MENTS,

5.1 Introduction.

In this chapter, Decision Tree Classifiers (DTC's) designed by various procedures
will be compared to verify which . design procedure provides the better
performance. Further matters presented are, : :

v a performance companson of a DTC and a single layer classrfrer :
-« aDTC approach for multitype data;
-« - the effects of the feature extraction in DTC design; and
+ a strategy for feature selection.

The Bayesian decision rule with the assumption of a 0-1 loss function and
multivariate normal distributions is used as decision rule in all experiments when
classification is involved. The 0-1 loss function assigns no loss to a correct
decision, and unit loss to any error. Thus, all errors are assumed equally costly.
Three kinds of data sets are used and will be referred to as follows: Flight Line C-
1(hereafter referred to as FLC-1), Anderson River, Field Spectrometer System
(FSS).

FLC-1 data were measured and recorded from an aircratft flight on June 28, 1966,
at approximately 12:30 PM local time, at an altitude of 2600 feet above terrain in
Tippecanoe County, Indiana. A spatrally scanning radiometer with a 3 milliradian
spatial resolution was used to obtain relative measurements of the energy reflected
from the ground in twelve different wavelength bands. As shown in Table 5.1, the
last two wavelength bands are in the reflective infrared portion of the spectrum. The -
other bands encompass the visible wavelengths. Part of the selected area is used
for training and a much larger portion is used for testing.
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o Table 5. ‘1 Muitlspectrai Scanner Data of FLC 1

Feature No Spectral Band
| ~ (microns).

0.40-0.44
0.44 - 0.46.
0.46-0.48 °
0.48 - 0.50
050-052 |
| 052-055 -
' 0.55-0.58

A 0.58-0.62
' "‘1,07: | 066-0.72
I 11 - | o072-080

062-066 f
42 | 080-1.00

@mﬂmm#wmé

" Table52 F§§Dat_a1

o deatieh 't pate’

Kansas | 9-28-76

. Kansas +5-03-77
. Kansas = | 6-26-77
North Dakota . .5-08-77
North Dakota: | 6-29-77
North Dakota-; 1 8-04-77

- Six sets of high spectral resolution field measurement data were taken over

- Williams County, North Dakota and Finney County, Kansas. These data were taken
‘by the Field Spectrometer System (FSS) mounted in a hellcopter The spectral - -
resolution was 0.02 um for the interval from 0 4 um to 2 4 um Locatlon and date
.,lnformatlon is glven in Table 5. 2 ' , A . , ,

,The Anderson Rlver data set consnst of 11 bands of alrborne multlspectral scanner

- (A/B-MSS) data, 4 bands (X and L) of synthetic aperture radar imagery (horizontal
~ polarization transmit and horizontal/vertical polarization receive) and digital terrain’ o

: model information mcludmg digital elevation, slope -and aspect (DEM, DSM and

.- DAM respectuvely) The A/B MSS band mtervaIs are glven in Table 53.
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- Table 5.3 A/B MSS for Anderson River

Feature No. | Spectral Band
(microns) :
0.38 - 0.42
0.42 - 0.45
0.45-0.50
0.50 - 0.55
0.55-0.60
0.60 - 0.65
0.65 - 0.69
0.70 - 0.79
0.80-0.89
] 0.92-1.10

- 8.00-14.0 |

COND U HWN =

ek ks
- .

The A/B MSS Anderson River data was obtained over a Canadian forest site (2.8
km by 2.8 km) on July.29, 1978 at an altitude 3100 meters above sea level. The
spatial resolution was 7 meters. Weather conditions were clear. Steep. Mode SAR
data was measured on'July 25, 1978 over the site at an altitude 6700 meters above
sea level.. The raw data resolution was 3 meters. The X band wavelength is 3 cm
and L band wavelength is 23 cm. Shallow Mode SAR data was obtained on July
31,1978 at an altltude 6400 meters above sea level.

5.2 Co.in'parisohs.fo‘r Bottom Up DTC

~In this section, three tree design methods, single linkage, complete linkage, and
dynamic linkage are used to design a bottom up DTC as described in section 2.3.
To design the bottom up DTC, mean vectors and covariance matrices are
estimated from the training samples. The" Bhattacharyya distance is used to
estimate the separablllty between groups because of its smaller ambngunty [50] ‘

Experiment 5.2.1 |

Elght’clesses of FLC-1 data were selected as follows: ‘Alfalfa Corn, Oats, Red
Clover, Soybeans, Wheat, Bare Soil, and Rye. As shown in Table 5.4, the number
‘of training samples for each class was chosen such that it is only slightly larger

~* than the number of spectral features since it is commonly the case in remote

sensing situations that tralnlng set sizes are small. At least one more sample than
the number of features is needed to avoid singular covariance matrices. A large

number of samples were used to evaluate the classnflcatnon accuracy as shown in
'-Table 5.4. . : .
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Table 5.4 FLC-1 Data

ﬁ Class. #Train #Test ~ Dim
Alfalfa(b) 15 760 12

1 Corn{e) 15 1360 12
Oats{j) 15 1380 12
Red Clover(l) iz 1357 i2
Soy Bean(p) 15 1083 12
When S {Lhy 15 492 2
Bare amhx, 15 1012 12
158 | 2322 i2

. e, 1P, uxy)
G el ey
/\
(b, 1. %)
, ®,ejLp)

j v (b: <, l! p)
AN
(®, 1 (e,p)

/\/\

P

Figure 5.1 Single Linkage DTC (FLC-1, & Class)
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b (e, 1P, X)
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»Figu're 5.2 | Dynamic Linkag'e DTC (FLC-1, 8 ‘QIaSS)

The resulting single linkage DTC for eight classes is shown in Figure 5.1 and the
dynamic linkage DTC in Figure 5.2. The complete linkage DTC is shown in Figure
5.3. The results of classification for various numbers of features are given in Table
5.5, 5.6, and 5.7. Because the mean differences between classes are dominant, the
extended canonical analysis for the feature subsets was used to seek maximum
separability. B :
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(0,e,5,1p.uX,y)
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" Figure 5.3 Cdmplete Linkage D‘TCV(FLC-1, 8 Class)

B , Tablé5.5 Classification Accuracy(%) for the Single Linkage Design

u

 Class 1" 2 . 3 4 : :

Alfalfa | 71.2 69.7 | 72.8 | 79.6 81.8 8

Corn | 97.4 | 974 | 979 | 97.8 96.5 9

Qats | 978 | 97.3 | 97.1 97.0 | 97.0 | 96. 959 | 61.3
Clover| 84.5 | 85.6 84.3 80.3 77.4 6 - 71.2 62.1

Bean | 859 | 834 | 721 | 750 | 740 | 751 | 719 | 710
Wheat | 992 | 947 | 933 | 915 | 909 | 837 | 77.4 | 244
Soil | 916 | 914 | 907 | 920 | 909 | 852 | 80.7 | 207

6 |
58 | 85.7 | 57.8
6.0 | 946 | 847
6.5
9.6
Rye | 94.5 | 932 | 866 | 866 | 86.6 | 858 | 842 | 224

i Avg 90.3 | 8941 86.9 | 87.5 86.9 84.7 82.7 50.6 |

* the numb’er of features which is uséd at each node. -
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63

5

q '2’?

C'Ias‘sjifivcatior'i Aocuraoy(%”) for the Complet:e‘Li_n}:(;a' e Design . -

Teble 5.7

Classrfrcatron Accuracy(%) for the Dynamrc Lrnka e Desr‘ n

Class “1 .. 2 . 3 ' 4 6. 7
|Afaita J82.0 [81.8 |755 |83.8 |[83.3 |851 |85.0 [52.8 |
fCorn |24.9 |227 |200 |19.9 [215 |2655 (240 [87.9
loats - |90.4 |91.5 |[88.3 |[86.6 [825 823  |79.8 [43.0 -
Clover |83.7 |85.4 [848 |80.3 |75.7 |67.2  |69.7 |54.8
|Bean |86.2 |835 |72.1 {75.0 |741 |75.2 [72.2 [71.5
;;Wheat 99.6 - |99.6 -~ |99.4 |99.8 |99.4 |99.6 -]98:0  |98.8-
'Soil . {100 < [100 |100 © |100 ~ [100 « |99.7 |99.7 = |956 . |

Rye: |96.9 |965 {965 961 |96.0 |96.9 [98.7 |97.9 |

826 [79.6 |80.2 [79.1 |79.1 [784 [753 |

| Class 1 2 3 4 5 6 ~ 7 12
Alfalfa | 91.3.| 842 | 82.8 | 695 | 63.4 | 58.8 51-6 T 63
‘Corn | 96.0 | 965 | 969 | 971 | 974 | 97.3 | 97.1 | 88.9-
Oats | 972 | 97.0 | 967 | 967 | 96.1 | 955 | 943 | 60.3
Clover| 884 | 912 | 90.1 | 876 | 86.4 | 780 | 747 | 599
Bean | 854 | 830 | 715 | 746 | 734 | 746 | 718 | 715
Wheat | 99.2 | 99.2 | 986 | 97.8 | 97.0 | 953 | 87.4 | 39.6
Soil | 91.4 | 833 | 8.4 | 86.1 | 80.1 | 705 [ 57.9 | 20.0
Rye | 836 | 818 | 709 | 639 | 630 | 57.6 | 552 | 9.3
[Avg | 976 [ 895 | 867 821 | 785 | 738 | 445 |

842

Frgure 5. 4 shows the average classmcatron accuracy vs the number of features
used for all three design methods. The dynamic Irnkage tree gave the best
performance, and at the lowest feature dimensionality in this experiment. All three
‘methods showed a decrease. in classification accuracy as the number of features
was increased. This characteristic is to be expected, given the small number of
training samples since the quallty of class statlstlcs estrmatron become poorer with
added features ‘ : : o
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Experiment 5.2.2

Twenty three classes of FLC-1 data are chosen as shown in Table 5.8, to test
performance of a bottom up DTC in case of a larger number of less separable
classes. The twenty three classes consist of two alfalfa fields, four corn fieids, four
oats fields, three red clover fields, five soybeans fields, three wheat fields, bare soil,
~and rye field. Fifteen training samples for each class are chosen and at least 492
'samples are used 1o evaluate the boitom up DTC. To test the more complex data,
the same species located on different areas are considered as different classes.
Since the mean difference of the Bhattacharyya distance is dominant between -

- classes, canomcal analysns for feature extractlon was applled
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Table 5.8  FLC-1 Data (23 Class)

II Class ©  #Train  #Test ~ Dim

Alfalfa1 15 | 675 12
Alfalfa2 15 | 760 12 |
| Corni(c v) b 15 - 651 12
Corn2(d) . 15 1656 12
Comn3(e) . 15 | 1360 | 12
Corn4(f) - 15 | 1998 | 12
Oats1(g) | 15 1034 12
Oats2(h) 15 737 12
|| Oats3(i) ‘ 15 1872 12
{{Oats4(j) 15 | 1380 | 12
Red Cloveri(k) = | 15 1360 12
Red Clover2(l) 1 15 1357 12
Red Clover3(m) 15 836 12
Soy Beani(n) 15 1189 12
Soy Bean2(o) 15 2491 12
Soy Bean3(p) 15 1053 12
Soy: Bean4(q) 15 1349 12
Soy Bean5(r) 15 | 1890 | 12
Wheat1(s) 15 576 | 12
Wheat2(t) 15 | 671 12
Wheat3(u) 15 492 12
Bare: SOII() 15 1012 | 12 |
Rye(y) v 15 2322 | 12 |

Flgures 5.5, 5.6, and 5.7 show the smgle linkage, the complete Ilnkage and the
dynamic linkage DTC desngns All three classmers are constructed by the bottom
up approach :
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'fgtjuhgsx:kmlab:‘iqrdenpco
Flgure55 Slngle Lmkage DTC (FLC1 23 Class) -
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- Figure 5.6 Cbmplete Linkage DTC (FLC-1’,,_ 23 C.léss) '
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. Figure 5.7  Dynamic Linkage DTC (FLC-1, 23 Class)

Taéle 59. Twenfy Three Class Test Samplé Accuracies in Per Cent.

- Class - Single  Complete Dynamic
Alfalfai(a) 58.1 | 60.4 | 440
Alfalfa2(b) 40.5 455 | 295
Corni(c) 57.1 20.3 36.3
Corn2(d) - | 769 | 669 | 728
Corn3(e) : - .87.2 59.6 74.0
Corn4(f) 0 o o
Oats1(g) - 57.8 47.1. 53.6
Oats2(h) 67.4 | . 716 - 674
Oats3(i) , 51.6 47 - 78.0
Oats4()) 71.0 70.4 85.3
Red Clover1(k) 69.7 93.8 69.3
Red Clover2(l)- 81.5 - 51.9 85.0
Red Clover3(m) 36.5 37.8 - 426
Soy Beani(n) 30.1 121 26.4
Soy Bean2(o) 33.6 ' 31.4 - 333

{ Soy Bean3(p) 51.1 42.1 52.9
Soy Bean4(q) 6.9 9.8 11.9
-Soy Bean5(r) ' 91.3 96.9 ~ 89.6
Wheat1(s) 42.9 42.9 42.9.
Wheat2(t) 52.8 88.2 52.8
Wheat3(u) 97.6 99.4 97.6
Bare Soil(x) 94.7 98.8 97.7
Rye(y) - 84.1 - 85.6 84.1 o
Average ' 58.3 53.8 57.7 =J|
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Table 5.9 shows that the single linkage DTC gave slightly better performance than .
the dynamic linkage approach wuth the complete lmkage method somewhat lower
than these ,

- Experiment ‘ 5 23

For a high dimensional data test of the bottom up design approach, ten classes of
FSS which are spatiaily and temporally varymg data were chosen as shown in
Table 5.10. The ten clasges consisied of three summer fallows hetds two
unknowns fields, and five wheat fields. The FS$S contained sixty-one pectfat
bands, however, since there are water absorption regions in the h|gher range, the -
first thirty features of the sixty-one were selected for this experiment.

Table 5. 1'0 FSS Data

: , #Tram ‘#Test  Dim ,
Fallowi(a) | - 40 603 | 30
Fallow2(b) 1 40 374 30
Fallow3(c) - .40 397 30

. ffUnknown1(d) 40 - 642 30
. fUnknown2(e) | 40 611§ 30.
Wheat1(f) 40 618 | 30

| Wheat2(g) I 40 837 | 30 | .
: Wheat3(h) | 40 | 891 30 ||
‘ (i) 40 L 624 | 30 | .
() ' 40 | 747 30 ||

: Several hundred test samples for each class were used to msure a reliable
estimate of performance. To simulate the limited sample situation, forty training
samples for each class were selected.on the basis of evenly spaced separabahty
The locatlon mformatson is given in Table 511, s

" Table 5.11 FSS Class Assi nment |
" Location.. . Class i' :

. 7 Kansas(9-28-76) - b,
~ [[Kansas(5-3-77) d
| Kansas (6-6-77) . coa,
North Dakota(5-8- 77) C
| North Dakota(6-29-77)
North Dakota(8-4-77)
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70

(ab,cd e fghl))
(g,h) (abcdefu)

VNS

j rabeﬁdef!}p}
f (abecded

‘(C,_ ) @ d.)?"':_" ,

Frgure 5 10 ‘Dynamic Lmkage DTC (FSS)

Frgures 5. 8 5 9 and 5.10 show the single: Imkage the complete hnkage and the o
 dynamic. linkage DTC. Table 5.12 shows the classification performance in each
case. As is seen, there was very little difference-in the performance of the three
' desrgn approaches in this experrment

Table'5.12 'Fss Data Resu!t'

Class Smgie Cpmpieie Dynamic
|| Fallow1(a) 1 689 63.5 - 63.7
|| Fallow2(b) - |~ 82.4 826 | 826
Fallow3(c) 66.0 675 | 617
Unknowni(d) |  44.1 - 413 | 439
Unknown2(e). | 69.7 | 71.0 71.7
Wheati(f) ~-59.1 | 565 . | 592
Wheat2(g) 84.0 - 83.5 |  84.0.
Wheat3(h). - | 858 | 853 .. 858
(Wheata) | 487 | 49.4 | 506 |
 fWheats5() | 819 | 88 | 819 |
- JjAverage | 678 | 684 | 685 |
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In assessing the three expenments so far, although there was some difference in
the performance of the three bottom up design procedures, no one method
appears to clearly dominate. In cases where a bottom up approach is called for, -
any of the three m|ght be useful, with a perhaps slight preference for the’ dynamlc

' approach o

53 Top Down and Hybrid DTC

In this sectlon the top down DTC and the hybrld DTC will be compared. In the top._
down approach, a clustering algorithm is applied to separate the subgroups. the
criterion function used for the top down approach is Euclidean distance while the
criterion function for the hybrid approach is the normalized Euclidean distance. In
the hybrid -approach, the tree structure is dependent upon the initial cluster points.
To obtain the |n|t|al points, a bottom up grouping method is used ‘

Ex riment 5.3.1

Eight classes wh|ch are the same in expenment 5 2 1 were selected again and the
same training and test sets were used. To construct the top down tree, the mean
vector and covariance matrix of the combined training data were computed to
obtain initial cluster centers uniformly spaced along the principal diagonal of the
rectangular parallelepiped enclosing that data. After obtaining two subgroups,
clustering is applied to each subgroup again. Figure 5.11 shows the top down
DTC which results. Note here that are three overlapping classes, e, |, and u. '

(b, e, .1, u, %, )

Figure 5.11 Top Down DTC (FLC-1, 8 Class)
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| (bl /el‘jarll bp: ul XJU)

Frgure 5 12 Hybrld DTC (FLC ‘i 8 Class)

| For the hybrld DTC the complete hnkage method is used to obtain the rnmal cluster R

~centers and initial subgroups. Figure 5.12 shows the hybrid DTC. There is one
‘ overlappmg class, e. For feature extraction, extended canonical analysis is applued

in each subspace to ascertain the largest Bhattacharyya distance. The hybrid DTC
i seen to |mprove ‘the classification accuracy as shown in Table 5.13 and 5.14.

Table 5.13 Top Down DTC Result (FLC-1, 8 Class)

Corn 97.1 | 965 | 96.3 | 96.8 | 988 | 98.2 | 985 | 81.8
Oats 972 | 965 | 962 | 954 | 926 | 886 | 875 | 76.7
Clover | 87.0 | 88.9 | 916 | 852 | 833 | 816 | 70.4 | 378
|iBean | 859 | 831 | 721 | 747 | 738 | 747 | 716 | 70.9
Wheat | 99.4 | 99.2 | 99.2 | 99.4 | 99.2 | 99.0 | 98.2 | 98.8
Soil | 9971 99.7 | 99.9 [ 963 | 953 | 955 | 944 | 100
Rye | 940 | 932 | 89.6 | 89.1 | 89.0 { 909 | 915 | 98.6 {

i Avg | 914 | 8985 | 883 883. 86.5 |- 888' -83.6 | 76.8 |

© *the number of features which is used at each node
+ correct classification accuracy(%)

lcass ¢ 2 3 4 5 8 7 12 | -
Alfalfa | 70.6+ | 58.8 | 61.2 | 665 | 59.3 | 668 | 557 | 407 |
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 Table 5.14 Hybrid DTC Result (FLC-1, 8 Class) -

- Class 1 2 3 4 5 6 7 12
Alfalfa | 88.6 76.2 73.0 75.4 68.4 | 63.4 542 | 9.0 |
Corn | 97.0 96.5 96.3 | 96.8 98.8 98.2 | 985 | 81.8 |
Qats 92.0 '96.0 96.2 95.4 93.2 | 89.6 88.0 | 81.7 {
Clover | 88.5 | 91.6 92.8 90.0 89.9 | 89.8 74.2 371

Bean | 859 | 831 | 721 | 747 | 738 | 747 | 716 | 709
Iwheat | 99.4 | 992 | 99.2 | 99.4 | 99.2 | 99.0 | 982 | 988

Soil | 99.7 | 99.7 | 99.9 99.9 99.9 |- 100 100 94.8
Rye | 955 | 935 | 937 | 934 | 933 | 940 | 944 | 932 |
AV __93.3 92.0 90.4 90.6 90_;0 88.6 | 84.9___; 71.0 “
E xperiment 5.3.2

In order to test the top down and hybnd DTC design schemes agamst the case of
large numbers of less separable classes, the twenty three classes, training and test
samples of experiment 5.2.2 are again used. Figure 5.13 shows the top downDTC

- resulting. Note that there are two overlapping classes ¢ and k.

For the hybrid DTC, the complete linkage method was used to obtain the initial
cluster centers and initial subgroups. In the first stage, two subgroups were initially
determined by complete linkage. After the mean vectors and covariance matrices of
the subgroups were obtained, mean vectors became initial center points and
covariance matrices were used to normalize the distance from sample to cluster
ponnt After mergmg and mlgratlng, new subgroups were obtained.



74

ebkmejkltfgsyuxiparhedeno

Figure 5.13 Top Down DTC (FLC-1, 23 Class)

abmkrl'e ]vk Ir‘stuyx’ghlp'q‘rc d‘c ovno e
Figure 5.14 Hyb.ad DTC (FLC 1, 23 C!ass)

Flgure 5.14 shows the hybnd DTC. There are four overlappmg classes ¢, e kand
o. For feature extraction, extended canonical analysis was applied in each
subspace t@ maximize the Bhattacharyya distance. The hybrid DTC reduced the
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error rate by 5, 2 percent with respect to the top down class:fler in this expenment
as shown in Tables 5.15 and 5.16. .

" Table 5.15 Top Down DTC Result (FLC-1, 23 Class)

. Class - 1T 2 12
Alfalfai(a) 31.7+ 25.2 19.1°
Alfalfa2(b) 18.3 22.1 7.1
- Corni(c) 39.3 39.8 22.4
Corn2(d) 66.6 66.6 | 59.2
Corn3(e) 80.4 79.6 62.2
Corné4(f) 0 0 0
Oats1(g) 38.0 | 389 1.1
Qats2(h) 56.5 554 | 35.8
Oats3(i) 37.1 39.5 | 19.7
Oats4(j) 709 | 70.8 729
Red Clover1(k) 82.7 - 81.7 92.8
Red Clover2(l) 84.0 86.2 . - 81.9
Red Clover3(m) 17.3 16.8 17.2
Soy Bean1(n) 0.4 0.8 0
Soy Bean2(0) 39.2 1 40.2 72.8
Soy Bean3(p) 53.3 53.1 55.4
Soy Bean4(q) 8.3 37.8 61.4
Soy Bean5(r) 95.7 89.3 56.0

Wheat1(s) 49.3 49.5 5.9
Wheat2(t) 89.3 87.6 243
Wheat3(u) 81.7 82.1 - 98.0
Bare Soil(x) 100 100 99.9
Rye(y) 82.5 81.4 56.3
_Average 53.2 541 44.4

* the number of features which is used at each node.
~+ correct classification accuracy(%)
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: ,] Table 5 16 Hybrld DTC Resul (FLC 1, 23 Class)

' " Class. g 20 12
| Alfaifat(a) “41.2 350 | 67.9
[ Alfalfa2(b) 355 1 47.1 | 117
Cormi(c) 853 | 857 45.8
Corn2(d) .. 61.8 | 611 66.2.
Corn3(e) 81.9 80.6 | 80.8-
Cornd{i) -0 6 0
Oats1(g) 446 | 444 | 205
i Oats2(h) 745 | 73.8 | 721
Oats3(i) 411 | 430 | 17.9
[ Oats4(i} - 1 696 | 676 65.1
I Red Clover1 (k) 824 | 81.7 | 60.9
Red Clover2(l) 776 | 785 | 79.6 |
Red Clover3(m) | 29.5 | 29.0 32.4
Soy Beani(n) | 20.0 20.3 | 21.8
{|Soy Bean2(o) - | 22.7 | 14.4 | 389"
1| Soy Bean3(p) = 53.0° 52.8 | 525
 Soy Bean4(q) 8.0 40.2 | 58.0
Soy Bean5(r) 95.6 89.1 560
N Wheat1(s) 453 45.3 | 215
“#Wheat2(t) = | 949 1§ 978 - 97.4
NWheat3(u) | 97.6 99.0 | 248
Bare Soil(x) - 100 100 | 94.3
Rye(y) | 824 | 855 | 954 ff
‘ Average | 585 | 59.4 | 523 S

5.4 Bottom Up and Hybrld TC

In the previous sectlon the hybrad DTC was s‘aown to- provrde a greater

classification accuracy than the top down DTC. The hybrrd DTC will next be
compared to the bottom up DTC. Table 5.17 shows that the hybrid DTC reduces the
error rate by 4.7 % over. the complete linkage DTC. Table 5.18 shows that the

“hybrid DTC improves 10. 3 % classification accuracy over the complete DTC and
has the hrghest performance among the methods tested - : '



Table 517 Hybnd and Bottom Up DTC (FLC -1, 23 Class) '
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Complete Dynamlc "

; Class, . Hybrld Single
Alfalfat(a) 41.2 58.1 60.4 440
‘Alfalfa2(b) - 35.5 40.5 45.5 29.5
‘Corni(c) 85.3 57.1 20.3 36.3
Corn2(d) 61.8 76.9 - 66.9 72.8
Corn3(e) 81.9 87.2 59.6 74.0
‘Corn4(f) -0 0 0 0 ‘
Oatsi(g) 44.6 57.8 47.1 53.6
Oats2(h) 745 67.4 716 67.4
Oats3(i) 41.1 - 51.6 4.7 78.0
Oats4(j) 69.6 71.0 70.4 85.3
Red Cloveri(k) - 82.4 69.7 93.8 69.3
Red Clover2(l). 776 | 815 519 | 850
Red Clover3(m) 295 - | 36.5 ' 37.8° 42.6
Soy Bean1i(n) 20.0 --30.1 12.1 - 26.4
Soy Bean2(o) 22.7 33.6 31.4 -33.3°
Soy Bean3(p) 53.0 511 42.1 52.9
Soy Bean4(q) . 8.0 . 6.9 9.8 | 119
‘Soy Bean5(r) 95.6 . 91.3 96.9 -89.6
Wheat1(s) 45.3 42.9 42.9 429
Wheat2(t) . 94.9 52.8 188.2 52.8
Wheat3(u) 97.6 97.6 99.4 97.6
Bare Soil(x) - 100 94.7 -.98.8 97.7
Rye(y) - 82.4 84.1 85.6 84.1
- Average 28.5 58.3 93.8 97.7

Table 5.18 Hybrid and Bottom Up DTC (FLC-1, 8vCI'ass),

Class - Hybnd Complete Single Dynamlc
Alfalta2(b) 88.6 82.0 71.2 91.3
Corn3(e) 97.0 24.9 97.4 96.0
Oats4(j) 92.0 90.4 97.8 97.2
Red Clover2(l) | 885 | 837 845 88.4
Soy Bean3(p) | 85.9 - 86.2 - 85.9 85.4
Wheat3(u) - 99.4 - 99.6 99.2 99.2
Bare Soil(x) 99.7 100 91.6 91.4
Rye(y) ‘ 95.5 - 96.9 94.5 83.6

‘ 93.3 - 83.0 90.3 91.6

~ Average
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'In thls experlment the untransformed feature extractron method lS applred at each .'f |
" ‘node to compare the top down, the bottom up, and the hybnd DTC performance :
o The DTC s as shown |n Frgures 5.6, 5. 13 and 5 ‘l4 are used for thrs expenmem

’ The number of features used for classrfrcatlon was chosen arbstrarlly as three since

- classification results for this data commonly peaks at about three features. The

feature- subsets are selected based on the averaged pairwise Bhattacharyya

- distance. When the best three features are used over all nodes, the hybrid DTC has

| 'Bottomup_ | 58.2 | 97.4 | 98.7 | 78.7 | 85.7 | 99.6 | 82.6 | 52.1 |

. the best performance improvements of classification accuracy of a hybrid DTC is
~ clearly observed, as shown in Table 5:19 and 5.20. 1t is noted that the classification

~accuracy of the hybrid DTC is about 5 % higher in- elght classes and 9 % hagher in o

[_twenty three classes than the bottom up DTC

Table 519 Untransformed Best Three Feature Result (8 Class)

Top down | 58.0 | 98.0 [ 66.0 | 764 [ 856 [ 996 [ 090 T 966

[Aybrid | 66.4 | 98.2 | 66.0 | 81.0 | 85.6 | 99.6 | 99.9 | 985 | ,‘ :

Table 5 20 Untransformed Best Three Feature Result (23 Czlass)

T 3.2 734ﬂ
5518181
189 4ei]

. Class ab c d e
o Top down | 26.0] 225 | 52 ] 64.0 | 89.3|

““IBottomup | 35.1.| .32.8 | 72.7 | 44.0 | 85.7
Hybnd 13941408 ] 776 | 76.6 | 89.7

e ClaSS' b j ko 1 m . n. o p-h-
[ Topdown 1378577 [97.0 | 7771 239 87 [ 7.4 [ 5591

N

l Class q o r s
- ftopdown [ 403 75.4 [

- | bottomup | 11.6 | 42.6 | ¢ 96.1 | 92.3 |

o ‘;H’hybridg.{:{; 1347 »_!,74*.'Q‘ zo.of-:__‘7,7§___ 98.4 1 100 |

Bottom Up 202 | 59.7 | 51.5 | 64.9 | 240 ] 7.0 | 23.7 | 49.6] @
Hybnd [ 27.0 [ 904 [ 763 | 750 [ 37. 780 17455981
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5.5 DTC and Single Layer Classifier

As demonstrated in section 5 4, the hybrid DTC has the best performance among
the methods tested. The following experiment is conducted mainly for the purpose
of observmg the dimensionality problem in multispectral recognition and
comparing the DTC to the single layer classifier.

E‘xgerirnent 5.5.1

The same eight classes, training and test as in expenment 5.2.1 and the twenty~
three classes, training and test as in experiment 5.2.2 were selected again. Two
feature selection methods were used. The first feature selection method, called
untransformed feature selection, used the pairwise comparison of Bhattacharyya
distance. The second feature selection technique, called transformed feature
selection used the canonical transform method. In the untransformed feature
selection case, the etror rate of the complete feature set was always higher than
the best result which was obtained by using subsets of twelve features as shown in
Figures 5.15 and 5.16. The best performance was achieved at between three and
six features. - t -
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Flgure 5. 15 Untransformed Feature Selectlon Result (8 Class)

The hybrid DTC was compared to the single layer classn‘ler |n Flgures 5. 15 and

5.18. In Figure 5.15, the untransformed feature selection technique was applied

and 8 classes of FLC-1 data were used. The result shows that the DTC has better
performance at small feature subsets. There are fluctuations above 6 features due

- to variations of the sample mean and sample covariance which are random

‘variables. In Figure 5.16, the untransformed feature selection technique was

applied and 23 classes of FLC-1 data were used. Flgure 5.16 shows that the DTC‘ v

had best classmcation results at elght features
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Figufe 5.16 Untransformed Feature Selection Result (23 Class)v"

The transformed feature selection technique waé applied to the 8 classes and 23
classes cases of FLC-1 data. Figures 5.17 and 5.18 show the results. These two
figures show that the DTC had better performance than the single layer classifier.
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‘Figuré 5.18 Transformed Feature Selection Result (23 Class)

5.6 DTC for Multisource Data

ThefD'TC. can be also applied to multisource, multitype data. In this 'sectiori, aDTC
application to such data will be described. The Anderson River data was the
multisource, multitype data as described in section 5.1.



Table 5.21 Multlsource Anderson Rtver Data St

R Classes ~ #lran____ V#Test, B fD——m

oo T e T o T 22|
- ID-F -+ Lodgepole. Ptne(f) 30 | 98393 | . -
- |D-F+Cedar(). | 30 | 2865 | 2
~ lHemlock + Cedar(l). {30 .| 3143 | .

| D-F+ Other Species(q) | 30;:- ":':1279'-

_Forest Cleanns(t L

'frdtttqogf{

St @Rt

" Figure 5.19 Hybrid DTC (Multisource)

Expenment 5 6 1

-SIX classes of Anderson aner data were selected as shown in Table 5 21 In the

. first stage, two. subgroups for each source, A/B MSS, Steep SAR; Shallow SAR, L

. DEM, DSM, and ‘DAM, were obtained by complete: linkage.- Two subgroups; S
~ . provided the.initial mformatron which determined two initial cluster centers. After

" applying the normalized clustermg algorithm for the ‘top down' approach the better_‘ -

.~ source was selected by comparing the evaluation:function which was defined in -~~~

* equation (2.5). Figure 5.19 shows the hybrid DTC resulting for multisource data..
- MSS was selected as the best source in the first stage There 'is one node which

has two subgroups ‘One subgroup consists of b, f, i, 1,q. Another ‘subgroup is t. tn,j-,:'

_the second stage DEM was the best source In the thll’d stage MSS was the best»:’_ |
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source for the left node and DEM was best for the right node. In the fourth stage,
MSS was selected for left node and DSM for right node. The DTC reduces the error
rate by 7.5 % over the single layer classifier when using A/B MSS, as tabulated in

Table 522

- Table 5.22 Multisource Data Result

Shallow SAR |

Class.

I A/BMSS”™ Steep SAR™
ﬁsDougIas -Fir , 59.6 75.9 1 443
D-F + Logepole Pine 37.9 26.9 : 11.6
D-F + Cedar 431 18.9 20.1
Hemlock + Cedar 67.9 51.6 : 34.5
D-F + Other Species 0.1 . 74.6 1 15.3
Forest Clearings - 5.1 67.7 241
Average - 57.0 52.6 25.0
Class’ ~DAM' - DEM'  DSM’
Douglas -Fir 123 | 444 0
| D-F + Logepole Pine - 120 | 43.7 25.8
1 D-F + Cedar : 82.1 -0 o .
Hemlock + Cedar 1. 0 85.4 91.7
D-F + Other Species - 29.0 95.9 | 43.2
Forest Clearings 0.5 . 22.2 17.4 - | 2.3 |
- . Average. 226 | 486 | 297 | 645 - |

“* The single layer classifier is applied. |

5.7 Strategy for Feature Selection

-Prevuously in Chapter 3, we mtroduced extended canonical analysus and

~ autocorrelation analysis as feature extraction methods and derived the risk function

of the classification accuracy in Chapter 4. When the number of training samples
are small, to minimize the risk function with a constraint to maximize the
Bhattacharyya distance, the dimensionality must be reduced while maximizing the -
Bhattacharyya distance. Equation (4.48) showed that the best one feature in the
transformed coordinate should give the best results in a situation which has only
small numbers of training samples. We note that the above statements are
analytically probable only for two classes. In the following experiments,” we will
demonstrate that the best one feature which has the maX|mum separab:hty'
-nroduces the best performance. ,
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X rlm nt5.7.1
FLC-1. data which was used in Experrment 5.2.1 was used agaln in thrs expenment
- In transformed coordinates, the best single feature was extracted by canonical
4 ,analysrs since the mean difference between classes was dominant. Next features
in a transformed subspace were extracted by extended canonical analysrs or .
~ autocorrelation analysis because the mean difference became smaller in a
Subepace Therefore, added features are obtained from the extended canonical

“analysis and autocorrelation analysis. In this experiment, the best smgle feature‘
‘vproduces the best result here as shown in Table 5 23 and 5. 24 T : .

Table 5.23 Extended Canonical Result FLC- PIA,

| Class .. 1" 2 . 3v : g4 5 6 T :
Alfalfa | 88.6+ | 76.2 | 73.0 | 754 | 68.4 | 63.4 | 542 | 90 j| '
Corn | 970 | 965 | 963 | 96.8 | 988 | 98.2 | 985 | 818 |
lOats | 92.0 | 960 | 96.2 | 954 | 932 | 89.6 | 88.0 | 817
- |Clover | 885 | 916 | 92.8 | 90.0 | 89.9 | 89.8 | 742 | 837.1
liBean | 859 | 831 | 721. | 747 | 73.8 | 747 | 716 | 709
Wheat | 99.4 | 992 | 99.2 | 99.4 | 99.2 | 99.0 | 98.2.| 98.8"
|iSoil - | 99.7 | 997 | 99.9 | 99.9 | 99.9 | 100 | 100 |- 94.8
‘Rye | -955 ! 935 | 93.7 | 934 | 933 | 940 | 944 | 932
_Avg ] 933 ,_92-0]: 904 | 906 | 900 | ._88 6 | 849 | 71.0

s the number of features whrch is used at eaoh node
L correct classrflcatlon accuracy(%) -

| Ta_,ble 5.24. Canonical-Autocorrelation Result (FLC-1) \

6T 12 ii B

2 _
3 | 255 | 283 | -

80.0 |
956 |

| ‘ Class :
[ Alfalfa
fCorn |

R o)
88.6 6 3 | 35 5.5

lc | 97.0 - |1 9 5970 | 97.8 | 965 | 8

{Oats | 92.0 | 859 | 8 8 | 741 | 717 | 706 -

~fiClover | 885 | 866 | 88.5 | 86.8 | 857 | 834 | 824 | 37.

iBean | 859 | 736 | 616 | 70.1° | 73.2 | 654 | 622 | 70.

"Wheat*99.4 99.8 | 99.4 | 99.6 | 99.6 | 996 | 99.6 | 9¢

Soil. - | 99.7 | 100 | 100 | 99.9 | 99.9 | 99.9 | 99.9 | 94.
Rye 955 | 96.9 | 90.4 | 986 | 987 | 96.9 | 984 | 93
il Avg 93.3 | 898 | 86.8 [ 833 | 829 | 80.0 | 79.7 |

i
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Exp rimen 572

;,For a. hlgh dlmensmnal data test, ten classes of FSS data, the:. same as in
-experiment 5.2.3, were selected again, and the same training and test sets were -
used. The best single feature was extracted by canonical anaIysrs since the mean
difference between classes was also dominant. Next features in a subspace were
“extracted by. extended canonical analysis. The smallest error. rate was obtamed
h usmg the best snngle feature as shown in Table 5 25 ' : .

Table 5.25 Extended Canonlcal Result (FSS)

'“‘fcr'é‘és’ ' t’ o2 3 4 5 10 20 30 II
“a | 635+ | 592 | 574 | 57.1 | 56.4 | 579 | 473 | 249

| 826 | 834 | 834 | 821 | 818 | 824 | 679 | 36.1
675 | 685 | 685 | 683 | 71.3 | 587 | 577 | 69.0
413 | 441 | 446 | 481 | 452 | 442 | 498 | 59.2
710 | 692 | 689 | 66.6 | 665 | 589 | 558 [ 36.0

565 | 56.8 | 56.8 | 542 | 57.0 | 61.2 | 59.9 | 76.1
835 | 834 | 826 | 835 | 81.8 | 815 | 79.1 | 882
853 | 847 | 847 | 840 | 828 | 76.5 | 66.6 | 595

| 49.4 | 50.8 | 500 | 48.7 | 50.8 | 505 | 47.1 | 354

| 838 | 837 | 83.9 | 833 | 81.8 | 744 | 675 | 81.1

68.4 | 684 | 681 | 676 | 675 | 646 | 599 | 5656 |

TQ = ® 0_00' )

<\_. ——

1=l

the number of features Wthh is used at each node
~+ correct classification accuracy(%) '

As a result the hybrld DTC has better classnfrcatron accuracy than the maxnmum ,
_likelihood Gaussian classifier and the other DTC's when the best srngle feature is
used at each node in the I|m|ted tralnmg sample situation. '
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CHAPTER 6. CONCLUSIONS

The fundamental objectlve of this research was to develop a desrgn procedure for
the DTC.in-a high dimensional data, large number of classes, limited training set
size environment. We have defined the following three methods: top down design,
- bottom up- deslgn and hybrid design. These methods are more simple and
~ effective than previous design methods. Three kinds of bottom up design methods

were described: single llnkage ‘complete linkage, and dynamic linkage. In.cases
where a bottom up approach is called for, any of the three might be useful, with a
perhaps slight preference for the dynamic approach. Although ali three approaches
were -studied, the -hybrid classifier was shown by empirical test to have the best
performance; this was expected because it reconciles a property: of data (classes ‘

belng separable) and a property of the: appllcatlon (classes lnformatlonal value)

- The mathematlcal relatlonshlp between sample size, dlmen3lonallty, and nsk value
“was derived. The incremental error was shown to be simultaneously affected by
two factors, dimensionality and separability. For predicting the optimal number of -
features, we conclude that the optimal number of features in transformed

coordinates is just-one when only small numbers of samples are available. We =

have demonstrated that the best result is obtained when we use just one feature
experimentally. Empirically, it was shown that a reasonable sample size is six to
“ten times the dimensionality if the dlmenSlonallty and separability srmultaneously
mcrease :

In the case of more than two classes the ambiguity with respect to the optlmal
number of features is wider and unpredictable. A binary hierarchical classifier may
solve the above drawbacks. Because only two groups are classified at each node
in a binary hierarchical classifier, a minimum error rate can be obtained when the
best single feature is used in transformed coordinates. Therefore, an overall
- minimum error rate of a hierarchical classifier is obtained by minimizing the error
rate at each node. We are able to predict the optimum number of features and
obtain the mlnlmum error rate when we use a binary hierarchical classrfler ‘
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Appé,n:dix.~A 'S.um'-of,Squar_ed_Err.,vor'Clus_terin:.g”P-’re{‘gr’,ém B

" #include <stdio.h>

#inc‘lude <n"iath h>

o Cluster - Multrspectral lmage Clustenng Program
‘Euclidean distance measure is used.

* Specﬁy NP,MXCH,num_chan (MXCH = num chan)

Use for BIL format

- , 7 , -
. #deflne NL - : 180 r# of lines */ :
#defineNP .o U | -I* # of pixels per line '/
#define MXCH © - 100" ;= /% maximum number of cha_nnels .

"-#idefine MAXCENTERS 2 - /* maximum numbet of cluster centers */
~ #define ELF. - - elseif .= e ' '
#deﬁne : ch('n) (float)((n)&0377)

struct center{ o D
’ ‘ B float orrgm[MXCH] .. /* current cluster origin */

. float mean[MXCH];. - /" accumulated mean '
+ float sumsq[MXCH] © /*sum of squares */ B -
i float count ’ o /" number points. currently in this cluster L
struct ‘center centers[MAXCENTERS]
int first_pass; o r flag to indicate first pass */-
JintHf1 =0, . . * trace cluster main loop flag */
inttl2 =0;...° -~ o ~ - I"trace clasify */
~int#3 - =0; . el e S Mtrace IO Y
int vilag = 0; S /* verbose flag */
- int num_centers;-. _ " /* number of cluster centers this run */.
int-num chan 100; -~ /* number of channels this run */
long int num_diff; : " . /* number of changes this pass */
int min_changes; - . ~.-" .. /* minimum number of changes for completion */
int num_passes; ' /* number of passes until clusters converge */
int-clneed = 0; /* number of clusters to be created */
Lint . input = _ / input file descriptor */
_int output_ “... o " output file descriptor */
~int sfd = 0; ~.-1* stat file fd */
FILE 'fopen() *fp, o " mutrahze fp=0, cluster center file '/
;long int 10; , j B /* starting time '/ :
long intt1; - R . /* time of start of current iteration */
long mt 2, - /* tlme of end of current iteration ™/
/" : .

maln - supervusory control program

marn(argc argp)
char argp, o

min changes =0;
parse(argc argp)

i(fp) :
K : clrmt(clneed)
v trme(&tO)



L ;to; L
Lo print stats(), - - ’ A . TS R
' ._LeX|t(0) L - : R

N 'reglsterl SR

. ,_reglster float 'fp1 *fp2 »-
o float. getpt() Ny
Coint '

flrst__pass-1
S num_passes 0;

DR A
* . -min_changes *= NL*NP/1 00
M
»'..."gnum diff = NL*NP
- do{

|f(tf1)
: ’ pnnt stats()
mm changes num_ dlff
num_diff =0;
: rewmd flles() )
- fot(i=0; i<num _centérs; |++){
o centersli].count = 0.0;
' fp1 = centers|i]. mean;
.fp2 = centers|i}.sumsq;
fOI’(] =0; j<num_chan; j++) -
SN "fp1++-*fp2++ 00

3o :
L whlle((fp1 = getpt(mput)) '—‘ 0)
S clasify(fp1);:
" compute new cluster centers: */
‘ for( _0 i<num_centers; i++){ -
“fpl = centers[l] mean,
' for(j_o j<num_chan; j++)
: |f(centers[|] count 1= 0) .
- AU *fp1++ /= centers[I] count;w :
-l -ejl‘se« . -
SRR Lo "fp1++-"fp2++ -00
fp1 —centers[l] origin; - o
- fp2 = centers[i].mean;
;-_,'for(j_o jenum_chan; ]++)
EERTRRR (3 PR fp2++
,fp1 = centers[x] sumsq,
Lo fp2 centersfil.mean; -
n= centers[l] count; -
*for(J =0; j<num chan; j++){

(n>1) -  _
R "fp1 -(*fp1/(n 1)) (n/(n 1)) (*fp2'*fp2
else L :
o e _001 o ‘
o Apleai :
S 2+

fifst;PaSSJ“F 0 .
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- hum_passes++; - -

- oflush();
: }whlle(num d|ff<m|n changes),
e
}whlle(num d|ff> min_changes);
*/
|f(vflag) :
_ fpnntf(stderr "clustenng complete\n")
i S .
/i B

cIa5|fy -- clasify a point and update cluster
. ‘ " center mformatlon
"/ ' v

clasify(pt)
floét’./'pt"
{ e
S reglster float 'fp1 'fp2
"register int-i;
float dist1, dlst2 dlst()
int mdex

mdex 0
fp2=pt; -
dlst2 dlst(centers[o] ongm fp2)
~for(i= 1 i<num_centers; i++){ -
- dist1 = dist(centersli].origin, fp2)
if(dist1 < dist2) {
. dist2 = dist1; -
' index = i;» '

}

centers[lndex] count = centers[lndex] count + 1.0;
/ﬁ
* add this pomt to current mean
Y
fpl1 = centers[lndex] mean;
for(l-o i<num_chan; i++)
S *fp1++ +="{p2++;
/'
* accumulate sum of squares
-
fp1 = centers[lndex] sumsq;
fp2 = pt;
- for(i=0; i<num:_chan; |++){
! tfp1 ++ +__ *fp2 * afpz
, ’ ’fp2++,
v if(tf2){ ‘
. printf("\nCenter %5d (%8.1f):\t\t", |ndex+1 centers[lndex] count)
printl("%6.11\t", num_chan, pt); C
printf("\nnew mean: \t\t\t")
printl("%8.2\t", num_chan, centers[mdex] mean)
prlntf("\n")

}
putpt(index);
/w . - . B
ge?tpt --geta multlspectral input point, and convert ..
it to a floatlng point vector
*/

char ibuf[MXCH][NP];-



96

char .- *ibp[MXCH] = ibuf[MXCH]; -
int nib=0; '

* float 'geipt(fd)» ‘

char buf[MXCH};

" static float fouf{MXCH];
register char *p;.
register float *ip; .-
register int i;

. fp = fbuf;
if(nib <= 0)f
~. for(i=0; i<num_chan; i++}{
if((nib = read(fd, lbUf[I] NP)) <= ){_ B
. - if(t3)
v pnntf("EOF on mput\n")
retum(O)

. §bp[i] = ibuf[i};

for(i=0; i<num_chan; i++){ -
*fp++ = c2f(*ibp[il++);

g

~nib--;

if(t3){ -

. - printf("\nINPUT M\t");
printl("%8. Of" num_chan, fbuf),
prlntf("\n")

return(fbuf) '

}
* putpt -- output a clasified point
t/ ‘ .

char obuf[NP];
char - “obp = obuf;
int nob = 0;

putpt(n)
{

"if(first _pass || *obp != n{
: num_diff++;

}
_if(tf3) ‘
. pnntf("OUTPUT \t%5d (%d)\n", n, *obp);
*obp++ =n;
|f(++nob >= NP){

wnte(output obuf nob);

|f(!f|rst _pass){

‘ nob = read(output obuf, NP);
Iseek(output; (long)(-nob), 1);
nob = 0;
obp = obuf;

»
oflush() .
{ -
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if(nob) :
=0 write(output, obuf, nob);

}

AR
* dist -- compute distance between 2 points

float dist(fp1, fp2)
char *fp1, *fp2;
{

register float p1 'p2
register int i;
float sum, term; -

p1 = (float*)fp1;
o p2= (ﬂoat‘)fp2
osum=0; - B
.for(l—O i<num_ chan i++){
term —,fabs( pl++.-*p2++);
term *=term;
sum.+=term;

return(sum);. -

b
clin_it(nc)

register i; -

register float ‘fp1 ‘fp2
float *pt, n;

intj;

™o .

* clear everything:

*/

rewind flles()

n=00; :

fp1 = cénters[0].mean;

fp2 = centers[0].sumsq;

for(j=0; j<num_chan; j++)
*fpl++ = *{p2++ = 0.0;

/t
* now, accumulate mean &st. dev. for entlre pix:
*/
: whlle((pt = getpt(input)) != 0){
n+=1.0;
/i
* add thts pomt to current' mean
*/
fp1 = centers[0].mean;
fp2 = pt; -

for(i=0; i<num; “chan; i++)
"fp1++ += ‘fp2++

/* : .
. * accumulate sum of squares:
*/
fp1 = centers[O] sumsq;
. fp2 =pt;

for(i=0; i<num_chan; i++){
: *fpl++ +=*fp2 * *ip2;
fp2++;
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}
'_ lf(n <2. 0){
' v pnntf("lnput fnle |s empty\n")
o ex1t(4)
. ‘- _/,.' v

% now convert sum and sumsq to mean and st. dev
‘/ .
fpl = centers[O] mean;
for(i=0; i<num_ chan; |++)
: o1+ /= n;
: 'fp1 centers[O] sumsq; -
< {p2 = centers[0].mean;.
‘for(j 0; j<num_chan; j++){ = e
' ' ‘fp1 = sqrt((*fp1/(n 1)) (n/(n 1)) (‘fp2 * "fp2)),._ RS
Apt+; C
fp2++, ' :

/. . .
- now compute each of the new cluster centers
fp1 = centers[O] mean;
~ 1p2 = centers[0].sumsgq;.

' '*for(J~0 jene; ) ’ ‘
- -for(i=0; i<num_ chan |++){ =
T centers[j] ongln[l] = fp1[|] +fp2[|] .
v (- (nc/2 0))/(2 (nc %

|f(vf|ag) e
K fpnntf(stderr "cluster mmallzatlon complete\n") -
‘* parse - parse input arguments

_int errors;”

" parse(argc, argp) .

“errors = 0;

o |f(argc = 1){
‘ help().
BolE

T ;-7__ y
while(--argc > 0){
’ agp+d; - o R
.lf('strncmp( argp, "|f_" ,3)) ’
: o mput_open( argp+3, 0);:
" "ELF (Istrnemp(*argp, "ofa" SN[ ¢ - SR
: output = creat(* argp+3 0644) L
“close(output); . L
.- ...~ output = open(‘argp+3, 2),
L }ELF (lstrncmp( argp, "cf=",3)){
Lo ip = fopen(*argp#3, ™),
- }ELF (Istrncmp(*argp, "sf="3)){ -
.. 'sid = open(*argp+3; 0);
' _} ELF (Istrncmp(*argp; "nc="3)}{
-1 num_centers = atoi(*argp + 3);-
. clneed : num_ centers '



.99

} ELF (Istrncmp(*argp, "pc=",3)} |
. min_changes = atoi(*argp +3);
'} ELF (Istrncmp(*argp, "-v",2))

. vilag++;
ELF (lstrncmp(*argp, "t1" 3))"
) B ( E
- ELF (Istrncmp(* argp, "-t2",3))
T H2++;
- ELF (Istrncmp(*argp, "-t3" 3))
e tf3++, .
else {
T errors++;.

‘printf("bad optnon %s\n" 'argp)

need(input, "input”, "if");
".need(output, "output" rof");
if(lclneed){ '
prlntf("\"nc- A" (number of centers to create)\n");
errors++; v

if(efrdrs) i
exit(1);
setup_files(); -

" help()

- printf("Summary of cluster parameters:\n\n");
printf("if=,.. - input data file\n"); ’
prlntf("of..... _output results file\n");

printf("cf=... initial cluster center file\n");
printf("sf=... - output statistics file\n");
printf("pc=.. percent change desired(0-100) \n") ;
printi("nc=nnn  number of centers to create\n");

B _printf("option t1 -12 13 -v\n");

I o g

/*. . ) ‘ :

* need -- see if a needed file is present

t/ . R . . )
need(fd, fn, fi)

char *fn, *fi;

if(fd == 0){ :
, printf("required %s file- (%s=.. )mlssmg\n fn fi);
. errors++;
} .
}
"

* -setup_files - read in once-only files & get ready to cluster
* . . B .

setup_files()
int i,j;
/" output file */
Lo S o
for(i=0; i<num_centers; i++)

- for(j=0; j<num_chan; j++) -
fscanf(tp, "%f", &centersli].origin[j]);



100

b
/* ; v v .
* rewind_files -- rewind 1/O files, and prepare for anotherpass -
* T S Tl

}ewind_files() :

" Iseek(input, OL, 0);
Iseek(output, OL, 0); -
" if(Mfirst_pass)
nob = read(output obuf, NP)
Iseek{output, OL 0);

N

nob = 0;
obp = obuf; .
b :
} B
* print_stats -- output summary of clustering run
t/ . :
print_stats()
' reglsterl
_ reglster float *fp1, "fp2
~intj;
time(&t2);

prmtf("\tNumber of passes = %d", num _passes) ‘
pnnh‘( \n\tNumber of changes = %d\n\telapsed time = %Id ",
o num_diff,- t2-t1); - ,

pnntf("%ld\n" 12-10);

for(i=0; i<num_centers; i++){ '
pnntf("\n\n\tCenter %d, (%5.1f pomts) An", 41, centers[l] count), o
printf(*tOrigin:\t\t"); o
printl("%8.2f\t", num_chan, centers[l] origin);

~printf("\n\tVariance: - ");
printl("%6.2f\t", num_chan, centersi]. sumsq)
printf("\n"); .
}
e =12

}
printl(f, n, afp)
char *f;
intn; - .- .
float *afp;

{ ,
g register:int'i;
register float *fp;
fp = afp; ’

for(i=0; i<n; i++) :
» printf(f, *{p++);
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Apperrd‘i'x’_ B . Normalized SSE C'lvu?stejri‘ng' Pr’o_gram

. #include <stdio.hs

#include <math hs-
/t o

ot Cluster ---Multispectral Image Clusterlng Program

-Normalized Euclidean Distance Measure is used;
" Specify NP,MXCH, um_ _chan. (NL is for min_chan)
. Use far BIL format. '

v
#define NP S 1 M #of pixels per line */
"#define. MXCH L .* maximum number of channels */

_#deﬂne MAXCENTERS 10/ maximum number of cluster cv’e‘h‘t,ers"'/ ’

: #defme ELF else if

#deflne c2f(n) (float)((n)&0377)

’ _'struct center {

. float orlgln[MXCH] “" P currentcluster origin */

- float mean[MXCH]J; © /" accumulated mean */
float’ sumSQ[MXCH]' N sum of squares oo
g float det; L
- float cov[MXCH][MXCH]
- float invf]MXCH][MXCH]; , — AR ‘ SRR
float count;: .- /*‘number points currently in this cluster */.

s'tont ce’nter centersy]MAXCENTERS]; )

int flrsl _pass; " /* tlag to indicate first pass */

“inttft =0; - I* trace cluster main loop flag */
inttf2 =0; © /* trace clasify */
intt3 =0;.- - /" trace /O */
intvilag=0; .° : /* verbose flag */
int num_centers; ' /* number of cluster centers this run */
int num_chan=11; - - I* number of channels this run */
long int num_diff; .. /" number of changes this pass */ ;
int min_changes; S - .. /" minimum number of changes for completron */
int num_passes; A number of passes until clusters converge */. :
int cIneed 0 - /" number of clusters to be created */ :
int" mput 0 ' _ /* input file descriptor */
int output=0; _ /* output file descriptor */
dnt - sfd=0; . . /* stat file fd */

FILE *fopen(),*mea,*co; /* initialize fp=0, cluster center file */

* float d1,d2 fac[MXCH][MXCH]

longiintto; - © " starting time /.

“longinttt; - . . .. . /" time of start of current iteration */
long int t2 . © . [ time of end of current iteration */ -
/* - B ' . S

maln - Supeleory Control program
l/vv ’ .

main(argc, argp)



: char “'argp,

mm changes 0 v
‘parse(argc argp)

L :,’|f(lmea) -
B clinlt(clneed) o
-~ time{&t0); . S
STPTE & (P s LI
~ . clump();
. " print_stats();
e exit(0);
. clump -- main clustering loop-
- cium'p() \
o reglsterl

.- - register float *fp1 'fp2 'fp3 T
. float ! getpt() ;oo S
B |nt]k G

. first _pass-"l
- 'num_passes = 0 e
onum_ dlff = 1000"1000
do{
|f(tf1) :
pnnt stats() : .
-min, changes num dlff o
num_diff:= 0; .
- rewind flles(), S
s for(|==0 j<num_ centers |++){
. -"centers[i].count = 0.0}’
* fp1 = centers[i].mean; -
ip2= centers[l] sumsq; -
- for(j=0; jnum_chan; j++){.
, fp1++- “fp2++'= 0.0; .
- +for(k=0; k<num_chan; k+‘+~) :
- o centers[i].cov[j][k] =0

: ‘whlle((fp1 = getpt(lnput)) I= 0)
s clasxfy(fp1) '

o compute new cluster centers:' "/‘,
+ for(i=0;.i<num_centers; i++){ -
Cofpls centers[l] mean;
: for(j—O j<num_chan; ]++){
- if(centers[i].count 1= 0)-:
L "fp1++ I= centers[;] count

fp1 'centers[a] ongm
fp2 = centers[|] mean; - -
for(J =0; j<num_chan; j+)
'fp1++- "fp2++; .
:n centers[l] count;
-‘7for(j~0 1<num chan ]++){
(> 1) o
centers[u] sumsq[j] centers[|] sumsq[jl/(n- 1)
(n/(n 1))* centers[n] mean[j]*centers[r] mean[j]
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else ‘
centers[i}.sumsq[j] = 0.01;
for(k=0; k<nurm_chan; k++){
f(n> 1)
centers[i].cov[jl[k]=centers][i]. cov[J][k]/(n 1) = (n/(n- 1)) *
centersli]: mean[j] centers[il.meanlk];
else . :
centerslil.cov[j]lk]= 001

Ifids_(&num_chan,centers[i].cov,&num_chan,fac,&num_chan);
lidds_(&num_chan,fac,&num_chan,&d1,&d2);
centers[i].det=d1*pow(10.0,d2);;
linds_(&num_chan,centersfi].cov ,&num_chan,centers]i}.inv,
&num. chany;

first.pass = O;

- nUM_passes+t+,

/Q

oflush();v

-’} while(num_diff > min_changes);

*/

}
/'

*

}whlle(num diff < min. changes)
|f(vflag) : ' ‘ » o :
_ fprintf(stde_rr, "clustering complete\n");

cIasnfy -- clasify a point and update cluster
center information

*

cl

asify(pt)

float *pt;

{

register float *fp1, *fp2,*fp3;
register int i,jik;

float dist1, dist2, dlst()

int index;

index = 0;"
fp2 = pt;
dist? = dist(centers[0]. origin,centers[0].inv,
centers[0].det,{p2);
for(i=1; i<num_centers; i++){
distl = dlst(centers[l] origin, centers[l] inv,
' centers[i].det,fp2);
lf(dlst1 < dnst2) {
' dist2 = distt;
index = i;

}

centers[lndex] count = centers[index].count: + 1.0;
/i 3

* add this point to current mean
N A
o1 = centers[index].mean;
for(i=0; i<num_chan; i++)

“tpl++ +="1p2++;

™ )
* accumulate sum of squares:
*

/
fp1 = centers[index].sumsq;
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fp2 = pt;
for(i=0; i<num_chan; i++){
*fpl++ += *(fp2+i) * *(fp2+i);
for(j=0; jenum_chan; j++)
centers[index].cov[i][i] += *(fp2+i) * *(fp2+j);

1}

if (tf2){ v ' : : ' O
printf("\nCenter %5d (%6.1f):\t\t", index+1, centers[index].count);
printl("%6.17\t", num_chan, pt);
printf("\nnew: mean:\t\t\t"); ‘
printi("%8.21\t", num_chan, centersfindex].mean);

. printf("\n");
)
putpt(index);

v/ﬁ .
getpt - get a multispectral input point, and convert
it to a floating point vector

"/

char |buf[MXCH][NP]
char *ibp[MXCH] = lbUf[MXCH]
int nib =0; -

float *getpt(fd)

char buf[MXCH]

static float fouf{MXCH];
register char-*p; ,
register float *fp;
register int i;

fp = fouf;
if(nib <= 0){"
for(l =0; i<num_chan; i++){
|f((n|b = read(fd, |buf[|] NP )<._ 0){
lf(tf3)
, pnntf(“EOF on mput\n"),
return(O)

ibp[i] = ibuf[i];
1
for( 0 i<num -_chan; i++){
o4+ = 02f( ibp[i]++);

b
7 nib--;
if (tf3){
printf("\nINPUT At\");
printl("%8.0f", num_chan, fbuf);
printf("\n");
return(fouf);
}
[

* putpt - output a clasified point

char  Obuf[NP;
“char _'obp =_obuf; :
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int ‘ ‘nob =_-6;

E)utpt(n)

rf(flrst_pass || *obp !=n){
<L num_diff++;

).
if(tf3)
prlntf("OUTPUT \t%Sd (%d)\n", n, *obp);
“tobp+t+ =n;
if(++nob >= NP){
i write(output, obuf, nob)
if(Mirst_pass){ ’
. nob = read(output, obuf, NP)
o R Iseek(output (long)(- nob) 1),
S nob 0;
... obp = obuf;
} “
oflush()
if(nob) .
. . . write(output, obuf, nob);
s

. *dist-- cOmpute diétance between 2 points

*

float dist(fp1,ip2,ip3,{p4)
float *fp1,fp2[MXCHIMXCH),ip3,fp4;
{ .

register float *p1,"p4;
register int i,j,k;
float sum, term1[MXCH],term2[MXCH];

p1 —fp1
p4 = fp4;
sum = 0;
- for(i=0; i<num_chan; |++){
term1[|] fabs( (p1+i) - *(p4+i));

“for(i=0; i<hnum_chan; i++){
“term2[i] = 0.0;
for(j=0; jenum_chan; j++){
term2[i} += term1[j] * tp2[illj];

sum += term1[i]"term2[i};

sum += log(fp3);
return(sumj;

“clinit{nc)
[
b * register i;
register ﬂoat *ip1, *fp2;

. float *pt, n;
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int j;

/,'
clear everythlng -
Y , .

o rewind flles()

n=0.0; " : :
fpl = centers[o] mean;
fp2 = centers[0].sumsq;
" for(j=0; j<num_chan; j++)
' "fp1++ = ‘fp2++ 0. 0;
/'!
* now, accumutate mean & st. dev for entire pix:
*/
.whlle((pt=getpt(|nput) l= 0){
p n+=1.0;
/.
* add this point to current mean
¥
ipt = centers[o] mean
- fp2 = pt;
for(i=0; i<num_chan; 1++)
) ‘fp1++ +="1p2++;

IR A o
* accumulate sum of squares:
i
fp1 = centers[o] sumsq;
fp2=pt; -

"for(l 0; l<nUm ~chan; i++){
ple+ +=*p2 * *ip2;

P24+
}
if(n < 2. 0){
- pfinti(“input flle is empty\n"); *
- exit(4);
2 o

* now convert sum and sumsq to mean and st. dev.:
fp1 = centers[0].mean;
for(i=0; i<num_chan; i++).. .-

“fpt++ /= n;
1p1 = centers[0).sumsg;
fp2 = centers[0}.mean;
for(j =0; jenum_chan; 1++){ .
“fp1 = sqrt((*fp1/(n-1)) - (n/(n- 1)) (*fp2* 'fPZ)); ‘
fp1++, .
fp2++,

/" e

. *now compute each of the new cluster centers:
M v

fpt = centers[O] mean;

1p2.= centers[0]. sumisq;

- for(J =0; j=nc; j++){ :

. for(i=0;.i<num_ chan; i++){ -
‘ centers[]] ongm[l] = fp1[|] + fp2[|] *

((J (nc/2.0))/(2*(nc-1))); -

b
|f(vflag) ‘ ’
fpnntf(stderr "cluster |n|t|ahzatlon complete\n") ‘



}
/*

Wi

int. errors; -

parse(argc argp)

~ char*

help()
{ :
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* parse -- parse input arguments
* o . - .

*argp;
errors = 0
lf(argc == 1){~

help()
" exit();

-Lhile(--aréd > o)

argp++; - .
lf(lstrncmp( argp, "|f—" 3))
- input = open(*argp+3, 0);
ELF (Istrncmp(*argp, "of=",3)){
' output = creat(*argp+3, 0644)'
. close{output);
output'= open(*argp+3, 2);
} ELF (Istrnemp(argp, "cm=",3)}{
mea = fopen(* argp+3 ™),

' va} ELF (Istrncmp(*argp, "cc=",3)}{

co = fopen(*argp+3, "r");

.} ELF (istrncmp( argp, "sf=",3)){

sfd = open(*argp+3, 0);

} ELF (Istrncmp(*argp, "nc=",3)}{
- num_centers = atoi(*argp + 3);

clneed = num_centers;

}ELF (lstrncmp( argp, “pe="3))

mln

_changes = atoi{*argp + 3)
"} ELF {istrncmp(*argp; "-v",2))

- vilag++;
ELF (!strncmp(*argp, "-t1",3))
tl++;
ELF (Istrncmp(*argp, "-t2",3))
, tf2++;
ELF (Istrncmp(*argp, "-t3",3))
‘ _tf3+‘+;
else {
errors++;

pnntf("bad option: %s\n", *argp);

n‘eed(input, "input", "if");
need(output, "output”, "of");

if(lcineed){ , o .
printf("\"nc=...\". (number of centers to create)\n");

©errors++;

if(errors)

exit(1);

setup_files();
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prihtf("Summary of cluster parameters:\n\n“);

printf("if=... input data file\n");
printf("of=... "~ output-results file\n");
printf("cm=... . initial cluster mean file\n");
printf("cc=..: ~ initial cluster covar file\n");
printf("sf=... output statistics file\n");

printf("pc=.. percent change desired(0-100) \n");
printi("nc=nnn  number of centers to create\n");
pnntf("optlon 4142 43 -v\n");

'/i
*need - see if a needed file is present
o
need(fd, fn, fl)
char *fn, *i;

if(fd == 0){
prlntf("requwed %s flle (%s=.. )mlssmg\n" fn,, fl),
errors++, : '

b

* setup_files - read in once-only files & get ready'to cluster
v SRR S ' Ce

setﬁp_ﬁleé() i

1* output file */
© if(mea){ v
for(i=0; i<num_centers; |++){
+ for(j=0; j<num_chan; j++){ -
fscanf(mea "%f", &centersfil.originj]);
- for(k=0; kenum_chan; k++){
fscanf(co, "%f" &centersli]. COV[j][k])

1} '
lfitds_(&num_chan ,centersfi].cov,&num_chan, fac &num chan)
lfdds_(&num_ chan,fac,&num: chan &d1,&d2); :
centers(i].det=d1*pow(10.0,d2);;

linds_(&num_chan,centers{i].cov &ndm _chan,centers[il.inv,
&num chan)
i

,“}

/" o
* rev’vind_‘files -- rewind l/O files, and prepare for another pass -

oy
rewind flles()

. lseek(lnput oL, 0);

lseek(output, OL, 0);

?lf(lflrst pass) :
nob = read(output obuf, NP);
Iseek(output, OL 0);
nob = 0;
obp = obuf;”
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* print_stats -- output summary of clusiering run.

1print;étais()

}

.reglster i;
reglster float ‘fp1 *fp2

B ; int j;

' time(at2); :
printf("tNumber of passes = %d", num _passes)

printf("\ntNumber of changes = %d\n\telapsed time'= %ld / "
.. _.num_diff, t2-t1);
pnntf("%ld\n" t2-t0); .
for(i=0; i<num centers i++){
' pnntf("\n\n\tCenter %d, (%5 1f pomts) An", i+,
centers[l] count)
pnntf("\tOngln )5 !
printl("%6.2f\t", num_chan, centers[i]. ongln)

- printf("\n\tVariance: ");
printl("%6.2\t", num_chan, -centers]i]. sumsq) ;
prlntf("\n") :

" for(j=0; j<num_chan; j++)}
©printl("%6. 2f , num chan centers[l] cov[jl);
prlntf("\n")

=12,

*printi(f, n, afp)
char *f;
int n;

float *atp;

.

' réé‘ist_er int i;
_ register float *{p;

fp= afp, 1
for(i=0; i<n; i++) .
pnntf(f *fp++) v
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