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ABSTRACT

As progress in new sensor technology continues, increasingly high resolution 

imaging sensors are being developed. HIRIS, the High BesOlution Imaging 

Spectrometer, for example, will gather data simultaneously in 102 spectral bands 

in the 0.4 - 2.5 micrometer wavelength region at 30 m spatial resolution. AVIRIS, 

the Airborne Visible and Infrared Imaging Spectrometer, covers the 0.4 - 2.5 

micrometer in 224 spectral bands. These sensors give more detailed and complex 

data for each picture element and greatly increase the dimensionality of data over 

past systems.

In applying pattern recognition methods to remote sensing problems, an inherent 

limitation is that there is almost always only a small number of training samples 

with which to design the classifier. Both the growth in the dimensionality a nd the 

number of classes is likely to aggravate the already significant limitation of training 

samples. Thus ways must be found for future data analysis which can perform 

effectively in the face of large numbers of classes without unduly aggravating the 

limitations on training.

A set of requirements for a valid list of classes for remote sensing data is that the 

classes must each be of informational value (i.e. useful in a pragmatic sense) and 

the classes be spectrally or otherwise separable (i.e., distinguishable based on the 
available data). Therefore, a means to simultaneously reconcile a property of the 

data (being separable) and a property of the application (informational value) is 

important in developing the new approach to classifier design. In this work we 

propose decision tree classifiers which have the potential to be more efficient and 

accurate in this situation of high dimensionality a nd large nurnbers of classes; In 

particular, we discuss three methods for designing a decision tree classifier, a top 

down approach, a bottom up approach, and a hybrid approach.

Also, remote sensing systems which perform pattern recognition tasks on high 

dimensional data with small training sets require efficient methods for feature 

extraction and prediction of the optimal number of features to achieve minimum 

classification error. Three feature extraction techniques are implemented. 

Canonical and extended canonical techniques are mainly dependent upon the 

mean difference between two classes. An autocorrelation technique is dependent 

upon the correlation differences,

The mathematical relationship between sample size, dimensionality, and risk value 

is derived. It is shown that the incremental error is simultaneously affected by two 

factors, dimensionality and separability. For predicting the optimal number of 

features, it is concluded that in a transformed coordinate space it is best to use the 

best one feature when only small numbers of samples are available. Empirical 

results indicate that a reasonable sample size is six to ten times the dimensionality.



CHAPTER I ,  INTRO pyeT iO N

1.1 Preliminary Remarks.

As the progress in new sensor technology continues, increasingly high resolution 

imaging sensors are being developed. For example, H IR iS .th e  High Resolution 

Imaging Spectrom eter, will have 192 spectral bands which gather d a ta  

simultaneously in the 0.4 - 2.5 micrometer wavelength region at 30 m spatial 

resolution. AVIRIS, the Airborne Visible and Infrared Imaging Spectrometer, covers 

the 0.4 - 2,5 micrometer in 224 spectral bands. These sensors give more detailed 

and complex data for each picture element and increase the dimensionality of data. 

The growth of dimensionality and the higher spectral resolution provides the 

opportunity to identify a larger number of classes within a scene than in the past.

For high dimensional, multi-class pattern recognition problems, a decision tree 

classifier (hereafter referred to as DTC) instead of a single layer classifier is the 

most appropriate scheme, because a DTC divides the complex global decision

making process in high dimensional spaces into a number of simpler and local 

decisions at various levels of the tree. As a result, proper subsets of features at 

each node can be chosen to improve the classification accuracy while at the same 

time possibly reducing the required amount of computation.

A decision tree is a means for showing the relationship of intermediate decisions in 

a Complex decision process in order to reach a final decision. Decision trees 

consist of three parts, the root node, intermediate nodes, and terminal nodes. The 

root node has only descendent nodes while terminal nodes each have only a 

unique ascendent node. Intermediate nodes have both descendent and ascendent 

nodes. If an acyclic graph is defined to be one which contains no cycle, a tree is a 

connected acyclic graph. A tree thus defined has the property that a path from the 

root node to any given node is unique. Single layer classifiers test the degree of 

membership of the unknown sample against all classes and finally assign the 

unknown sample to one of those classes. Decision tree classifiers test the degree 

of membership of the unknown sample against subgroups which containseveral 

classes at the intermediate nodes and assign the unknown sample to one of the 

subgroups. If the subgroup is not one of the final classes, classification procedures 

are continued until reaching the terminal nodes.
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Figure 1 .1 A Simple Decision Tree

The primary objective of this work is to develop a DTC design procedure which 

leads to a DTC that is more efficient and more accurate in case of high 

dimensiohality, limited training setsizes, and large numbers of classes.

A second objective of this thesis is to find means to extract dptimal features and 

predict the Optimal number of features in remote sensing situations. The estimation 

of the optimal number of features is ah essential part of the DTC design process as 

the dimensionality grows. Probability of correct classification is closely related to 

design sample size, dimensionality, and noise. :

1.2 A Review of Related Work

■ i ;
The DTC has been studied for a number of applications. Examples are remote 

sensing, character reco gn ition ,b lo od  ce llsc lass ific a tio n , The presumed 

advantages of the DTC are reported as computational efficiency and improvement 

in classification accuracy with finite samples. Disadvantages of DTC are 

complexity, error accumulation, and design difficulty for an optimal DTC.

The study of the DTC may be categorized into three phases: the design phase, the 

feature selection phase, and the decision rule. However; to be truly optimal; these 

are not sequential but must be simultaneously accomplished.

For the purpose of ideal design . Wu et al. [1 ] developed an evaluation function 

which consists of a computation time factor and classification: accuracy. The 

classification error is estimated by assuming that the direct descendent nodes are 

Single layer Classifiers. Kanal [21] defined two types of admissible search strategies
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to obtain the optimal decision tree structure, namely S-admissible and B- 

admissible which use a cost of path and risk function in a state space graph model. 

In an S-admissible search, the risk function depends only on the features 

measured along the path from the initial state to final state. In a B-admissible 

search, the risk function depends on all features, not just those on the path to the 

final state. Using these functions, it is impossible to evaluate successfully every 

combination of tree structure to determine the overall optimal tree classifier.

For practical design purposes, minimizing the classification error is frequently 

pursued at each node, although that procedure does not guarantee that the overall 

structure will be optimal. For the same reason, computational efficiency is often 

considered as an independent performance index.

Wu et al [1] and Swain and Hauska [8] suggested a histogram approach which 

plotted means and covariances for all classes for each feature. A suitable boundary 

was sought to separate the subgroups which might be homogeneous with a 

particular feature. However, since this approach uses only one feature, the inter

relationships with other features are disregarded.

You and Fu [13] designed binary trees by splitting a set of classes into two non

overlapping subgroups at every node. The two subgroups are found by comparing 

the measure of separability for different pairs of subgroups Over various subsets of 

feature space with fixed numbers of features. To reduce the possible combinations 

pf tree structures, they suggested two restrictions. The first restriction was to limit 

the number of features selected at each node. Fprthe sake of accuracy, the second 

restriction was the size of the tolerable error probability at each node. However, if 

the numbers of classes are large, the number of possible tree structures is still 

large. In the case of limited training samples, the measure function itself may be 

poorly estimated.

Sethi and Sarvarayudu [27] suggested a tree design based upon the mutual 

information obtained about the pattern classes from the observation event X, which 

can be written as

; KC;X) = £  £  P (C ilXi) log2{ ^ § P  (1,1)

where C represents the set of pattern classes, C l and C 2 having a priori 

probabilities p(C i ) and p(C2 ). p(Cj, Xj) is the joint probability of oeburrehee of Cj 

and Xj and P(CjIXj) is the probability that the observation comes from class Cj given 

the outcome Xj of event X. Let Pe be the probability of error allowed in recognition; 

then the following inequality determines the limit on the equivocation H(C|X) of C 

with respect to X;

H(C|X) < H(Pe) + Re Iog2 (n-1) (1.2)



where H(Pe) isthe error entropy and m isthe number of pattern classes. Since the 

average mutual Information can also be written as,

l(C;Xy = H (C )-H (C tX ) (1.3)

we obtain the following inequality,

l(C;X) S H(G) - H(Pe) - Pe Jpg2 (n-1)

— £  P(Cl)Iog2P(Cl) + P^log2Re + (I -Pe)log2(1 -P J  - P0log(n-1)

v;i=1̂  ;i-.: : .. ■ ■ X 7  ; X X ; /'

Equation (i .4) thus relates the probability of error and the corresponding minimum 

value of average mutual information required for a recognition process. Their 

method generated a partitional tree for a specified probability of error by 

maximizing the amount of average mutual information gain or minimizing the 

average error of recognition for the given size of tree. The above algorithm was 

implemented by a non-parametric procedure.

Gasey and Nagy [30] developed a binary tree for optical character recognition 

using an information theoretic approach. The effectiveness of a node-by-node 

design scheme is highly dependent on the rule by which pixels are evaluated for 

assignment to a given node. The first pixel to be tested is predetermined for the root 

node. A measure based on entropy is used for a pixel selection criterion. The rule 

employed for pixel selection is to choose the pixel that minimizes entropy, i.e, the 

o n e th a t maximizes the informa A priori class probabilities and, class

conditional frequencies of individual pixels are estimated from labeled samples. 

Their approach is a special case of binary tree character recognition.

Landeweered et al. [29] Suspected that binary tree classifiers improved the correct 
recognition rate compared with the application of single layer classifiers. A binary 

Tree was constructed in a stepwise, bottom-up fashion. such that in each step the 

two classes with the Smaller Mahalanobis distance were merged to form a new 
group. Since their binary tree classifiers might not be the optimal tree Structure in 

some sense, they did not take a look at the improvement of correct recognition rate 

compared with the result of the single layer classifiers in some cases.

For the feature selection phase, in the ideal case, feature selection should be 

simultaneously considered with decision tree design parameters. Practically, 

Swain and Hauska [8] chose a feature selection criterion based on pairwise 

separability over all pairs of classes after designing the decision tree Classifiers.

Muasher and Landgrebe [2] experimentaily Studied an effective feature ordering 

technique in/ cases where the the number-of training samples was limited in 

classifying multivariate two-class normal distributions^



For the decision phase, parametric and non-parametric procedures may be used. 

Maximum likelihood Gaussian classifier^ are usually used at each node in a 

parametric approach.

M. W. Kurzynski [28] dealt with the decision rules of tree classifiers for performing 

the classification at each non-terminal node, under the assumption of complete 

probabilistic information. For a given tree structure and feature subsets to be used, 

the optimum decision rules were derived which minimized the overall probability of 
misclassification.

.-j&hervth ec lass ifie rdes ig n :is to be based upon finite sets of samples from the 

various classes and features, the estimation of the class-conditional densities of the 

measUremeni vector is necessarily a key step. These estimates are then used for 

ilie  classification. One might initially assume that as the dimensionality of the 

sample vectors is increased, classification accuracy would generally increase 

because the information available Is increased. If the added sample vector 

dimensionality does not contribute in any way to classification results, one might 

suppose that the classification error rate should at least stay the same. In practice, 

the performance of the classifier based on estimated parameters improves up to a 

certain point, then begins deteriorating as further features are ddded.

In a Bayesian formulation, some priori densities on the parameter of Pj are 

assumed, and class-conditional densities Pj(X) can be calculated. Ori the other 

hand, one can arrive at maximum Iikelihobd estimates of the density function. After 

obtaining the maximum likelihood estimates of the unknown parameters, Pj(x) can 

be obtained by substituting those estimated values instead of true parameters. 

Therefore, the classification performance depends on the estimation procedure, 

and problems pertaining to the relationship between dimensionality and sample 

size are in the context of the method of estimation.

Hughes [22] considered the behavior of a finite sample Bayesian classifier with 

respect to increasing measurement complexity. Even if a Bayesian procedure is 

used which is optimal in the sense that it minimizes the probability of 

misclassification, one could get into trouble by using too many measurements 

when the number of training samples is small. J t :bhbwri' ' thbt. if the 
measurements are independent and binary [55], or first order nonstationary Markov 

dependent and binary [56], then there wil be no peaking of performance in the 

Bayesian context with respect to the measurement complexity for a finite sample 

size [57].

When the approach to classifier design is non-Bayesian e.g. parameters are 

estimated by maximum IikeIihopd methods, peaking effects occur. While the 

original Bayes’ rule is optimal, the decision rule that results from substituting the 

maximum likelihood estimates of the parameters is no longer optimal. The errors 

caused by the nori-optimal use of added information overrides the advantages of 

extra information. Foley [11] investigated the design set error rate for a two class 

problem with multivariate normal distributions, and derived it as a function of the



sample size per class and dimensionality. The design set error rate was compared 
to both the corresponding Bayes error rate and test set error rate. It was shown that 

the design-set error rate is biased below the true error rate and the test-set error 

rate is biased above the true error rate of a classifier when the ratio of sample size 

to feature size is small. Jain [58] showed that when features have multinomial or 

univariate Gaussian distributions, the estimate of the Bhattacharyya distance is 

biased and consistent. The bias and the variance of the estimate are not only a 

function of the number of training samples but also depend on the true parameters 

of the densities.

l\3i Problem Statement

In applying pattern recognition methods in remote sensing problems, an inherent 

limitation is that there is almost always only a Small number of training samples 

with which to design the classifier. The growth in both the dimensionality and the 

number of classes is likely to aggravate the already significant limitation of training 

samples; Tbusi vvays must be found: for future data analysis which can perform 

effectively in the face of large numbers of classes without unduly aggravating the 
limitations on training.

Until now, decision tree classifiers for remote sensing have been designed by only 

Considering o n e p ro p e rty o fth e  data, that of separability. In that case, the final 

decisions do not necessarily coincide with classes of informational value. In 

addition to being adequately exhaustive, the requirements for a valid list of classes 

for remote sensing data are-

1. The classes must each be of informational value (i.e. useful in a 

pragmatic sense).

2. The classes must be spectrally or otherwise separable (i.e., 

distinguishable based on the available data).

Therefore, a means to reconcile a property Of the data (being separable) and a  
property of the application (informational value) is the main objective in developing 

a  new approach to tree design.

In designing the classifier, one would like to know how many features one should 

use to maximizeThe classification accuracy. The number of features, the number of 

samples, and the correct classification accuracy are related in a complex fashion. 

In remote sensing, the reflected and emitted electromagnetic energyOf each pixel 

of a scene in a number of wavelength bands is measured by a multispectral remote 

sensor system mounted on board an aircraft or spacecraft. The output of the sensor 

system for a given scene pixel may be represented as a point in a multidimensional 

space. The number of training samples is frequently limited because it is expensive

to accumulate the information by which to label many samples. In the case of 

limited training samples and multidimensional space, the estimates of the first and



second order statistics cannot accurately depict all the information which is 

contained in the data. In particular, the estimate of the covariance matrix may be 
poor. Therefore how to relate the inaccuracy of estimate with classification error 

directly is another objective of this work.

1.4 Outline of the Report

To obtain an optimal DTC, one must consider three components simultaneousiy, 

which are the tree structure^ feature extraction, and the decision rule. The chosen 

criterion for tree structure results from the kind of decision rule selected at nom 

terminal nodes for the specific application. Also, a criterion for feature extraction will 

be chosen based upon the decision rule. Therefore, once a decision rule is 

determined, both a criterion for tree structure and for feature extraction can be 

chosen to obtain the best-performing tree structure and best classification results.

In chapter 2, three methods for tree design, the top down, bottom up, and hybrid 

approaches, will be discussed. In a top down approach, the entire feature space is 

sequentially subdivided into increasingly local decision regions. Suppose that we 

decide to use the maximum likelihood rule as the decision rule; we may then use 

clustering at each non-terminal node to divide the data into appropriate subgroups, 

and we might select the sum of squared error criterion as a clustering criterion for 

the tree structure. Since there is no information about the covariances, 

minimization of Euclidean distance is used.

In a bottom up approach, just the opposite procedure from the top down method is 

pursued. Joining of local decision regions to make increasingly glbl>al;.':'jdebisipn 

regions is used. Since we have the estimated mean and covariance of 

informational classes, the Bhattacharyya distance may be chosen as the criterion 

for the tree structure. In the hybrid approach, top down and bottom up approaches 
are sequentially used to achieve the Combined effect of the two approaches. The 

normalized sum of squared error for top down and the Bhattacharyya distance for 

bottom up are used sequentially as the criteria for tree structure.

In chapter 3, two feature extraction methods, canonical analysis and extended 

canonical analysis, are reviewed. Also, another feature extraction method, 

autocorrelation analysis, is proposed.

In chapter 4, a risk function is presented for estimating the error rate due to small 

numbers of design samples which cause the variability of estimated parameters. 

Results show that if the dimensionality is increased without increasing the 

separability between classes, the incremental error is increased by a factor of the 

square of the dimensionality. On the other hand, if the dimensionality T a increased 

with separability as usual, the incremental error is simultaneously affected by two 

factors, dimensionality and separability. An optimal number of features which give 

the smallest risk value (or error rate) is predicted. Also, a relationship between error 

rate and the estimated decision boundary is studied empirically.
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In chapter 5, experimental results are presented which show comparisons between 

trees, and between the single layer and a tree classifier, DTC for multisource data, 

and feature selection are described. It is found that a hybrid DTC with the best 

single feature in transformed coordinates has better performance compared to 

other methods such as a single layer classifier, top down and bottom up DTC's.

In chapter 6, the finarconclusions are summarized.
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CHAPTER 2. TREE CLASSIFIER DESIGN

2.1 Iiltroduction

Optimal DTC's have been studied previously [1,21]. However, the existing methods 

for tree design, e.g., use of an evaluation function or admissible search, are not 

always feasible since the complete conditional density functions are often not 

available and a very large amount of computation time would be needed to 

evaluate all combinations of the tree classifier parameters. Practically, the methods 

of minimizing the classification error at each node are implemented to obtain 

locally optimum results, and the overall performance are not globably optimal [13].

When a remote sensing data set is categorized by partitioning the measurement 

space (or feature space) into non-overlapping decision regions, spectral class 

which are discriminable because the multispectral properties of the corresponding 

ground covers are different, are defined. Remote sensing is successful if these 

spectral classes coincide with informational classes, Le., classes of ground covers 

which are meaningful, such as crop species, major land uses, soil types, etc [9].

To be a valid class, a distribution must be simultaneously of informational value 

and separable from other classes. Supervised procedures can guarantee the 

former, but not the latter. Unsupervised procedures can provide the latter, but do 

not guarantee the former. Thus, a practical classification scheme for the DTC must 

contain both procedures in such a way that the simultaneity of satisfaction is 

guaranteed.

As far as DTC design is concerned, there exist only alternatives which are top 

down or bottom up approachs. Terminal classes must be both separable and of 

informational value. Non-terminal nodes are not required to be classes of 

informational value, but they must still be separable. Thus clustering, which insures 

separability, may be used in a top down approach, while correspondence with 

training sets is only required at the bottom and thus is related to a bottom up 

approach.

In the DTC literature [1,8,13,21,29], the top down approach has most often been 

studied. Only when the informational classes are easily discrinnihated in 

multispectral data, can the unsupervised classification of top down analysis be 

expected to produce reliable results. The most critical problem which occurs in the 

unsupervised top down analysis is terminal classes which do npt coincide with the 

informational classes.

■j



As stated previously, tree structure, decision rules, and optimal feature sets should 

be simultaneously considered to obtain an optimal D IG , however, due to the 

complexity of the problem, some compromise with respect to absolute optimality is 

appropriate. For a parametric approach, the decision rule may be selected first 

because the criterion for designing a DJC is determined by the decision rule. For 

our work here, the binary tree is chosen as a DTC structure, since any tree can be 

reduced to a binary tree, and the most effective feature subsets can be obtained for 

a  binary tree. In order to achieve the other requirements of terminal classes of 

informational value and spectral separability, a hybrid DTC will be proposed. We 

shall begin by investigating top down and bottom up approach approaches for 

comparisoh purposes, and because certain of their characteristics will be needed 

in the hybrid scheme.

2.2 Top Down Approach

A complete DTC can be designed in a  natural fashion by first defining a  structure 

for the root node. Next, for each subset associated with the root node, it is 

necessary to define another node which performs a  further decomposition into 

smaller subsets. In a top down approach, a  clustering algorithm may be used to 

obtain two subgroups at each node. The initialization and the separation criterion 

are two important factors for Clustering.

First, w e  shall consider the initialization method for clustering. How to determine 

the initial cluster centers is an important factor because the clustering results differ 

depending on the initial cluster centers. MacQueen [46] chose the first k- points in 

the sample as the initial /c- cluster mean vectors. .B eale[47] started with a trial value 

of Ar- larger than was thought necessary, and set up cluster centers regularly 

spaced at intervals of one standard deviation on each variable and then reduced 

the number of groups until a  criterion based on the residual sum of squares is 

'■■’satisfied.

Another common way for choosing initial cluster centers is as follows. Let X1, x2, .. . ,  

Xh be n- safnple vectors which are q- dimensional, and assume they are to be 

grouped into G- classes. Let Cii Uj, and Si- (all q-dimensiorial Vectors) be the ith 

cluster center, ith Cluster mean, and ith cluster standard deviation, respectively, for 

the ith cluster. To establish an initial set of cluster centers, compute the mean vector 

m and variance vector s2 for the entire set of n- sample measurement vectors. A 

rectangular parallelepiped, which usually will contain a large percentage of the 

measurement vectors, has edges oriented parallel to the coordinate axes and 

given by Cn1I s 1, ..., mj ± Sj , . . .  , mq±sq. The initial cluster centers are chosen to be 

uniformly spaced along a principal diagonal of this parallelepiped [54].

Next, the criterion for clustering should be considered. TJie sum of squared 

Orrar(SSE) criterion is defined by
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SSE = £ ^ ( x - m . ) T (x -m .) (2:1)

. i=1 x e Cj

where I t i j is the mean of the ith cluster and x  e C i is a pattern assigned to the ith 

cluster. SSE is the cumulative distance between each point in the data set and the 

mean of the cluster to which that data point is assigned. To minimize the sum of 

squared error as a clustering criterion, each point (or pattern) should be assigned 

to the cluster which has minimum Euclidean distance front that point. This squared 

error can be expressed in many ways, such as the sum of the within and between 

class squared errors used in discriminant analysis [6]. The minimization of within 

class or maximization of between class squared error is identical to minimization of 

the sum of squared error criterion.

For for our method of designing the binary DTC, the mean vector m and variance 

vector S2 for the whole training set are computed to establish the two initial cluster 

centers. One initial cluster center is assigned to a q-dimensinal vector, m1 +O-Ss1, ...

, mj+0.5Sj, ... , mq+0.5sq. Another initial cluster center is assigned to another q- 

dimensional vector, Hi1-O-Ss1.,'.. . ,  mj-0.5Sj,...,  mq-0.5sq as shown in Figure 2.1.

ml-.5s1 mi m1+.5s1

Figure 2.1 InitializationofTwoCIuster Centers 

Once the initial cluster centers are established, each training sample is assigned to

one of two cluster centers which minimizes the Euclidean distance to the training 

sample. After all training samples are allocated to the nearest cluster center, the 

new class mean and class variance vectors for each cluster are computed, and 

those class mean vectors become new cluster centers. Again, all training samples 

are assigned to the new cluster center which minimizes the Euclidean distance.



VVhen the number of training samples which are moved from one cluster to another 

cluster passes through a minimum and begins to increase, the clustering 

procedure is complete as Shown in Figure 2.2.

(  S ta rt)

Choose two initial cluster centers

N /

Change = Number of training samples + I

M /
^  Count = 0

s U

Assign training samples to one of cluster centers

\

If a  sample is assigned to another cluster 

Count = Count + 1

Compute new cluster centers

Figure 2.2 Clustering Algorithm

The clustering results produce two subclusters. After training samples for each 

class are compared to two subclusters, each class is assigned to one of two 

sUbclusters. Then each subcluster becomes a descendent node. Each subgroup is 

tested to determine if it is an informational class. If the subgroup is an informational 

class, the subgroup does not have a pescendent node at the next level. If not, the 

whole clustering procedure is repeated for each subgroup as shown in Figure 2.3.

If the number of training samples frorn a class is split between two subgroup almost 

equally, that class is referred to as an overlapping class. If there is an overlapping 

class, that class is assigned to both Subgroups. Whether a class is deemed an 

overlapping class or not is determined by the designer.



)Start with root node

^ lx

Compute mean and standard deviation 

as initial cluster centers for assigned node

W

Clustering produce's two subclusters

W

Compare training samples to subclusters

Assign classes to one of subclusters

Mx
Each subcluster becomes descendent node

Yes

Check if descendent node consists, of more than 2 classes

No

\ X

Check if descendent node consists of 2 classes

No

________________M X

Divide descendent node into infomational classes

^  Assign descendent node to informational class

Mx Mx
Check if every final node is informational class

Yes

\X _

(  Complete )

No

Figure 2.3 Top; Down Design Algorithm



2.3 Bottom Up Approach

The bottom up approach begins with distinct informational classes as compared to 

overlapping informational classes which the top down approach sometimes 

produces. In the top down approach, the decision boundary which has the largest 

distance measure between groups is chosen since the effect of the error rate of the 

root node is minimized. In the bottom up approach, once the criterion values such 

as separabilities between every class pairs are computed, the two classes which 

have the smallest criterion value, join together and become a new class, i.e., the 

new subgroup at the next higher level;

In obtaining the new subgroup, the updated criterion values between the new  

subgroup and the rerhaining classes are needed. When the updated criterion 

values are determined from the previous criterion values, this will be referred to as 

a static minimum criterion spanning tree procedure. On the other hand, if the 

updated criterion values are newly computed, this will Pe called>a-dynam ic  

minimum criterion spanning tree procedure.

2.3.1 The static minimum spanning tree

A graph G  is an ordered pair {V (G ), E (G ) ) consisting of a non-empty set V (G ) 

which represents the vertices and a set E (G ) which represents the edges.

Definition 1. Two vertices u and y are said to be connected if there is a path 

in G.

Definition 2. An undirected tree is an undirected graph which is connected 

and acyclic. A rooted undirected tree is an undirected tree in 

which one vertex is distinguished as the root. A spanning tree is 

an undirected tree that connects all vertices in V.
..................... ■: ■ ■ ■ ,. Vv.. W ...................................................... • :■■■;. ■ - ,V.'.-- ■ • •

Lemma 1. Let G  = (V, E) be a connected, undirected graph and S = (V, T) a 

spanning tree for G. Then,

a) for all u and v in V, the path between u and v in S is unique,

■■■■■ and,

b) if any edge in E  - T  is added to S, a unique cycle results.

Proof) See [39]. 

Lemma 2. Let G  -  (V, E) be a connected, undirected graph and c  a cost 

function on its edges. Let [ (V 1, T1), (V2, T2) , ........ , (Vk, Tk) } be any

spanning forest for G  with A > 1. L e t = u i=1 \  Suppose e  =  (v, 

w) is an edge of lowest cost in E -T  such that v e  V1 and w £ V1.

Then thereJs a spanni ng treevfor G  which includes T u i ^  and is 

of as low a cost as any spanning tree fpr ’G  that includes T
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Proof) See [39].

By Lemma 1 and 2, If G  = (V, E ) is a connected, undirected graph with a criterion 

value mapping edges to real numbers, a spanning tree is an undirected tree that 

connects all vertices in V. The cost of a spanning tree is just the sum of the cost of 

its edges. A spanning tree of minimum criterion value for G  is the static minimum 

spanning tree.

The set of classes to be classified may be considered as a set of classes in a 

multidimensional space. The distance measure for every pair of classes is 

calculated. The set of classes and the distance measures are represented by a 

complete valued graph in Figure 2.4 which is a connected, undirected graph. A 

spanning tree can be extracted from this complete valued graph. Among the 

spanning trees, the minimum spanning tree is of particular interest. The static 

minimum spanning tree can be realized by the following single linkage method. 

The cost of its edge is represented with the similarity measure.

Class 1

Class 2

Figure 2.4 Complete Valued Graph

Classes are combined according to the similarity measure between their nearest 

members. Each matrix decreases by one after joining two classes, For the single 

linkage (nearest neighbor) method, then, new similarity measures between 

subgroups can be obtained by the similarity measure between their closest 

classes.



Suppose five classes are to be classified, and the matrix of distances between the 

classes is as follows: I

• , ■ ■ - • ■ • 0 6 .0 1.0 5 .0 8 .0

6 .0 0 7  0 4 .0 3 .0

- D s ' , 1.0 7 .0 0 9 .0 12.0

Z '  M ; . ; - ;■ : 5 .0 4 .0 9 .0 O 2 .0

I -  - ? " - I ;  Z . - ; _ 8 .0 3 .0 12 .0 2 .0 0

In this matrix the element in the i^  row and Jt 1̂ column gives the distance, dij, 

between classes i and j. The minimum dij is di3 = 1.0 so that classes l  and 3 are 

joined to minimize the error rate at the upper levels and the new classes are (1, 3),

(2), (4), and (5). New distances between these subgroups are obtained from D as

■ follows::-'';,:'''

d(2)(1,3 )  = min {d2i, d23} = d2t = 6.0, . 

d(4)(1, 3) = min {d4i, d43} = d41 = 5.0, 

d(5)(1, 3) = min {dsl, dsa} = d51 . = 8.0,

and we may form a new distance matrix Di giving inter-individual distances, and 

group-individual distances.

“  0 6.0 5.0 8 . 0 '

• ■ • ■ . ■ ’ ' : . ZZi- Z: -I Z-  ■
6.0 o 4.0 3.0

, V - , ' .1 • ' ■ :
,  , V 5.0 4 ;o 0 2.0

:■ : '  ' ;  ■
_ 8.0 3.0 2.0 0 .

The smallest entry in D tis  nowd45 = 2.0 and so classes 4 and 5 are combined and 

new subgroups become (1, 3), (2), and (4, 5), and distances now become

d(1, 3)(4, 5) = min {d (4)(1 ,3), d (5 )(1 ,3)} =d(4)(1, 3) = 5.0,

d(2)(4, 5) = min{d42, d52} = d52 = 3.0.

These mdy be arranged in a matrix D2,
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0 6.0 5.0

6.0 0 3.0

5.0

qCO 0

The Smallest entry now isd(2)(4, 5) = 3.0, so that class 2 is joined tO subgroup (4, 

5) and the subgroups are now (1, 3) and (2, 4, 5). Finally, the combination of the 

two subgroups at this stage takes place to form a single group containing all five 

classes. The tree showing these processes is shown in Figure 2.5

0 , 2 ,  3 ,4 , 5)

(1 ,3 ) (2 ,4 ,5 )

3 2

Figure 2.5 Decision Tree Corresponding to Single Linkage

The complete linkage (farthest neighbor) method is exactly the opposite of the 

single linkage method in that the distance between two subgroups is defined in 

terms of the largest dissimilarity between a member of Cl and a member of cz, 
namely

dIC1Kc2) = m a x ^ r i e c V j e c 2J
(2 .2)

Using this technique for the distance matrix D, we begin as with the single linkage 

method by combining classes I and 3. The distances, between this subgroup and 

the three remaining individuals 2, 4, and 5 are obtained from D as follows:

d (2 )(1 ,3) = max {d£i, d23} = d23 = 7.0,

d(4)(1,3 )  = max (d4i, d43} = d43 = 9.0, 

d(5)(1, 3) = max {dsi, d53} = d53 = 12.0,
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7 ■.

-
; 7

0 6.0 1.0 5.0 8.0 ”
-; ' ■ ■ : ^ ; , 7 :

6.0

OrC0

4.0 3.0 V .. - '  ̂ ;.. :  ̂ • -

1.0 7.0 0 9.0 12.0
■ . 77' .

5.0 4.0 9.0 0 2.0

.8 .0 3.0 12.0

OCVJ 0 „

latrix is

” 0 7.0 9.0 12.0“

7.0 0 4.0 3.0 '■ ' ; '7 7 ; A 7 /^

9.0

OO

2.0 '■7 7'-' ::;\ 7 7 7  ■ 7 '7 7 7 ;. .7 7 7 ';

.12 .0 3.0 2.0 0 _

P i st

the smallest entry is CI45, so that classes 4 and 5 are joined and new subgroups 
become (1,3), (4, 5), and (2), with

d(1t3)(4v5) = m ax{d{4)(1,3}, d(5){1,3 )} = d(5)(1, 3) = 12.0, v

d(2)(4,5 )=  max {d42> dg^^c^a = 4.0.

2

' G 7.0 12.0

7.0 0 4.0

12.0 4.0 0

The smallest entry is d(2)(4i 5) = 4.0, so that class 2 is joined to subgroup (4, 5) and 

the subgroups are now (1, 3) and (2, 4, 5). The final result is shown in Figure 2.6. 
which is seen to be identical in shape to that resulting from the single linkage 

method incidentally .
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Figure 2.6

0 , 2 ,  3 ,4 , 5)

(1 ,3 ) ( 2 ,4 ,5 )

Decision Tree Corresponding to Com p leteL inkage

2.3.2 The dynam ic minimum spanning tree

The Bhattacharyya distance measure is selected as the criterion for the bottom up 

DTC. The Bhattacharyya distance measure for two Gaussian classes is as follows.

E + E 
1 2

-1

(Hi1 - m 2) + - |n

Z 1 + I 2

(2.3)

where rrij is the mean vector of class i and E j is the covariance matrix of class i. 

The first term of the Bhattacharyya distance reflects the separation due to mean 

differences between two classes and the second term reflects the covariance 

difference. The Bhattacharyya distance measure is more closely related with 

classification accuracy than other measure functions such ais divergence[50].

In the static minimum spanning tree, the mean and covariance vectors for each 

class are computed just one time throughout the design of the decision tree 

classifier. But new subgroups based upon combining two classes or subgroups 

have new mean and covariance matrices. Two classes are combined according to 

the similarity measure between their nearest members. Groups or classes are 

decreased by one. After combining the smallest Bhattacharyya distance pair, the 

new mean and covariance matrices are obtained. Then the new Bhattacharyya 

distances are computed between the new subgroup and the remaining classes or 

subgroups. The above procedures are continued until all classes become two 

subgroups.



\ /

Compute mdan and covariance for each jnffcirnatignal class

Compute Bhattacharyya distance for every pair of classes

\ / .

Combine two classes which have the smallest distance

X / I
Two classes become one combined class at ascendent node

Cheek if number of classos is less than 3

Yes

\ /

("Complete^)

Figure 2.7 Bottom UpDesign AIgorithm

2.4 H ybrid  A pproach

To be a valid class, a class must be simultaneously of informational value and 

separable from all other classes. The top down approaches make use of the 

characteristic of class separability while the bottom up approach starts with 
informational classes. The hybrid approach uses bottom up and top down methods 

sequentially.

The bottom up approach may produce subgroups, th e  number of subgroups is 

determined by the designer. Those subgroups may give the subgroup information 

which is used for the top down approach. In the top down approach, how to use the 

subgroup information which is generated by bottom up approach is dependent 

upon the algorithm which is applied for the top down approach.

In nonsupervised classification algorithms, initialization information has a role in 

determining the final results; Cbrrefct initial information fafcilitdtes obtaining the 

correct results. The bottom up approach is used as  the method to obtain this 

initialization information (mean vectors and covariance matrices). For the hybrid



approach, the normalized sum of squared error (NSSE) criterion. defined as 

follows, is used.

NSSE = X  X  [(x - ,rn'i)TSi'1.(x - m j)+lh|Xi|] (2.4)

The sum of squared error criterion produces the spherical clusters [37]- However, if 

the clusters are not spherical in shape, variance effects: must be accounted for. In 

the normalized sum of squared error criterion, variance effects are considered. In 

the hybrid approach, subgroup means and Covariances are obtained from bottom 

up results.

The hybrid design, thus proceeds as follows:

1. Divide the entire data set into two subgroups for descendant nodes by the 

bottom up approach.

2. Compute the mean and covariance vectors of the two subgroups and re-divide 
the classes into two subgroups using the Normalized Surh of Squared Error 

Clustering (Appendix B).

3. If the separated subgroups are informational classes, design is complete. 

Otherwise, return to step 1 for each subgroup which is not an informational class.

There are several advantages to the hybrid approach. It is more likely to converge 

to classes of informational value because the initialization provides early guidance 

in that direction while the top down approach does not guarantee such 

convergence. It can use overlapping classes while there are no overlapping 

classes in the bottom up approach. Covariance information can be applied in the 

hybrid approach to separate non-spherical subgroups.

2.5 Tree Classifier for Multisource Data

Modern data sets include not only spectral data but may also include other types of 

data, such as forest type maps, ground class cover maps, radar data, and 

topographic information e.g., elevation, slope, and aspect data. These are called 

multisource data. Such data are not necessarily in common units, and therefore 

scaling problems may arise. Further, the data may not even be numerical. As a 

result, multisource data cannot be modeled conveniently by multivariate 

distributions, thus conventional multivariate classification methods cannot be used 

satisfactorily in processing multisource data. Several methods have been 

proposed to classify the multisource data.

Hutchinson [51] proposed ambiguity reduction techniques. If the data are classified 

based on one or more data sources, the remaining ambiguities from the results of 

classification are resolved by other sources.



(  Start )

Qbtain two subclusters by bottom up approach

/

Compute mean and covariance for each subcluster

N /
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Compare training samples to subclusters
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No
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Figure 2.8 Hybrid Design Algorithm
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The Stacked vector approach, which consists of a concatenation of all components 

of data sources, has also been used [52]. This method is straightforward and 

simple, however, the method is not applicable when the various sources cannot be 
modeled by the multivariate distributions.

Swain, Richards and Lee [53] proposed a statistically based analysis. In general 

there may not be a simple relation between the user-desired information classes 

and the set of data classes available. One of the requirements of a multisource 

analytical procedure is to devise a method by which inferences about information 

classes can be drawn from the collection of data classes. They defined a set of 

global membership functions that collect together the inferences concerning a 

single information class from  o f the data sources. They use the global 

membership function in the nature of a discriminant function, so that a pixel is then 

classified according to the usual maximum selection rule. In that case, the inter

source independence assumption is often made, however, that assumption is not 

usually fully satisfied in the case of real data.

In the DTC approach, each source may be considered separately, something not 

possible in a single layered scheme. The basic idea is that the optimal source and 

classification rules are determined to minimize the classification error at each node. 

To separate the subgroups evaluation functions are defined as a function o f 

minimum error and minimum overlap. The overlap is defined as fpllows;

where n( is the number of samples of class I. The evaluation function is given by

b , = 2 / , u ) + ,,d

M

where a  is weighting factor.

(2 .6 )

For a hybrid DTC with a Gaussian maximum likelihood rule, two initial subgroups 

can be obtained by the bottom up approach with respect to each source. The 

subgroup consists of more than one informational class. To obtain new subgroups, 

the Normalized Sum of Squared Error is applied for two clusters with respect to 

each source. To determine the best source, the evaluation function for each source 

is computed by evaluating the results of two clusters. Every node has the 

appropriate source to minimize the evaluation function. If a subgroup is not an 

informational class, the hybrid design procedure is applied again to obtain two 

descendant nodes.



2.6 Computational Efficiency

Computational efficiency is potentially one of DTp's advantages over a single layer 

classifier. As far as the number of decisions is concerned, a DTC needs less 

numbers of decisions than a single layer classifier, When a P IP  is well balanced, 

only (logs n) comparisons are required if n classes are given. Even though a DTC

(n+2)(n-1)
is completely unbalanced, V gn comparisons are required. This is less than

the (n-1) comparisons are required in a Single layer classifier, and therefore a DTC  

is expected to have better computationa! efficiency.

To improve the classification accuracy in the limited training sample situation, a  

reduced number of features may be used in transformed coordinates. In a PTC, (n- 

1) transformations of a test sample are needed while in a single layer classifier, 

only one transformation of a test sample is required. In other words, a DTC needs 

less comparisons but more mappings while a single layer classifier requires more 

comparisons but less mapping. Therefore, neither of the two Classifiers always has 

superior computation efficiency.



CHAPTER 3. FEATURE EXTRACTION

3.1 Hughes Phenomenon

Hughes[22] showed that recognition accuracy can first increase as the number of 

measurements (or features) increases. However, in the presence of a limited 

training sample size, as the dimension of the data increases beyond the optimum 
value the classification results decline.

If there were no such dimensionality phenomenon, the single layer maximum 

likelihood classifier (assuming proper prior class probabilities) would provide better 

performance than the any other DTG because the conventional Bayes classifier 
gives the minimum classification error.

However, when the number of training samples are limited, the Hughes 

phenomenon, i.e. the dimensionality problem, must be considered. In such cases, 

the conditional density functions are incorrectly estimated because of the lack of 

adequate training samples. The poor estimates cause complex decision boundary 

to be biased. A properly designed DTC may have better performance than a single 

layer classifier because the decision boundaries in a DTC are much simpler than in 

a single layer classifier.

In most DTC’s, untransformed subsets of features are used since a reduction of 

dimensionality is required to increase the classification accuracy. A typical 

procedure might be to calculate the pairwise Bhattacharyya distance or divergence 

at each node, then the subsets of features having the largest distance are selected 

for dimensionality reduction. Since the estimated means and covariances 
themselves are randomly biased in the limited sample situation, a better way to 

pick the best subsets of features is required.

3.2 Canonical Analysis

Fisher's suggestion[37] was to look for the linear function which maximizes the ratio 

of the between class scatter to the within class scatter. Canonical analysis finds a 

set of linear combinations of the variables whose values are as close as possible 

within classes and as far apart as possible between classes. In canonical analysis, 

within-class and between-class scatter matrices are used to formulate a criterion of 

class separability.



A within-class scatter matrix shows the scatter of samples around their class mean 

yector iTij, and is expressed by

£  P (W i) E {(x-m i)(x -m i)T |w i}

= £  P (W i) I i 

i=1

(3.1)

The matrix Svy is proportional to the sample covariance matrix. A between-class 

^scattefmatnx1sgiyen;by'P''.:;V :.\;.^-

' ;  Sb £ P ( W i) ( m i -  m 0)(m r.-  m b)T 

i=1

(3.2)

m0 =E(x} = £  P (W i) m i (3.3)

i=1 V ; '

rank(Sb) = m-1 ■/ ■

;rank(Sw‘i Sb)

where ttij is the mean of ith class and ftio is the global mean. All these scatter 

matrices are invariant under coordinate shifts. W e define the ratio of the between 

class scatter to the within class scatter as follows:

d T  S b d 

d T S w d
(34)

The vector d, which maximizes the ratio d Tx, ; is called the Fisher's linear 

discriminant function or the first canonical variate.

The spectral decomposition allows us to express the inverse of a square matrix in 

terms of its eigenvalues and eigenvectors, and this leads to a square root matrix. 

Let Sw be an n by n positive definite matrix with the Spectral decomposition

S w - £  ^ i e i e i
,T 
•i •

i=1
.! • •/'

Let the nornnalized eigenvectors be the columns of matrix P == [ © i , 62, . . .  , e n ] .



s »  = £ X. e. e j  = P1A P

(3.5)

where Sv

mX1 O . . .  0 ‘ 

O X2 . . . 0

0 . . .  ox„

with X > 0

Sw = Pt A'1 P = X f e i ^

(3.6)

JL n
■2 ^

X f i ,  V t = Pt A2 P
(3.7)

S.;,1
Let Xi > X2 > ... > Xs >0 denote the nonzero eigenvalues of and S1, e2, .... es

the corresponding normalized eigenvectors where s is less than or equal to m  and 

n - 1 {m is the number of classes and n is dimension of the matrix or the total 

number of features). The symmetric square root matrix

s :  = Z a  ® Oii = P 1 A2  *P

and its inverse

1

2 T 2
S w = P A 2 P

I  I
T 1 2  2

d S d = d S S d
O-8 )

1 1 1 1

<*T S „ d  = dT < 8 / s b s / S ^ d
(3.9)

1
2

Let be a = S w d then



1 1

Sb d 

d ' s w d

aT Sw2 S b S w2 a  

a T a

Finally, the problem reduces to maximizing equation (3.10) with respect to a. This 

is the so called Rayleigh's quotient. From Rayleigh's p/inciple[40], the maximum of

the ratio is A.; which is the largest eigenvalue of S w2 Sb S ŵ  when a is equal to O1.

When a is equal to eigenvector 62, which is orthpnormal to e i, and corresponding 

to 5i2, a maximizes the ratio secondarily. Therefore, Xk is the kth largest value which 

corresponds to eigenvector ek-

(3.10)

1 1

K  ■ S b S „2 e = X e

Sw2 S w2 S 0 S w2 e

I

s „ ’ S b ( Sw2 e ) S 1 S d

(3.11)

(3.12)

W

The eigenvector dj which corresponds to eigenvalue Xj is directly obtained from «

The eigenvector dj is called the ith canonical variate. If we have only two classes 

the ratio has only one nonzero eigenvalue. The other n-1  features do not 
contribute to the ratio. The final solution for two classes is

d = SwT m 1 - m2 )
(3.13)

This is also called Fisher'slinear discriminant function which has the maximum 

ratio of between-class scatter to within-class scatter.

3-3 Extended Canonical Ana lysis

The following method was developed by Foley and Sammon[12]. In the two class 

- V 1 , - .  ■■■. a i(m i - rh2)
problem, Fisher's vector is given by d i =-——q  ----- where ocv is chosen such

That d iTd i = I .  The next best direction can be found for maximixing Fisher criterion 

subject to the constraint that d |  and d2 are orthogonal. Using the method of 

Lagrange rnultipliers, we wish to maximize the Fisher criterion subject to the 

constraints that djTdn = O for i = 1,2,...,n-1. Let C be
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C =
d n ( " V nV

- S d Id 1 . .  - X  .d_d ,
n -1 n n -1

(3.14)

Setting the partial of C with respect to dn equal to zero,

2KnIm 1 - m2) ' K„2S1,d n- ^ d 1 - . . . - X .  ,dn , = 0

d I l m1 • m )
where Kn- = — -- --- • • • Therefore,

d S d

(3.15)

dn = ^ < <mt - m2) 'S K - d I
n -1 _i

2Kn d" - i

Applying the constraints, and letting p.
i

„ „  and s = d S  d , then 
2K ij i w i

S1 lP l +  S12^2 +  ' • • +  S1(n - 1)Pn -1 -  1 /  a 1

silPl + . . . + Si(n -i)Pn -1 = 0

(3.16)

S(n -1)1 Pl + • • • + S(n-1)(n-1)P (n - 1) “  0 (3 -1 7 )

Let pT = [P1 . . .  pn ^1], then p = S
n-1

I T 0
I

A recursive definition for the nth

discriminant vector is

r
”  I "

■

■ ■"> ■

■ ■■ ■■■■- ; . ’ . ; . ' 1

Cm ,-m 2) - [ d , . .  . d n . , ^ ,
0

r

- O - ✓ (3.18)



3.4 Autocorrelation Analysis

The Fisher concept can be applied to an autocorrelation matrix. In a  two class 

problem, the criterion which maximizes S 1 and minimizes S 2 simultaneously or 

vice versa can be defined. An autocorrelation matrix is defined by

S j = Z .+  m m '
(3-19)

. : CljTs1 d: ■. d J1Spdi 
The criterion function is defined by r = ^ t q  ^ or c| Ts d  ‘ optimally separable

feature set is a feature set such that S i is minimized and S2 is maximized or vice 

versa after the transformation. The ratio r  is maximized by the selection of feature d

'f 9d = O- That equation can be reduced to (S i * rS2)d = 0 which is called a 

generalized eigenvalue equation.

(S2 1S 1- R)d = 0
(3.20)

- 1.
S 2 S , [ d , . . . d , ]  = R [ d , . . . d q]

(3:21)

We can diagonalize two symmethe matrices as

D S fD = I
(3.22)

DTS .D = R
2 . ■ (3.23)

where D and R are the eigenvector and eigenvalue; matrices of S T 1S2. To find the 

orthonormal eigenvectors of S f 1S2 as

S . 1S 0d. = r.d. and dTd. = 8.. 
1 2 1 1 1 ■ 1 J 1J (3.24)

We should change the scale of dj to satisfy

“ 2dirS ,d, = 1
(3.25)

Therefore, the ith brthbnormal eigenvector is
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; ' (diTSidi)^

For each discriminant vector dj’, there corresponds an Ti;, given by 

, _ di’TSidi’

(3.26)

(3 ?7)

Each n represents the value of the discriminatory criterion for the corresponding 
discriminant vector dj’. The discriminant vectors can be ordered according to their 
respective ratio values such that

ri > r2 > .. .  > rq > 0 <3.28)

However, we want to maximize the relative ratio between S.i and S2 which is 
greater than one. If an n is less than one, we should use the inverse value of n to 
compare the relative ratio We may define the relative ratio as follows:

T f^ r2 S . .  . > n > 1

1
■ r

q t 1 i + I

■ >  1

(3.29)

The best feature or effective basis function for both classes is the eigenvector 
corresponding to the largest relative ratio. The autocorrelation analysis can be 
used in place of canonical analysis when the mean difference between two classes 
is almost zero.

When the mean difference is zero canonical analysis and extended canonical 
analysis can not be used since the feature vector is defined by the mean difference. 
Autocorrelation analysis is useful when the mean difference is small and the 
covariance difference is dominant while canonical analysis and extended 
canonical analysis are more effective than the autocorrelation analysis when the 
mean difference is dominant. After extracting features, the mean difference and the 
covariance difference in a subspace may be checked to use one of the two 
methods, extended canonical analysis or autocorrelation analysis, for the next 
feature extraction.



CHAPTER 4i ESTIMATION OF OPTIMAL NUMBER OF FEATURES

It is well known that classifier accuracy expressed as a function of the number of 
features used shows a maximum at some finite dimensionality [22]. For a given 

class-conditional density function set, the occurrence of this peak is dependent 

upon the training sample size [3], as a result of the accuracy dependence upon the 

quality with which the density parameters are estimated.

A long-known fundamental barrier to the optimal design of classifiers is the inability 

to be able to directly calculate the expected accuracy of a trial classifier design. As 

a result, a common practice is to use a statistical measure, e.g. Bhattacharyya 

distance, to estimate the expected accuracy. However the relationship of such 

distance measures to classification accuracy, though monotonic, is not precisely 

one-to-one, and thus, if such a  distance is to be used in the design process, it is 

important to clearly understand just what the relationship is between expected 

accuracy and a specific distance measure used to estimate it. It is this relationship 

which is studied next, paying specific attention to the effects of sample size and 

parameter estimation variability.

4.1 Optimal Number of Features

The quality of a density parameter is specified by following theorems. 

Theorem 1 (Rao-BIackweII)

Suppose T(x) is sufficient for 6 and that Ee[|S(x)|] < °° for all 0 e 

© . Let I * (X) = E[S(x)|T(x)]. Then for all 0 e © , E0[T*(x) - q(0)]2 <

Ee[S(x) - q(0)]2. If Vare[S] < °o, strict inequality holds unless T*(x) = 

S(x).

Proof) See [59] pp.121.

Theorem 2 (Lehmann-Scheffe)

If T(x) is a complete sufficient statistic and S(x) is an unbiased 

estimate of q(0), then T *(x ) = E [S(x)|T(x)J is an U. M. V. U. f



(uniformly minimum variance unbiased) estimate of q (0). If 

Var0[T*(x)] < «> for ail 6, T*(x) is the unique U. M. V. U. estimate of

Proof) See pp.[59] 122.

The idea of sufficiency is to reduce the data with statistics whose use involves no 

loss of information. A statistic T(x) is called sufficient for a parameter ©, ifand only if, 

the conditional distribution Of x given T(x) = t does not involve 0; Thus, once the

value of a sufficient statistic T  is known, the sample x = (x i, . . .........xn) does not

contain any further information about 0.

A statistic T  is said to be complete, if the only real valued function g defined on the 

range of T  which satisfies

is the function g(T) -  0. Completeness is evidently a property of the family of 

idistributiohs of T  generated as © varies.

Theorem 3

Let (P0 :0  e ©} be a k parameter exponential family as given by

P(x,0) — {exp

k

^  C ^ f j(X )+ .d(0) ; t  S(X)

L i = 1
} Ia (X)

Suppose that the range of c = (ci(0), . . . . , C k (0 ))  has a  non-empty interior. Then, 

T (X ) -  (T i( x ) , . . . ,  Tk(x)) is complete as well as sufficient. ; \

Proof) See [50] pp.123.

L e tx  = ( x i , . . . .  xn) be a sample froma N(ji,c2) population where both j i and o2 are 

unknown. The distribution of x forms a two parameter exponential family in q =

'(P1O2).;.;;:
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is complete and sufficient. Since *  is a function Of T, it must be the U, M V. LI. 

estimate of |i if a2 is unknown.

E ( X r x )2
(n -1 )

. . . . .  1-4 (4.2)

is also a function of the complete sufficient statistic T  and the U.M.V.U. of G2 if p is 

unknown.

The risk function of an estimate T(x) is defined by

R(0, T) =  [L(8, T(x))] = J Me. T(X)) dF(*|e) (4 3)

where L(0, T(x)) is loss function. One may choose the mean squared error as a loss 

function such that

L(0, T) = (G -T )2

Then

r ■ . 2i
R(0. T) .  E (T(x) - q(9)) .

= Var( T (x )) + |E C M  - q(0)) f

(4.4)

(4 5 )

Let T(x) = ft and q(0) = m. T(x) is the unbiased estimate of m. Then 

R(m,m) = ^

. 2
Let T(x) = ft and q(0) = G2 T(x ) is the unbiased estimate of o2. Then

(n -1  r
Var

(n ~ 1)&2 

G2 .

(4.6)



Therefore the quality of an estimate is dependent upon the size of the training set 

and the variance. However, the above risk value cannot show what the 

relationships are between the amount of error and the quality of the estimates.

Usually; it is veiy difficult to obtain the risk value of a functional directly. Therefore, 
Taylor series expansion techniques may be applied to approximate the risk value 

of the functional*. The Taylor series expansion can be written as follows:

f(a+h, b+k) = f(a,b) +
fjJL + k-JL 

Sx kSy f<x-y>lx = a,y = b + - -  +

n!

/  \n

h -§ -+ k —
hS x - kSyy f<x’V lU a. y . 0 + -

(4-8)

where a+h, b+k are estimates and a, b are real parameters. If a+h and b+h are 

unbiased estimates, E[h] = o and E[k] =  0. Then, E [f(a+h,b+k)] is as follows.

g[f(a+h, b+k)] ' I  f(a  b) + I -E ' h | -  + k-;2- 
Sx Sy

\2

f(x, y)l
x = a, y = b_

+ . .

( 4 .9 )

Then, Var (f(a+h,b+k)] is as follows.

Var [f(a+h, b+k)] = E [f(a+h- b+k) - E[f(a+h, b+h)]]

^h iL  ^ v - i -
hSx kSy f(*-y)l . +^r

)

I
X = a, y = b ■ 2

/  -S 2 \ 2
K-JL ±'.Ir-M-.

nSx + KSy f (X-y>lx = a ,y  = b

- - E
2 h S X + k Sy f(x.y)l

x = a, y = b

A Similar derivation of the functional relationship has appeared [60T since the derivation which 

follows was first obtained.:



( hax + kay]f<x* y)lx ̂  a, y=b

Bayes error e* can be expressed by

oo

e* ^THiintP^P1 (x), p2P2(x)] dx

- p o

and bounded by

(4 .10)

(4.11)

E- C vZp^  J y p 1(X)Pj(X) dx

If theclass-conditional density functions are Gaussian, then

Ea C ^ P 1P2 exp[-B ]

where

(4.12)

(4.13)

B
8
(Hi1Vm2)

E + E  
1 2

(Hi1 - m2) + j  In

E. + E 0 
1 2

If the Bayes error is assumed to be directly related to the Bhattacharyya distance, 

the estimated Bhattacharyya distance behavior can show that the increment of 
Bayes error has as its origin the inaccurately estimated Bhattacharyya distance. 
However, the Bayes error is not bounded by the Bhattacharyya distance but by a 

function of Bhattacharyya distance.

ThetransformedBhattacharyyadistanceisdefinedasfoIIows:

Xn = 1 - / P P n exp[ -B I v V-V V
B V  1 2  1 (4.14)

The transformed Bhattacharyya distance is assumed to be directly related to 

classification accuracy. Assume that the Bayes error is approximately equal to the 

upper bound that is characterized by Bhattacharyya distance, then



C - = V f y 5- e
-B

(4.15)

The transformed BhattaGharyya distance is a lower bound of the correct 

classification accuracy. If P-i and Pg are equai, the estimated error of the classifier 

designed by training samples can be expressed as

e = ^ e B
(4.16)

In multivariate statistical analysis, a most powerful property is that the 

Bhattacharyya distance is invariant under any one-to-one mapping. By the 

simultaneous diagonalization,
'•/ -

m(1) n m (2) m v 0) . v (2) . 
m =0, m  = m, 2  = I, Z = A (4.17)

The number of parameters for the estimated Bhattacharyya distance is 2(q + q2).

“ A(1)A(1) A(1)"

A0) 
m ==

7 '.

[ -  ( I )H
(Tl1

Ad)

m2
1 (1)=

■ : : - . 7 <  >  : ■

• ' -

—  n̂ cI _ '

( 1 )

i

X

I

(1)

(4.18)

The estimated transformed Bhattacharyya distance can be expressed as

(1) a <2) a (2) ,(!> ^(D i(2 )

‘ 1 ^qq - I i W (4.19)

The estimated Bhattacharyya distance is a biased estimate. The bias of estimated 

Bhattacharyya distance is well derived in [58,60].

E[(A i -m ,)2kt1] = 0 , k - 1 , 2 ( 3 , . . .
(4.20)



EKnil - m.)“ J = 1-3 (2k - 1 ) - ~

(4.21)

XX

E[(L -XMt ,  - X tf- - I 1 . i * j, i=k, H  orH  Hij ijM kl

F t  - I T '  H j - ' (4.22)

For the computation of the derivatives of the Bhattacharyya distance containing 

matrix, three basic matrix differential equations are needed.

9£-i
-S -IM iS-I,

m
= |£ | ( £ - 1)T (4.23)

3ETA£ = Ujj Et  + E U1 

J
U (4.24)

where Uii has ail zero valued components except that ith column and jth row 

component is one.

^ x z n i v  . -vczrVx 2  - A
a - f (B )_ 9f(B)  ̂ 9 ‘(B) 9B 8B

3x.ax. BB Bx.Bx. + ^2d  dx. Bx.
I ] I J O D l  J (4.25)

BB

am '1

(2) (1)

SB mI '  m I
— ----------------- =  ' ----  -----

i
2 ( i + y

(4.26)

02Ba2B

am(1)2 am

1
(2)2 2(1 + U

(4.27)

aB
m .m .

I J

4(1 + X.)(1 + X..) 2(1 +X,). 4

(4.28)
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0B
mm.
I I ij

dX(2) 4(1 +.X11KI + A,) 2(1 + X..) 4X.;.

(4,29)

02B

4(1+̂ <1+V
. IJ . ij ' .

m m. 
i J

1 +JL I  +X..
' Ii . IJ

I  ’ I  ■ •
■4“ 2(1+1.)(1+1.)

a2B ij

dX^dX ™ ~  4 ( 1  + X ii) (1  + V

m.
i

1+A,,. 1 +A,..
11 JJ_

1 1

4XjXj 2 (1+A,.i)(1+Xjj)

(4 3 1 )

0 2B 1

2 m 2 
m m-

i ■ J 8 i V
1 +A... 1+A,..

L » jj J
+ 4 B(UXii) ( I r t ji)

32B 1
m2 m2

i j 8Ii 8Ii

4 ' 1 +Xii>! l - V
1 +A,.. 1 +X..

L 11 "J
4 îi ̂ jj 2(1  +A,.;) (I +Au.)

(4.32)

(4.33)

a2e ij

.-.aXy2?a2̂ 2)-';' ■ ■

m.

1 +X.. 1 +X..
Il JJ

I 1

4A, A,.. 2 (1  +A,..)(1 +A,..)
ii jj ¥

(4.34)

The computation of the derivatives of the transformed Bhattacharyya distance can 

be derived as follows.

0 e 'B -B d^B “ -B

0B
- e

-\2_- B

2.”.=;.e
OB"

82e-B 0e-B 02B 02e-B /  0B \ 2

3m
(1)2

0m!1)2 0B2
0m

: e'B

J

{

2(1 +Aji)

V

J

1

2(1 +Ajj)

(4.35)

(4.36)
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a2e-B r  ae-B a2B a2e-B

(2)2 -  OB 9 ni(2)2 OB2

r  as y

am am-
/

0-B
ITli ^

, 2 (1+/«) 2(1 + V )
(4.37)

32e -B d2e B

a?41)av |1) +a^jj1)a 4 1)
e_B

r
rrij rrij

4(1 +AiiHI + ĵj)

L. V

\ 2

J

+

/  2 
rrij

< ( H i ) ( W S)

a i n / s H U / j )  

m? \

a2©-8 a2©-8

avjpavjp +a x f a 4 2) ~ e

/
mj mj

4(1+Ajj)(1+^jj)

V

V

V2

J

1 + Vi 1+Ajj
J  J

(4.38)

1
/  r v , 2

ITlj I2 \

V

a2e B

W

0 ‘ B

f

4(1 + Aji) (1 + ĵj) 

Y  \  2

+
1+Ajj 1 +Ajj

J  J

(4.39)

mj

l V
2(1 +Vi) 2(1 +Vi)

V J J

- :
' (  2 mf ^

1 1

2(1 +Aii)
\  j

(1+Vi)
V )

+ 2 ( 1 ^ ) = ’ 4

(4.40)

a2e-B ,

a 4 2)2 =

r
1

(

2 (1 +Vi) 4 Vjj
V

V )

2(1 +Vi) ,
V J



1 -;
' /  2mf .nI

1 1

2(1+^i)
V J

(1+%)
\  J

2 (1 +%)2 4%f

rae-B

amS11
V : : ;

2 f  d e -B f

SfTlj

: • J

2 ( 1+ % ) J

(4.41)

(4.42)

/De-0 I 2 3e-0 0e-0 D e -0I

s^j1)
V J

^  ^  0  ) pn 0 )  
OAjj O Ajj a f

V /

Se-0 Se-0
2e-2B

rrii m

4(1 +%)(1 +%)
(4.43)

3e-Bf

a 4 1)

y

e -2B
I  1

2(1 + % )

(  Hii A

v2 0 A ) y j

(4.44)

p e - B ' l
2 =

V~-?B
1 1

C m; V
2“

=s G

2(1 Wii ) " 4 i  ‘ 2(1 A l )  ,
J

(4.45)

The bias of the transformed Bhattacharyya distance can be obtained as follows.

■ ■ 2 ' ;■ :

n
-B

• 2® “J

e-0
In <t-s

i=1 (1 +%)

f  _ 2 ,

q q

- S S
i=1 j=1

m: (1 +% %j) ( I + %j %j)

V

♦ £

( l +% )2( i +%)

( mf(1+^n) (

m. m. \ 2\

( i +%).(.T+%)

V J J

V
(1+%)3

\
2 \

1 I

(1 +%) 2 2 (1 +%)2

V J J
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(

+ >  Xf

2 \ 2
ITIj '

V
(1+Xjj) 2 Xjj 2 (1 +Xjj)2

/ - 1

q(q+1)- t  t

(1 +Xjj Xjj)

I

(1+4 )

i=i j=t (1 +Xjj)(1 +Ajj) j=i (4+Xjj)2
(4,46)

where q is the dimensionality, n is the number of samples, and B is the 

Bhattaeharyya distance.

The variance of the transformed Bhattacharyya distance can be obtained as 

follows.

>{'' • 2® 6J 16n ±  - r -  ♦ H

mfmf(1+XjjXjj)

i=1 (1+Xjj) i=1 j ĵ j=1 2(1 +Xjj)2(1 +Xjj)2

+ I

/ 2 X2 
mj '

V
(1 +Aii) 2(1 +Xii)2

J

f 2 Y

+ I  2X|

V
(1 « ii)  2 ( U / , ) 2

(4.47)

J

Although the Bayes error from the estimated classifier is not the actual error, we 

want to find the risk value of the transformed Bhattacharyya distance because 

increasing the risk value makes the classification error increase. The risk function 

of the transformed Bhattacharyya distance is

R(^b -Xb) = T (Ete ' B V ^ ] ) 2 + Va{ 1 -

= ^ ( E [ e 'B - e -^ ] )2 (4 .48)



of the risk function while the rest of the terms cause the value of the risk function 

increase . To minimize the risk value with a constraint to maximize the 

BhattaCharyya distance, the dimensionality must be reduced when the number of 

training samples is small, ;

If the features are ordered in decending order,, the first'feature' reduces.."the- risk 
function and expands the Bhattacharyya distance the most. As the number of 

’ features ’,is." increased,''- th e !.summation; terms : Increase, more: .'rapidly than the 
: exponential term .'The.stfategy for the prediction problem can. be established as' 
follows. If one wants to use as small a number of features as possible and achieve 
as a large Bhattaeharyya distance as possible, one should take advantage of the 
transformed coordinates. The best one feature having the smallest risk value and 
largest Bhattacharyya distance between anytw oclasses can be extracted in the 

transformed coordinates in th a case of small training sample/SituOtiOh^vk:-.-;-

It may be noted from equation (4,46), that if only the mean difference term is 

considered as in the case of a linear classifier with a fixed Bhattacharyya distance, 

the bias increases linearly with the dimensionality, while if both the mean and 

covariance terms are considered with a fixed separability for the case of a 

quadratic classifier, the bias increases quadratically with the dimensionality.

4.2 Empirical Approach

Figure 4.1 shows in hypothetical fashion classification error for several cases. Case

(a) shows the true class conditional Oensity and (b) and (c) are estimated class- 
cpnditiona! densities. TOe area (1) is the true Bayes error, The area (2) Or (3) is the 

'estimated Bayes error which is obtained by the estimated parameters. The area (4) 
bhT5) is the summation of BayOs error and increment error when the classifier is 

designed by training samples and the error rate estimated by test samples. In 

Section 4.1, the difference between area (1) and arOa (2) or area (3) is minimized. 

In this section, the incremental error due to the inaccurate estimates which is 

shown in the area (4) or (5) is studied empirically. Fukunagaand  Krile[5] 

developed an algorithm for calculating recognition error when applying pattern 

vectors to an optimum Bayes' classifier. When the q random variables of the vector 

x are independent the minus-log-likelihood ratio h(x) is as follows.

h(x) = P(Xl)

q

1=1 F



Decision bounary due to case (b)

Decision bounary due to case (c)

(a) True Class densities

► 

S M -

(b) Class densities estim ated  

from a fin ite  training set

(c) cl ass densi ti es esti mated 

from another training set

( 1 )  T ru eB ayeserro r

(2) Estimated Bayes error

(3) Estimated Bayes error

(4) True error due to c la s s ifie r  (b)

(5) True error due to c la s s ifie r (c)

Figure 4.1 C lass-conditional Densities and Decision Boundaries for a 

Hypothetical 2-class Case (a) True Class Densities (b), (c) Class Densities 

EstimatedfromaFiniteTrainingSet



The characteristic''‘function of h(x) for class/ is

^(w l -  E{ejvvh(x> I class i} = J  ejwh(x) p.(x) dx

- ° o

SI
jwh(x.)

Pitx()dx.

(4,50);

By definition, once the characteristic function of h(x) is obtained the density function
of h(x) is its inverse Fourier transform.

OO .

p(h|olass i) = ^ - J  $.(w) e  "  dw

( 4 .5 1 )

When the distributions are normal, two covariance matrices can be diagonalized 

simultaneously by linear transform . In the transformed coordinate system, all 

features are Independent. The errors are invariant under any transformation 

because the likelihood ratio is independent of any coordinate system. 

Oharacteristic functions of the minus IOg likelihood ratio for class 1 and class 2 can 

be easily computed because the q random variables of vector x are independent. 

This approach reduce the q-djmensipnal integral to a one-dimensional integral for 

the error from each class.

e* = p i |  Pi (h) dh + F2J  p2Ch) dh

0 ; . "■-.'Z . . (4.52)

The increment error due to the inaccurately trained classifier may be expressed as

Ae = £ - £*

\  / \ :

Pi Jpi(h)dh + P2 |p2(h)dh - Pi |p i(h )d h  + P2 Jp2(h)dh (4.53)

O -OO •/  V

To investigate the global relationshipsbetween the dimensionality, the sample 

size) and the correct classification accuracy, a Monte Carlo simulation is used here. 

The true Bayes' error can be computed numericaily by Fukunaga's algorithm if one 

has perfect information of the mean and covariance for Gaussian Classes. Although 

only 1-dimensional numerical integration is needed for Fukunaga's algorithm, it is 

difficult to obtain accurate Bayes' error easily in high dimensions. Therefore, a 

more simple means to estimate the Bayes' error is needed to study relationships



between sample size, dimensionality, and added error empirically. Whitsitt and 

Lahdgrebe [50] suggested that if we Ietf = erf, then we are assured that the locus of 
(pe, f) contains pe = f, and in this sense, f approximates the error. The Chernoff 
bound for a multivariate normardistribution is given by

Q(S) -  “ S(1 - SX m 1 - m 2)T{ (1 '  s )E i + s 2 J  OfTi1 - m2)

f  |(1 - SjZ1 + SZ2I

+  2 l n  ,1 - s  .S

1^11 IS2I
(4.54)

The Bhattacharyya distance B = C(0.5). The error function Bhattacharyya distance 

is defined by

-. V : -

E = 0.5 - O-Serf(Vl) (4.55)

The error function transformed Bhattacharyya distance is defined by

Eb = 1 - E = 0.5 + 0.5erf(VB) (4.56)

where the error function is given by

OO

Ambiguity and linearity are two significant characteristics of separability measures. 

It is empirically illustrated that the probability of correct classification and the error 

function transformed Bhattacharyya distance have a linear relationship. Figures 

4.2, 4.3, and 4.4 show why the error function Bhattacharyya distance has linear 

relationship with Bayes’ error, as explained in the following. The q is the 

dimensionality and n is the number of samples.
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Tsttact aryyar 3fstanc e™  

Bhattc charyya Distance

SitpDnsntrahB 

Error FLinciior

Bhattacharyya Distance

Figure 4.2 Simulation Result for Exponential Bhattacharyya  

Distance vs Error Function Bhattacharyya Distance (q=10, n=°o)
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An empirical simulation was performed for ten and thirty dimensions. One thousand 

test samples are used to estimate the classification accuracy. The number of 
simulations in Figures 4.3 and 4.6 is one thousand at a given number of training 

samples. The error function Bhattacharyya distance is a tighter bound than the 

exponential Bhattacharyya distance as shown in Figure 4.2.
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In Figure 4.3, classification accuracy versus transformed Bhattacharyya distance is 

plotted where the dimensionality is ten. In Figure 4.5, classification accuracy versus 

transformed Bhattacharyya distance is plotted where the dimensionality is thirty. 

The classification accuracy is obtained by Fukuhaga's algorithm, By using the error 
function Bhattabharyya distance, classification accuracy versus error function 

transformed Bhattacharyya distance are illustrated in Figures 4 .4 and 4.6. The 
probability of correct classification and the error function transformed  

Bhattacharyya distance are seen to have a linear relationship," and the error 

function Bhattacharyya distance is a tighter bound than the exponential 

Bhattacharyya distance.
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Therefore, E 8 is selected to study relationships between sample size, 

dimensionality, and classification results, and to observe the Hughes phenomenon 

to determine the optimal number of features in two class cases. In Figure 4.7, the 

dimensionality problem such as the Hughes phenomenon is observed. The 

classification accuracy shown in Figure 4 .7  is much less than the ideal 

classification accuracy in Figure 4,6.
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Figure 4.7 Simulation Result for Pc vs Eb (q = 30, n = 60)

Figure 4.7 shows that the estimated classification accuracy is well below the real 

classification accuracy when only 60 training samples are used to estimate the 

class-conditional densities in 30 dimensions. An empirical simulation was 

performed for from thirty to one hundred dimensions. One thousand test samples 

were used to estimate the classification accuracy. The number of simulations in 

Figures 4.8 and 4.9 is fifty for each given number of training samples. The 
corresponding number in Figures 4.7, 4.10, and 4.11 is one thousand.
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As the number of training samples is increased, Pc gradually approaches the ideal 

Pc. In Figures 4.8 and 4.9, two times, ten times the dimensionality and power of two 

of the dimensionality of the data are used to estimate the class-conditional 

densities in the simulations. When two times the dimensionality of the data are 
used, the estimated classification accuracy is well below the real classification 
accuracy. When ten times the dimensionality of the data are used, the estimated 

classification accuracy is almost the same as the real classification accuracy. When 
the power of two of the data are used* the estimated classification accuracy is 

•'similarTp-I-Ke^feBuit in case of ten times the dimensipnality of the data.
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Figure 4.9 Classification Accuracy vs Ep (q = 100)

To illustrate the one-to-one relationship between estimated classification accuracy 

and Eb, the average classification accuracy are plotted in Figures 4.10 and 4.11. As 

a result, it appears that approximately six to ten times the number of training 

samples with respect to the dimensionality are needed to achieve a satisfactory 

design at this dimensionality.

As the dimensionality is increased, the separability is also increased since the 

added features give more information. When the dimensionality is increased with a 

fixed separability* the added error increases quadratically [60]. However, when the 

dimensionality and the separability increase together, it is difficult to find a simple 

relationship because the increased separability reduces the added error and the 

increased dimensionality cause the added error to increase, as in equation (4.48). 

In this section, the cases of increasing both dimensionality and separability are 

tested.: .
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Figure 4,10 Mean Value bf Pc vs E8 (q = 10)
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Figure 4.11 Mean Value of Pc vs E8 (q = 30)

The increment error is simultaneously affected by two factors, dimensionality and 

separability. For predicting the optimal number of features, we conclude that the 

optimal number of features in transformed coordinates is just one when only small 

numbers of samples are available. Empirically, it is shown that a reasonable 

sample size is six to ten times the dimensionality if the dimensionality and 

separability simultaneously increase.



CHAPTER 5. DATA PROCESSING AND EXPEm yENTS

5.1 Introduction
In this chapter, Decision Tree Classifiers (DTCs) designed by varidus procedures 

will be compared to verify which design procedure provides the better 

performance. Further matters presented are,

• a performance comparison of a DTQ and a single layer classifier;

• a DTC approach for multitype data;

• the effects of the feature extraction in DTC design; and,

• a  strategy for feature selection.

The Bayesian decision rule with the assumption of a 0-1 loss function and 

multivariate normal distributions is used as decision rule in all experiments when 

classification is involved. The 0-1 loss function assigns no loss to a correct 

decision, and unit loss to any error. Thus, all errors are assumed equally costly. 

Three kinds of data sets are used and will be referred to as follows: Flight Line C- 

1 (hereafter referred to as FLC-1), Anderson River, Field Spectrometer System 

(FSS).

FLC-1 data were measured and recorded from an aircraft flight on June 28, 1966, 

at approximately 12:30 PM local time, at an altitude of 2600 feet above terrain in 

Tippecanoe County, Indiana. A spatially scanning radiometer with a 3 milliradian 

spatial resolution was used to obtain relative measurements of the energy reflected 

from the ground in twelve different wavelength bands. As shown in Table 5.1, the 

last two wavelength bands are in the reflective infrared portion of the spectrum. The 

other bands encompass the visible wavelengths. Part of the selected area is used 

for training and a much larger portion is used fortesting.



Table 5.1 Muitispeetral Scanner Data of FLC-I

Feature No. Spectral Band 

(microns)

I 0 .4 0 -0 .4 4

2 0 .4 4 -0 .4 6

3 0 .4 6 -0 .4 8

4 0.48 - 0.50

. 5 0 .5 0 -0 .5 2

6 0 .5 2 -0 .5 5

. 7 ■ 0 .5 5 -0 .5 8

8 0 .5 8 -0 .6 2

9 0 .6 2 -0 .6 6

10 0 .6 6 -0 .7 2

11 0 .7 2 -0 .8 0

12 0 .8 0 -1 .0 0

Table 5.2 FSS Data

; ’ ' ■;: ■ ‘ ■
Location Date

Kansas

Kansas

9-28-76

5-03-77

Kansas 6-26-77

; ’■ V ""-V- '' ■ ' . '= ; Nbrth Dakota 5-08-77

v V:'-'' :v North Dakota 6-29-77

. - /vVV-'- V V' 'V North Dakota 8-04-77

Six sets of high spectra! resolution field measurement data were taken over 

Williams County, North Dakota and Finney County, Kansas. These data were taken 

by the Field Spectrometer System (FSS) mounted in a helicopter. The spectral 
resolution was 0.02 pm for the interval from 0.4 jim  to 2.4 pm. Location and date 

information is given in Table 5 2 .

The Anderson River data set consist of 11 bands of airborne multispectral scanner 

(A/B MSS) data, 4 bands (X and L) of synthetic aperture radar imagery (horizontal 

polarization transmit and horizontal/vertical polarization receive) and digital terrain 

model informatibn including digital elevation, slope and aspect (DEM, DSM and 

DAM respectively). The A/B MSS band intervals are giveri in Table 5.3.



Table 5.3 AJB MSS for Anderson River

Spectral Band 

(microns) ^

Feature No.

0.38 - 0.42

0 .4 2 -0 .4 5

0 .4 5 -0 .5 0
0.50 - 0.55

0.55 - 0.60

0.60 - 0.65

0.65 - 0.69

0.70.-.0,79

0 .8 0 -0 .8 9

0 .9 2 -1 .1 0

8.00 -  14.0

The A/B MSS Anderson River data was obtained over a Canadian forest site (2.8 

km by 2.8 km) on July 29, 1978 at an altitude 3100 meters above sea level. The 

spatial resolution was 7 meters. Weather conditions were clear. Steep Mode SAR 

data was measured on July 25, 1978 over the site at an altitude 6700 meters above 

sed level. The raw data resolution was 3 meters. The X band wavelength is 3 cm 

and t. band wavelength is 23 cm. Shallow Mode SAR data was obtained On July 

31,1978 at an altitude 6400 meters above sea level.

5.2 Comparisons for Bottorn Up DTC

In this section, three tree design methods, single linkage, complete linkage, and 

dynamic linkage are used to design a bottom up DTC as described in section 2.3. 

To design the bottom up DTC, mean vectors and covariance matrices are 

estimated from the training samples. The Bhattacharyya distance is used to 

estimate the separability between groups because of its smaller ambiguity [50].

Experiment 5.2.1

Eight classes of FLC-1 data were selected as follows: Alfalfa, Corn, Oats, Red 

Clover, Soybeans, Wheat, Bare Soil, and Rye. As shown in Table 5.4, the number 

of training samples for each class was chosen such that it is only slightly larger 

than the number of spectral features since it is commonly the case in remote 

sensing situations that training set sizes are small. At least one more sample than 

the number of features is needed to avoid singular covariance matrices. A Jarge 

number of samples were used to evaluate the classification accuracy as shown in 

Table 5.4.
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Table 5,4 FLC-1 Data

Class #Train #Test Dim

Aifalfa(b)

Corn(e)

;Oats(j)' .
Red CIover(I) 
Soy Bean(p) ’ 
Wheat(U) ’ 
Bare Soil(X) ■ 
Rye(y)

15

15 - 
15 
15 
15 
15 

■■■15 

IS  '

. 760  I 12 '

1360 ' .12
1380' ..12 :
1357 | 12 .
1053 . T 2 ..
492 12 '

: 1012 . 12 :.!
' 2322 - .  -12 I

(b,e/j, j,p; u,x ,y)

u (b, e, I  \, p, x, y)

y (b, e, v lp /x )

x (b ,© ,K p )

b I e p

Figure 5.1 SingIe Linkage DTC (FLG-IsSGIass)
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(b /e , j, I, p, u, x, y)

(b ,e , j , l ,  P1Uj X)-

u (b, e, I  I, p, x)

j (b ,e /l ,p ,x )

Figure 5.2 Dynamic Linkage DTC.(FLC-i , 8 Class)

The resulting single linkage DTC for eight classes is shown in Figure 5.1 and the 

dynamic linkage DTC in Figure 5.2. The complete linkage DTC is shown in Figure 

5.3. The results of classification for various numbers of features are given in Table 

5.5, 5.6, and 5.7. Because the mean differences between classes are dominant, the 

extended canonical analysis for the feature subsets was used to seek maximum 

separability.
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V (b. I) j ' {Ut y}  U -(Ot P i )I)::

© P

Figure 5.3 Complete Linkage DTC (FLC-1, 8 Glass)

Table 5.5 Classification Accuracy(%) for the Single Linkage Design

Class 1‘ ; 2 3 \ 4 . 5 V 6 V-V  7 , 12

Alfalfa 71.2 69.7 72.8 79.6 81.8 85.8 85.7 57.8

Corn 97:4 97 .4 97.9 97.8 96.5 96.0 94.6 84.7

Gats 97.8 97.3 97.1 97.0 97.0 96.5 95.9 61.3

Clover 84.5 85.6 84.3 80.3 77.4 69.6V 71.2 62.1

Bean 85.9 83.4 72.1 75.0 74.0 75.1 71.9 71.0

Wheat 99.2 94.7 93.3 91.5 90.9 83.7 77.4 .'■24.4

Soil 91.6 91.4 90.7 92.0 90.9 85.2 80.7 20.7

Rye 94.5 93.2 86.6 86.6 86.6 85.8 ■. 84.2 - 22.4

Avg 90.3 89.1 86.9 87.5 86.9 84.7 82.7 50.6 |

*
the number of features which is used at each node.
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Table 5,6 Classification Accuracy(%) for the Complete Linkage Design

Class 1 , , 2 3 4 5 6 7 12

Alfalfa 82 .0 81.8 75.5 83.8 83.3 85.1 85.0 52.8

Corn 24.9 22.7 20.0 19.9 21.5 26.5 24.0 87.9

Oats 90.4 91.5 88.3 86.6 82.5 82.3 79.8 43.0

Clover 83.7 85.4 84.8 80.3 75.7 67.2 69.7 54 .8

Bean 86.2 83.5 72.1 75.0 74.1 75.2 72.2 71.5

Wheat 99.6 99.6 99,4 99.8 99.4 99.6 98.0 98.8

Soil 100 100 100 100 100 99.7 99.7 95.6

Rye 96.9 96.5 96.5 96.1 96.0 96.9 98.7 97.9

Avg 83.0 82.6 79.6 80.2 79.1 79.1 78.4 75.3

Table 5.7 Classification Accuracy(%) for the Dynamic Linkage Deeign

Class 1 2 3 4 5 6 7 12

Alfalfa 91.3 84.2 82.8 69.5 63.4 58.8 51.6 6.3

Corn 96.0 96.5 96.9 97.1 97.4 97.3 97.1 88.9

Oats 97.2 97.0 96.7 96.7 96.1 95 .5 94.3 60.3

Clover 88.4 91.2 90.1 87.6 86.4 78.0 74.7 59.9

Bean 85.4 83.0 71.5 74.6 73.4 74.6 71.8 71.5

Wheat 99.2 99.2 98.6 97.8 97.0 95.3 87.4 39.6

Soil 91.4 83.3 86.4 86.1 80.1 70.5 57.9 20.0

Rye 83,6 81.8 70.9 63.9 63.0 57.6 55.2 9.3

Avg 91.6 89.5 86.7 84.2 82.1 78.5 73.8 44.5

Figure 5.4 shows the average classification accuracy vs the number of features 

Used for all three design methods. The dynamic linkage tree gave the best 

performance, and at the lowest feature dimensionality in this experiment. All three 

methods showed a decrease in classification accuracy as the number of features 

was increased. This characteristic is to be expected, given the small number of 
training samples since the quality of class statistics estimation become poorer with 

added features.
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9 0 -O5sa

;omplbte Linkage

9 10 11 12

Number of Features

Figure 5.4 Average Classification Accuracy vs Number 

of Features Used for Experiment 5.2.1. ;

Experiment 5.2.2

Twenty three classes of FLG-1 data are chosen as shown in Table 5.8, to test 

performance of a bottom up DTG in case of a larger number of less separable 

classes. The twenty three classes consist of two alfalfa fields, four corn fields, four 

oats fields, three red clover fields, five soybeans fields, three wheat fields, bare soil, 

and rye field. Fifteen training samples for each class are chosen and at least 492 

samples are used to evaluate the bottom up DTG. To test the more complex data, 
the same species located on different areas are considered as different classes. 

Since the mean difference of the Bhattacharyya distance is dominant between 

classes, canonical analysis for feature extraction was applied;



Table 5.8 FLC-1 Data (23 Class)

Class #Train #Test Dim

Alfalfal (a) 15 675 12

Alfalfa2(b) 15 760 12

Cornl (c) 15 651 12

Corn2(d) 15 1656 12

Corn3(e) 15 1360 12 .

Corn4(f) 15 1998 12

Oatsl (g) 15 1034 12

Oats2(h) 15 737 12

Oats3(i) 15 1872 12

Oats4(j) 15 1380 12

Red Cloverl (k) 15 1360 12

Red Clover2(l) 15 1357 12

Red Clover3(m) 15 836 12

Soy Beanl (n) 15 1189 12

Soy Bean2(o) 15 2491 12

Soy Bean3(p) 15 1053 12

Soy Bean4(q) 15 1349 12

Soy Bean5(r) 15 1890 12

Wheatt(S) 15 576 12

Wheat2(t) 15 671 12

Wheat3(u) 15 492 12

Bare Soil(x) 15 1012 12

Rye(y) 15 2322 12

Figures 5.5, 5.6, and 5.7 show the single linkage, the complete linkage, and the 

dynamic linkage DTC designs. All three classifiers are constructed by the bottom 

up approach.
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Figure 5.5 Single Linkage DTC (FLC -Is 23 Class)
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Figure 5.6 Gomplete Linkage DTC (FLC-1, 23 Class)



f y t k m a b j u h g s x I d i r  q e n p c  o

Figure 5.7 Dynamic Linkage DTC (FLC-1, 23 Class)

Table 5.9. Twenty Three Class Test Sample Accuracies in Per C ent.

Class Single Complete Dynamic

Alfalfal (a) 58.1 60.4 44.0

Alfalfa2(b) 40.5 45.5 29.5

Cornl (c) 57.1 20.3 36.3

Corn2(d) 76.9 66.9 72.8

Gorn3(e) 87.2 59.6 74.0

Corn4(f) O O 0

Oatsl (g) 57.8 47.1 53.6

Oats2(h) 67.4 71.6 67.4

Oats3(i) 51.6 4.7 78.0

Oats4(j) 71.0 70.4 85.3

Red Cloverl (k) 69.7 93.8 69.3

Red Clover2(l) 81.5 51.9 85.0

Red Clover3(m) 36.5 37.8 42.6

Spy Beanl (h) 30.1 12.1 26.4

Spy Bean2(o) 33.6 31.4 33.3

Soy Bean3(p) 51.1 42.1 52.9

Soy Bean4(q) 6.9 9.8 11.9
Sby Bean5(r) 91.3 96.9 89.6

Wheatt(s) 42.9 42.9 42.9

Wheat2(t) 52.8 88.2 52.8

Wheat3(u) 97.6 99.4 97.6

Bare Soil(x) 94.7 98.8 97.7

Rye(y) 84.1 85.6 84.1

Average 58.3 53.8 57.7



fab le  5.9 shows that the single linkage DTC gave slightly better performance than 

the dynamic linkage approach, with the complete linkage method somewhat lower 

than these.

Experimeht 5.2.3 ■

For a high dimensional data test of the bottom up design approach, ten classes of 
FSS which-are spatially and temporally; va ry ing data were,chosen- as . shown in ■ 
fa b le .5,10. The ten classes consisted-of three summer.fallows fields, .two., 

unknowns fields, 'and five-wheat fields. T h e FSS contained'.'.Sixty-OneZspectrai 
bands, however, since there are water absorption regions in the higher range, the 
first thirty features of the sixty-one were selected for this experiment.

Table 5.10 FSS Data

Class #Train #Test Dim

Fallowl (a) 40 603 30

Fallow2(b) 40 374 30
. ■' V FaIIowS(G) 40 397 30

V ; ..Z . • ’Unknown 1(d) 40 642 30

: V/ Unknown2(e) 40 611 30

W heatl (f) 40 618 30

Wheat2(g) 40 637 30
. i Wheat3(h) 40 891 30

'%/ - V Wheat4(i) 40 624 30

Wheat5(j) 40 747 30

Several hundred test samples for each class were used to insure a reliable 

estimate of performance. To simulate the limited sample situation, forty training 

samples for each class were selected on the basis of evenly spaced separability. 
The location information is given in Table 5 .11.

Table 5.11 FSS Class Assignment

Location. Class

;KansaS(9-28-76) b, e

Kansas(5-3-77) <U
Kansas (6-6-77) a, g

North Dakota(5-8-77) e, I

North Dakota(6-29-77) ; .1.:;.
North Dakota(8-4-77)
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(a, b, c, ci, e, f, gy hy i, j)

(9 ,h ) (a, by cy dy eyfy iy ])

(c /i) (a, by d, e)

c i (bye) (a, d)

b e a d

Figure 5.8 SingIeLinkage DTC (FSS )

(a, by cy dy ey fy gy hy iy j)

( f , a h j )  (aybycydyey i)

(f, j) ( a h )  (bye) (ay cy dy i)

(a, d) (cy i)

Figure 5.9 Complete Linkage DTC (FSS)



(a, b, c/d, e, f, g/h,

; (g, h) (a, .b, c, d, e, f, I  j)

/ sN V>: ■?
f (a, b ,c, d ,e , i)

/ \
(b, e) (a> c, d, i)

(CJ) (a, d)

Figure 5.10 Dynamic Linkage DTC (FSS)

Figures 5.8, 5.9, and 5.10 show the single linkage, thecom plete linkage, and the 

dynairiie linkage DTC . Table 5.12 shows the classification performance in each 

case. As is seen, there was very little difference in the performance of the three 

design approaches in this experiment.

jpsasssss,,'___ :

Class Single Complete Dynamic

FaIfowI (a)

Fallow2(b)

FaIIbwS(C)

Unknownl (d)

Unknown2(e)

W heatl (f)

Wheat2(g)

WheatS(h)

Wheat4(i)

Wheat5(j)

55.9
82.4

66.0

44.1

69.7

59.1 

84.0

85.8  

48.7

81.9

63.5

82.6

67.5

41.3  

71.0  

5 6 . 5 ' ■

83 .5

85.3

49.4  

83.8

6 3 .7  

8 2 .6

61.7  

43.9

71.7

84.0

85.8  

50.6

81.9

Average, " 6 7 .8 6 8 .4 : 6 8 . 5  • j
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In assessing the three experiments so far, although there was some difference in 

the performance of the three bottom up design procedures, no one method 

appears to clearly dominate. In cases where a bottom up approach is called for, 

any of the three might be useful, with a perhaps slight preference for the dynarhic 

approach.

5.3 Top Down and Hybrid DTC

In this section, the top down DTC and the hybrid DTC will be compared. In the top 

down approach, a clustering algorithm is applied to separate the subgroups, the 

criterion function used for the top down approach is Euclidean distance while the 

criterion function for the hybrid approach is the normalized Euclidean distance. In 

the hybrid approach, the tree structure is dependent upon the initial cluster points. 

To obtain the initial points, a bottom up grouping method is used.

Experiment 5.3.1

Eight classes which are the same in experiment 5.2.1 were selected again and the 

same training and test sets were used. To construct the top down tree, the mean 

vector and covariance matrix of the combined training data were computed to 

obtain initial cluster centers uniformly spaced along the principal diagonal of the 

rectangular parallelepiped enclosing that data. After obtaining two subgroups, 

clustering is applied to each subgroup again. Figure 5.11 shows the top down 

DTG which results. Note here that are three overlapping classes , e, I, and u.

e  j b I P u x

Figure 5.11 Top Down DTC (FLC-1, 8 Class)



< IM <  h i  P, M, x , y )

Figure 5.12 Hybrid DTC (FLC-1, 8 Ciass)

Forthe hybrid DTC, the complete linkage method is used to obtain the initial cluster 

centers and initial subgroups. Figure $.12 shows the hybrid DTC . There is one 

overlapping class, e. For feature extraction, extended canonical analysis is applied 

in each subspace to ascertain the largest Bhattacharyya distance. The hybrid DTC 

is seen to improve the classification accuracy as shown in Table 5.13 and 5.14.

Table 5.13 Top Down PTC Result (FLC-1,8  Class)

Class V T t + ? ' ' '2.1 ■ . 4 ■: 7 ? ::4 2 . '

Alfalfa 70.9+ 58.8 61.2 65.5 59:3 65 .8 55.7 49.7

Corn 97.1 96.5 96.3 96.8 98.8 98.2 98.5

Cats 97.2 96.5 96.2 95.4 92.6 88.6 87.5 76.7

Clover

Bean
87.0
85.9

88.9
83V1

91.6

72.1

85.2

74.7
83.3

73.8

81.6

74.7

70 .4

71.6

"■■.37.9-

70.9

Wheat 99.4 99.2 99.2 99.4 99.2 .99.0 t ,:9 8 .2 . V. '98.8 "

Soil 99.7 99.7 99.9 96.3 95.3 95:5'‘ ^ :9 4 .4T ' >:--; 1;Q0v-

Rye 94.0 93,2 - 89.6 89.1 89.0 90.9 5: 98.6- ■

Avg 91 .4 89.5™1 88.3 88.3 86.5 86.8 83.6 76.8 ]

* the number of features which is used at each node.

+ correct classification accuracy(%)



Table 5.14 Hybrid PTC Result (FLC-1, 8 Glass)

Glass ■: 1 . 2 3 4 5 6 7 12

Alfalfa 88.6 76.2 73.0 75.4 68.4 63.4 54.2 9.0
Corn 97.0 96.5 96.3 96.8 98.8 98.2 98.5 8 T 8

Oats 92.0 96.0 96.2 95.4 93.2 89.6 88.0 81.7

Clover 88.5 91.6 92 .8 90.0 89.9 89.8 74.2 37.1

Bean 85.9 83.1 72.1 74.7 73 .8 74.7 71.6 70.9

Wheat 99.4 99.2 99.2 99.4 99.2 99.0 98.2 98.8
Soil 99.7 99.7 99.9 99.9 99.9 too 100 94.8

Rye 95.5 93.5 93.7 93.4 93.3 94.0 94.4 93.2

Avg 93.3 92.0 90.4 90.6 90.0 88.6 84.9 71.0

Experiment 5.3.2

In order to test the top down and hybrid DTC design schemes against the case of 

large numbers of less separable classes, the twenty three classes; training and test 

samples of experiment 5.2.2 are again used. Figure 5.13 shows the top downDTC 

resulting. Note that there are two overlapping classes c and k.

For the hybrid DTC1 the complete linkage method was used to obtain the initial 

cluster centers and initial subgroups. In the first stage, two subgroups were initially 

determined by complete linkage. After the mean vectors and covariance matrices of 

the subgroups were obtained, mean vectors became initial center points and 

covariance matrices were used to normalize the distance from sample to cluster 

point. After merging and migrating, new subgroups were obtained.



a b k m  e j k i t  f  g s y u x I p q f  h c d c n o

Figure 5.14 Hybrid DTC (FLC-1, 23 Glass)

Figure 5.14 shows the hybrid DTC. There are four oyerlapping classes c, es k and 

o. For feature extraction, extended canonical analysis was applied in each 

subspace ,to maximize'the- Bhattacharyya distance. The hybrid DTQ reduced the.
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error rate by 5.2 percent with respect to the top down classifier in this experiment, 
as shown in Tables 5 .15 and 5.16.

Table 5.15 Top Down PTC Result (FLC-1, 23 Class)

Class I * 2 12

Alfalfal (a) 31.7+ 25.2 19.1

Alfalfa2(b) 18.3 22.1 7.1

Cornl (c) 39.3 39.8 22.4

Corn2(d) 66.6 66.6 59.2
Corn3(e) 80.4 79.6 62.2

Corn4(f) O 0 0

Oatsl (g) 38.0 38.9 1.1

Oats2(h) 56.5 55.4 35.8

Oats3(i) 37.1 39.5 19.7

Oats4(j) 70.9 70.8 72.9

Red Cloverl (k) 82.7 81.7 92.8

Red Clover2(l) 84.0 86.2 81.9
Red Clover3(m) 17.3 16.8 17.2

Soy Beanl (n) 0.4 0.8 0

Soy Bean2(o) 39.2 40.2 72.8

Soy Bean3(p) 53.3 53.1 55.4

Soy Bean4(q) 8.3 37.8 61.4

Soy Bean5(r) 95.7 89.3 56.0

Wheatl (s) 49.3 49.5 5.9

Wheat2(t) 89.3 87.6 24.3

Wheat3(u) 81.7 82.1 98.0

Bare Soil(x) 100 too 99.9

Rye(y) 82.5 81 .4 56.3

Average 53.2 54.1 44.4

* the number of features which is used at each node.

+ correct classification accuracy(%)



able 5 .16 Hybrid DTC Result (FLC-1 , 23 Class

Class - T T r - ' 2 12

Alfalfal (a) 41.2 35.0 67.9

.. . ■; ;■ Alfalfa2(b) : -35.5 ' :4 7 .i - 11.7
/■' ' . V  ; V , >; ;V., Gornl ( c ) '-85 :3  ,.. V- . ..■■85.7: ■■45.8

• ■. : ", Com2(d) 61.8 - 61.-1 T'86.2- :

. ■■ ■■ ..... Corh3(e) 81.9 80,6 . ' - 80,8:: Y:

Corn4(f) T Q . O , ' OT,
■ ; : Oats! (g) 44.6 44.4 T^  20,5

■■ .'■■■ -- Oats2(h) 74.5 ■-. 73.8 -■ ; 72.1
- ■ ■' ' ' - . . - V - ' '. Oats3(i) 41.1 43.0 17 .9

V . / V' •/ \  -■ V ' Oats4(j) 69.6 . '67.6 ■ ' 65.1
Red Cloverl (k) 82.4 81.7 60.9

.■ vV;’; . :V.V- \  - ■ /  . Red Clover2(l) 77.6 78 .5 79.6

Red Glover3(rh) 29.5 29.0 32.4

Soy Beanl (n) 20.0 20.3 21.8

Soy Bean2(o) 22 ,7 14.4 38.9

■ . ■■ ■ ■  :■' v / : : Sby Beari3(p) 53 .0 52.8 52.5

■ - ■ . ' ■ Soy Bean4(q) 8.0 40.2 58.0

Soy Bean5(r) 95.6 89; T 56.0
' . ■ ■ ' -'V';' ' : Wheatl(S) 45 .3 45.3 : 21.5

Wheat2(t) 94.9 97.6 . - 9 7 , 4

. - ; ' • ' I Wheat3(u) 97.6 99.0 24.8
‘ ' 'V T .. _ ■■■- - ' Bare SbiI(X) 100 T O O 94 .3

' ' - -■ ■■ ' . Rye(y) 82.4 85.5 95.4

Average 58.5 59.4 52.3

5.4; B otto m Up anCf.' Tjy b rid : :.DTC

In the previous section, the hybrid DTC was shown to provide a greater 

classification accuracy than the top down DTC: The hybrid DTG will next be 

compared to the bottom up DTC. Table 5.17 shows that the hybrid DTC reduces the 

error rate by 4 .7 % over the complete linkage DTC. Table 5.18 shows that the 

hybrid DTG improves 10.3 % classification accuracy over the complete DTC and 

has the highest performance among the methods tested.
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Table 5 .17 Hybrid and Bottom Up PTC (FLC-1,2 3  Class)

Class Hybrid Single Complete Dynamic

Alfalfal (a) 41.2 58.1 60.4 44v0

Alfalfa2(b) 35.5 40.5 45.5 29.5

Gornl (c) 85.3 57.1 20.3 36.3

Gorn2(d) 61.8 76.9 66.9 72.8

Corn3(e) 81.9 87.2 59.6 74.0

Com4(fJ O 0 0 0

Oatsl (g) 44.6 57.8 47.1 53.6

Oats2(h) 74.5 67.4 71.6 67.4

Oats3(i) 41.1 51.6 4.7 78.0

Oats4(j) 69.6 71.0 70.4 85.3

Red Cloverl (k) 82.4 69.7 93.8 69.3

Red Clover2(l) 77.6 81.5 51.9 85.0

Red Clover3(m) 29.5 36.5 37.8 42.6

Soy Beant (n) 20.0 30.1 12.1 26.4

Soy Been 2 (o) 22.7 33.6 3 1 .4 33 .3

Soy BeanS(P) 53.0 51.1 42.1 52.9

Soy Bean4(q) 8.0 6.9 9.8 11.9

Soy Bean5(r) 95.6 91.3 96.9 89.6

Wheatl (s) 45.3 42.9 42.9 42.9

Wheat2(t) 94.9 52.8 88.2 52.8

Wheat3(u) 97.6 97.6 99.4 97.6

Bare Soil(x) 100 94.7 98.8 97.7

Rye(y) 82.4 84.1 85.6 84.1

Average 58.5 58.3 53.8 57.7

Table 5.18 Hybrid and Bottom Up PTC (FLC-1, 8 Class)

Class Hybrid Complete Single Dynamic

Alfalfa2(b) 88.6 82.0 71.2 91.3

Com3(e) 97.0 24.9 97.4 96.0

Oats4(j) 92 .0 90.4 97.8 97.2

Red Clover2(l) 88.5 83.7 84.5 88.4

Soy Bean3(p) 85.9 86.2 85.9 85.4

Wheat3(u) 99.4 99 .6 99.2 99.2

Bare Soil(x) 99.7 100 91.6 91.4

Rye(y) 95.5 96.9 94 .5 83.6

Average 93.3 83.0 90.3 91.6
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Experiment 5.4.1

In this experiment; the untransformed feature extraction method is applied at each 

node to compare the top down, the bottom up, and the hybrid PTC performance. 
The DTC'S as shown in Figures 5.6, 5.13, and 5.14 are used for this experiment, -V

The numberof features used for classification waS; chosen arbitrarily asthree since 
classification festilts for this data commonly peaks at about three features. The 
featur@:--subsets/are, selected. .based.Vbn The vave rag ed ,paW  .
distance. When the best three features are used over all nodes, the'hybrid DTG Kas-- 
the best performance. Improvements of classification accuracy of a hybrid PTC is 
clearly bbsewed, as shown in Table 5 T 9  and 5,20. It is noted that the classification 
accuracy of the hybrid DTC is about 5 % higher in eight classes and 9 %  higher in 

twenty three classes than the'bottom up DTG.

Table 5.19 Untransfbrmed Best Three Feature Result (9 Class)

V CIasSV'C ' V C V iv V V'-c;,-. o r "Vs -v w T-/:*; V - Ty y ■ Avg

Topdown 58 .0 98.0 66.0 78.4 85.6 99.6 99.9 98.6 85.5

Bottom up 58.2 97:4 98 .7 78,7 85.7 99.6 82.6 1 52.1 ■■V61,6:-

Hybrid 66 .4 98.2 66.0 81.0 85.6 99.6 99.9 ■ -.98.5 J

Table 5.20 Untransformed Best Three Feature Result (23 Class)

Class V ia Vb TV;; Tc/ .-V.-:-V d e C V TvVT Qv;-:;:; / h / ; v
Topdown 26.0 22.5 5.2 6 4 0 89.3 0 3 .2 73.4

Bottom up 35.1 32.8 72.7 44.0 85.7 V 0.v I-SSvtv n rr.e -
Hybrid 39.4 40,8 77.6 76.6 89.7 .VO; T .1.8,9'v 46.;1

Cl T T VT " c Vv ■ - V  ■ V -- . : C v - ; v/ V'-' V'Vv' V 'V V t --.

Class . i i Vk V I .. n ; - . Ovv- - P
Top down 37 .8 57.7 97.0 77.7 23.9 8.7 7,4 55.9

Bottom up 20.2 59.7 51.5 64.9 2 4 0 7.0 23.7 49.6

Hybrid 27.0 90.4 /7 6 .3 75.0 37.7 8.0 17.4 55.9

vv  v :V - v. - , V ’ ■;. . /; V - V-. v. W sT t

Glass /'--C-Q TC . T TV-V Tsv VV ■ V' -1 -v y.-;; T b  V T X -TVyyv Avg I

top down 40 .3 75,4 0.5 5.1 98.6 100 71.9 4 5 .3

bottom up 11.6 42.6 40.6 34.4 96.1 92.3 48.5 v46-v71
hybrid 3 4 7 7 4 0 20,0 77.5 98.4 100 94.0 . 5 5 , 5  I

. - ’ V . -v - ; • -
-V - -.,-:t 'V-V'' / . ‘V! vvVv-T-



79

5.5 DTC and Single Layer Classifier

As demonstrated in section 5.4, the hybrid DTC has the best performance among 

the methods tested. The following experiment is conducted mainly for the purpose 

of observing the dimensionality problem in multispectral recognition and 

comparing the DTC to the single layer classifier.

Experiment 5.5.1

The same eight classes, training and test as in experiment 5.2.1 and the twenty 

three classes, training and test as in experiment 5 .2.2 were selected again. Two 

feature selection methods were used. The first feature selection method, called 

untransformed feature selection, used the pairwise comparison of Bhattacharyya 

distance. The second feature selection technique, called transformed feature 

selection used the canonical transform method. In the untransformed feature 

selection case, the error rate of the complete feature set was always higher than 

the best result which was obtained by using subsets of twelve features as shown in 

Figures 5 .15 and 5.16. The best performance was achieved at between three and 

six features.



Single Layer Classifier 

Hybrid DTC
O 40

■ Humber ©! Features

Figure 5 .15 Urrtrahsformeci Feature Selection Result (8 Glass)

The hybrie! PTG Vvas compared to the single layer classifier in Figures 5.15 and 

5.18. In Figure 5,15,,The untransfOrmed feature selection technique was applied 
and 8 classes of FLC-I data were used. The result shows that the DTG has better 

performance at small feature subsets. There are fluctuations above 6 features due 

to variations of the sample mean and sample covariance which are random 

variables. In Figure 5.16, the untransformed feature selection technique was 
applied and 23 classes of FLC-1 data were used. Figure 5.16; shows that the DTC  

had best classification results at eight features.
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3 ■ 40

Single Layer Classifier 

Hybrid DTC
O  20 ■

Number of Features

Figure 5.16 Untransformed Feature Selection Result (23 Class)

The transformed feature selection technique was applied to the 8 classes and 23 

classes cases of FLC-1 data. Figures 5.17 and 5.18 show the results. These two 

figures show that the DTG had better performance than the single layer classifier.
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40

ayer ClassifierShgIeL

N um ber o f F ea tu res

Figure 5.18 Transformed Feature Selection Result (23 Class)

5.6 DTC for Multisource Data

The DTC can be also applied to multisource, multitype data. In this section, a DTC 

application to such data will be described. The Anderson River data was the 

multisource, multitype data as described in section 5.1.



Table 5.21 Multisource Anderson River Data

Glasses #Train

1902 

5393  

2865  

3143  

1279  
12594

pouglas-Fir(d) V
D-F + LodgepoIe Pine(f) 
DHr + Cedar(i)

Hemlock + Cedar(I)

D-F + Other SpedeS(q) 

Forest Glearings(t)

Figure 5.19 Hybrid DTC (Multisource)

Experiment 5.6.1

Six classes of Anderson River data were selected as shown in Table 5.21 In the 

first stage, two subgroups for each source, A/B MSS, Steep SAR, Shallow SAR, 

DEM, DSM, and DAM, were obtained by complete linkage. Two subgroups 

provided the initial information which determined two initial cluster centers. After 

applying the normalized Clustering algorithm for the top down approach, the better 

source was selected by comparing the evaluation function which was defined in 

equation (2.5). Figure 5.19 shows the hybrid DTC resulting for multisource data 

MSS was selected as the best source in the first stage. There is one node which 

has two subgroups, One subgroup consists of b, f, I, l,q. Another subgroup is t. In 

the second stage, DEM was the best source. In the third stage, MSS was the best



source for the left node and DEM was best for the right node. In the fourth stage, 
MSS was selected for left node and DSM for right node. The DTG reduces the error 
rate by 7.5 % over the single layer classifier when using A/B MSS, as tabulated in 

Table 5.22 h i

Table 5.22 Multisource Data Result

■Class A/BMSS* Steep SAR* Shallow SAR*

Douglas-Fir 59.6 75.9 44.3

D-F + Logepole Pine 37.9 26.9 11.6

D-F + Cedar 43.1 18.9 20.1

Hemlock + Cedar 67.9 51.6 34.5

D-F + Other Species 0.1 74.6 15.3

Forest Clearings 5.1 67.7 24.1

Average 57.0 52.6 25.0

Class DAM* DEM* DSM* DTC

Douglas-Fir 12.3 44.4 0 54.9

D-F + Logepole Pine 12.0 43.7 25.8 45.7

D-F + Cedar 82.1 0 0 43.4

Hemlock+ Cedar 0 85.4 91.7 93.6

D-F + bther Species 29.0 95.9 43.2 36.9

ForestCIearings 0.5 22.2 17.4 62,3

Average 22.6 48.6 29.7 64.5

k The single Iayer classifier is applied.

5.7 Strategy for Feature Selection

Previously in Chapter 3, we introduced extended canonical analysis and 

autocorrelation analysis as feature extraction methods and derived the risk function 
of the classification accuracy in Chapter 4, When the number of training samples 

are small, to minimize the risk function with a constraint to maximize the 

Bhattacharyya distance, the dimensionality must be reduced while maximizing the 

Bhattacharyya distance. Equation (4.48) showed that the best one feature in the 

transformed coordinate should give the best results in a situation which has only 
small numbers of training samples. We note that the above statements are 

analytically probable only for two classes. In the following experiments, we will 
demonstrate that the best one feature which has the maximum separability 

produces the best performance.



FLG-1 data which was used in Experiment"5.2,1 was used again in this experiment, 

In transformed coordinates^ the best single feature was extracted by canonical 

Analysis, Since the mean difference between classes was dominant. Nexf features 

in a transformed subspace were extracted by extended canonical ahalysis or 

autocorrelation analysis because the mean difference became smaller in a 
subspace. Therefore, added features are obtained from the extended canonical 

analysis and autocorrelation analysis. In this experiment, the best single feature 

produces the best result here as shown in Table 5.23 and 5.24.

Experiment 5.7.1

Table 5,23 Extended Canonical Result (FLG-1)

; T J ia S s ;^ i ' "4 v y y 5 i ' :. y , \  6 r t f t f )  12

Alfalfa
Corn

Oats
Clover

Bean

Wheat

Soil

Rye

88.6+

97.0
92.0  

88.5  

85.9

99.4 

99.7

95.5 ;

76.2

96.5

96.0  

91:6

83.1

99.2 

99.7

93.5

73.0  

96.3  
96.2  

92 .8

72.1

99.2 

99.9  

93 ,7

75.4

96.8
95.4  

90.0 

74.7

99.4

99.9

93.4

68 .4

98.8

93.2

89.9

73.8

99.2
99.9

93 .3

63.4

98.2

89.6  

89,8
74.7  

99.0

loo 
9 4. Q

54.2

98.5  

88.0
74.2

71.6

98.2  

100 

94.4

9.0

81.8

81.7
37.1 

70.9
98.8

94.8
93.2

Avg 93.3 92 ,0  ; i 90.4 90.6 '90 .0 s 88.6 84.9 71.0 I

* the number of features which is used at each node. 

+ correct classification accuracy(%)

Table 5.24 Canonicai-Autocorrelation Result (FLC-1)

Class T Vrji::- 2 I ■ : 3 - 1 4 -I- 5 “ 7

• ; - ; I

12

Alfalfa 88.6 80.0 60.7 38.3 35.3 25.5 28.3 9.0

Corn 97.0 95.6 96,2 95.5 97.0 97.8 96.5 81.8

Oats 92.0 85,9 89.1 77.8 74.1 71.7 70.6 81.7

Clover 88.5 86.6 88.5 86.8 85.7 83.4 82.4 37.1

Bean 85.9 73.6 61.6 70.1 73.2. 65.4 62.2 70.9

Wheat 99.4 99.8 99.4 99.6 99.6 99.6 99.6 98.8

Soil 99.7 100 100 99.9 99.9 99.9 99.9 94.8

Rye 95.5 96.9 99.4 98.6 98.7 96.9 98.4 93.2

Ayg v 93.3 89.8 86.8 83.3 82.9 80.0 79.7 71.0



For a . high dimensional data test, ten classes of FSS data, the same as in 

experiment 5.2.3, were selected again, and the same training and test sets were 

used. The best single feature was extracted by canonical analysis since the mean 

difference between classes was also dominant. Next features in a subspace were 

extracted by extended canonical analysis. The smallest error rate was obtained 

using the best single feature, as shown in Table 5.25.

Experiment 5.7.2

Table 5.25 Extended Canonical Result (FSS) /

Class 2 3 4 5 10 20 30

■ a 63.5+ 59.2 57.4 57.1 56.4 57.9 47.3 24,9

82.6 83.4 83.4 82.1 81.8 82.4 67.9 36.1

c ; 67.5 68.5 68.5 68.3 71.3 58.7 57.7 69.0

d 41.3 44.1 44.6 48.1 45.2 44.2 49.8 59.2

e 71.0 69.2 68.9 66.6 66.5 58.9 55.8 36.0

f ■ 56 .5 56.8 56.8 54.2 57.0 61.2 59.9 76.1

g 83.5 83.4 82.6 83.5 81.8 81.5 79.1 88.2

h 85.3 84.7 84.7 84.0 82.8 76.5 66.6 59.5

i 49.4 50.8 50.0 48.7 50.8 50.5 47.1 35.4

i 83.8 83.7 83.9 83.3 81.8 74.4 67.5 81.1

Avg 68.4 68.4 68.1 67.6 67.5 64.6 59.9 56,6

* the number of features which is used at each node. 

+ correct classification accuracy(%)

As a result, the hybrid DTC has better classification accuracy than the maximum 

likelihood Gaussian classifier and the other DTCs when the best single feature is 
used at each node in the limited training sample situation.



88

C H A P T E R  6. CONCLUS IONS

The fundamental objective of this research was to develop a design procedure for 

the DTC in a high dimensional data, large number of classes, limited training set 

Size environment, We have defined the following three methods: top down design, 

bottom up design, and hybrid design. These methods are more simple and 

effective than previous design methods. Three kinds of bottom up design methods 

were described: single linkage, complete linkage, and dynamic linkage. In cases 

where a bottom up approach is called for, any of the three might be useful, with a 

perhaps slight preference for the dynamic approach. Although all three approaches 

were studied, the hybrid classifier was shown by empirical test to have the best 

performance: this was expected because it reconciles a property of data (classes 

being; separable) and a property of the application (classes informational value).

The mathematical relationship between sample size, dimensionality, and risk value 

was derived. The incremental error was shown to be simultaneously affected by 

two factors, dimensionality and separability. For predicting the optimal number of 

features, we conclude that the optimal number of features in transformed 

coordinates is just one when only small numbers of samples are available. We 

have demonstrated that the best result is obtained when we use just one feature 

experimentally. Empirically, it was shown that a reasonable sample size is six to 

ten times the dimensionality if the dimensionality and separability simultaneously 

increase.

In the case of more than two classes, the ambiguity with respect to the optimal 

number of features is wider and unpredictable. A binary hierarchical classifier may 

solve the above drawbacks. Because only two groups are classified at each node 

in a binary hierarchical classifier, a minimum error rate can be obtained when the 

best single feature is used in transformed coordinates. Therefore, an overall 
minimum error rate of a hierarchical classifier is obtained by minimizing the error 

rate at each node. We are able to predict the optimum number of features and 

obtain the minimum error rate when we use a binary hierarchical classifier.
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Appendix A Sum of Squared Error Clustering Program

#include <stdio.h>
#include <math.h>

* Giuster-MultispectraI Image Clustering Program
* Euclidean distance measure is used.
* Specify NPfMXCH,num_chan (MXCH = num_chan).
* Use for BIL format.

fddfinei NL 180 /* # of lines 7

#defineNP 1 /* # of pixels per line 7
#define MXCH TOO f  maximum number of channels 7
;.#define^AXCENTEFiS 2 /* maximum number of cluster centers 7
#define ELF else if 

#define c2 f(n) (float)((n)&037?)

struct cbhter {
float origin[MXCH];

, float mean[MXCHJ; 
float sumsq[MXCH]; 
float count;

struct center centers[MAXCENTERS];

/* current cluster origin 7  

/* accumulated mean 7  

r  sum of squares 7

/* number points currently in this cluster 7

int first_pass; 
int tf1 =0; 
int tf2 =0; 
inttfS =0; 
int vf|ag = 0; 
int num_centers; 
int num_chah=100; 

long int nunv_diff; 
int min_changes; 
int num_passes; 
int cl need = 0 ; 

int input = 0; 
int output = 0; 
int sfd = 0; 
FILE *fopen(),*fp;

/* flag to indicate first pass 7

/* trace cluster main loop flag 7  

/* trace clasify 7  

/* trace I/O 7  

/* verbose flag 7

/* number of cluster centers this run 7  

/* number of channels this run 7

/* number of changes this pass 7  

r  minimum number of changes for completion 7  

I* number of passes until clusters converge 7  

/* number of clusters to be created 7  

/* input file descriptor 7  

7* output file descriptor 7  

r  stat file fd 7

/* initialize fp=0, cluster center file 7

long int tO; 
long int t i ;
long int t2;
r
* main -- supervisory control program

T starting time 7

/* time of start of current iteration 7  

/* time of end of current iteration 7

7

main(argp, argp) 
char'**argp.;'-".

{

min_changes = 0 ; 
parse(argc, argp); 

If(Ifp)

Clinit(clneed);
time(&t0);



t1 = tO; 
clumpO;
print_stats{);
exit(O);

)

/ *  7 v ;

* clump -- main clustering loop
7  V ' V

GlumpO

i:

register i;
register float *f(i1. *fp2; 
float *getpt(), n;

int j ; ■ . . ..."

: f irst_pass = 1; 
num_passes = 0;

■>■■■: /* V'V;; ■ ;■
min^changes *= NL*NP/100;

'■ * /  V

riumjdiff = NL*NP;

V do{
' if (tf 1

print_stats(); 
min_chahges = num_diff;

num_diff = 0;

rewindJilesO; v
for(i=0; i<num_centers; i++){

centers[i].count = 0.0; 

fp l = centers[i].mean; 
fp2 = centers[i].sumsq; 
for(j=0; j<num_chan;j++);

*fp1++ = *fp2++ = 0.O;

while((fp1 = getpt(input)) I=== 0)

G|asify(fp1 >; :-
I* compute new cluster centers: 7

for(i=0; i<num_centers; i++){

fp t •*» centers[i].meari; 
for(j=0; j<num_chan; j++)

il(centjers[i].poUrtt I= 0)
*fp1++/= centers[i].count;

W : else -  ;
*fp1 ++ = fp2++ — 0.0;. 

fp l = ceniers[i].origin; 
fp2 = centers[i].mean; 
for(j=0; j<num_chan; j++)

*fp1++ = *fp2++; 

fp f = centers[i].sumsq; 
fp2 = centers[i].mean; 
n = centers[i].count; 

for(j=0; j<num_chan; j++){ 
if(n > 1)

*fp1 = (*fp1/(n-1)) - (n/(n-1)) * (*fp2 * *fp2); 

else .■■"
:V  % 1 =0.01; 

fp l++ ; 

fp2++;

- -V ,- : i ' W  w -  ■ ■ v ' . ;V- .v.,:
7  . . ' -V - : . ,  v , , / - .

first_pass = 0;
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num_passes++;
oflushO;

} while(num_diff < min_changes);

} while(num_diff > min_changes);

*/ ’ 
if(vflag)

fprintf(stderr, "clustering. cpmplete\n”);

}
I*
* dasify -- dasify a point and update cluster
* center information
7

clasify(pt)
float.*pt;

{ ' '
register float *fp1, *fp2; 
register int i; 

float d is t l, dist2 , dist-Q; 
int index;

index = 0; 

fp2 = pt; j

djst2 = distfcenterstOj.origin, fp2 ); 

for(i=1; i<num_centers; i++){
disti = dist(centers[i].origin, fp2); 
if (distl <d ist2 ){

dist2 = d istl; 
index = i;

}

centers[index].count = centers[index].count + 1.0;

r
* add this point to current mean 

7
fp1 = centers[index].mean; 
for(i=0; i<num__chan; i++)

*fp1++ += *fp2++;
r  '
* accumulate sum of squares:

• 7
fp1 = centers[index].sumsq; 

fp2 = pt;
for(i=0; i<num_chan; i++){

*fp1++ += *fp2 * *fp2;

. . ■ : ' fp2++;

. } 
if (tf2){

printf("\nCenter %5d (%6 .1f):\t\t,,l index+1 , centers[index].count); 

printl("%6.1f\tM, num_chan. pt); 
printfCAnnew mea n:\t\t\t");
PrintIC0ZoS^ht", num_chan, centers[index].mean); 
printf("\n");

} ;
putpt(index);

) ■'

r
* getpt -  get a multispectraS input point, and convert
* it to a floating point vector

7 '

char ibuf[MXCH][NP];



char *ibp[MXCH] = ibuf[MXCH];
int nib = 0;

float *getpt(fd)

V  char buf[MXCH];
static float fbaf[biXGH]; 
register char *p; 
register float 

register int I;

fp = fbuf; 
if(nib <= 0){
for(i=0; knurrvChan; i++){

if((nib = read(fd, ibuf[i], NP)) <= 0){

' : ' if(tf3 ) ;/■
printfC’EOF on input\n"); 

retum(O);

t ibp[i] = ibuf[i];

} ■ . -■
7 } 7 . -

fpr(i=0 ; i<nunrjChan; i++){
*fp++= c2f(*ibp[i]++);

■ ■ ' ■ ■ :
n ib -; 
if (tf3 ){

prihtf <"\n IN P UT:\t\t”); 
printl("%8.0f", num_ehan, fbuf); 
prjbtf("\n");

■ /  I : "  ' ' . - - V r v - . ' ,
return(fbuf);

} -.V"

/ *  ■ v .

* pu tp t-  output a clasified point

7 - 7 7 7-7- ; ■■

char obuf[NP];
char *obp = Obuf;
int nob = 0;

putpt(n)

if(first_pass Il *obp I= n){ 
num_diff++;

; }
if(tf3 ) 7

printf("OUTPUT:\t%5d (%d)\n", n, *obp); 
*obp++ = n; 

if(++nob >= NP){

write(output, obuf, nob); . 
if ( If i r st_pa s s){

nob = read(output, obuf, NP); 
lseek(output, (iong)(-nob), 1);

}
nob = 0; 
obp = obuf;

} 7' :
; v  7;■ ■ ■■

oflush()

I ' ,  , 7 ; ■



97

if(nob)
write(output, obuf, nob);

}

/ *

* dist -  compute distance between 2 points

*/ i ......

float dist(fp1, fp2) 
char ‘ fpii, *fp2;

{ ' . ' 
register float *p1, 
register int i; 

float sum, term;

P1 = (float*)fp1; 

p2 = (float*)fp2; 
sum = 0; :
for(i=0; i<num_chan; i++){

term = fabs fp l+ +  - *p2++); 
term *= term;

■ sum += term;

. ■ }

return(sum);

} . . .

clinit(nc)

register i;
register float *fp1, *fp2; 
float *pt, n;

. int j;

-  /*
* clear everything:
7

rewindJilesO; 
h = 0.0;
fp1 = centers[0].mean; 
fp2 = centers[0].sumsq; 

fqr(j=0; j<num_chan; j++)
*fp1++ = *fp2++ = 0.0;

* now, accumulate mean & st. dev, for entire jpjx: 
*/ ■ •' ' " . 

while((pt = getpt(input)) I= 0){
n+= 1,0;

•. /*
* add this point to current mean
* /  ■ ■ ■ ■ : ■ ; ■

fp1 = centers[0].mean; 

fp2 = pt;
for(i=0; i<num_chan; i++) 

*fp1+++=*fp2++;

' . : . / *  ,
* accumulate sum of squares:

* /  ■■

fp1 = centers[0].sumsq; 

fp2 = pt;
for(i=0; i<num_chan; i++){

*fp1++ += *fp2 * *fp2; 
fp2++;

. ' }  ■ ' : , ■  ■■



}

/*

if(n < 2.0){
p rin tff input file is empty\n"); 
exit(4 );

}

; 7 ? , . ' ■  V ; . ■ :
* now convert sum arid sumsq to mean and st. dev.:

*/ ■- ■-7
fp1 = centers[0].mean; 
for(i=0; i<num_chan; i++)

*fp1++/= n;

:'4p'1 '= ceh'ters[0].sumsq; - V ' ’'•
J■p2'■*^centers[0].meart;;.■'• 
for(j=0; j<num_chan; j++){

*fP1 = sqrt(ffp1/(n*1))> (n/(n-1)) * (*fp2 * *tp2)) 

fp i++ ; :
■■ fp2n-+;

}  ; V ■■■

/ *  ■ v  '

* now compute each of the new cluster centers:
.. ; ■ •; v-;

fp1 = centers[0].mean; 

fp2 = centers[0]:sumsq;. 
fof(j=0; j<nc; j+ + ){; . :

for(i=0; i<num_chan; i++){

centefs[j].origin[i] = fp i [i] + fp2[i] * 
((j-(nc/2.0))/(2*(nc-1)));

if(vflag)
fprintf(stderr,"cluster initialization complete\n")

parse -- parse input arguments
* /

int errors';/

parse(argc, argp) 

char **argp;
I  ' v ' .7 v . '-

errors = 0; 
if(argc == 1){

helpO;
exit(); .-v / •.' v. .

I  ..- '- \- :V /'v  v 7 : v  .
While(--argG > 0 ){

argp++; v

if( !StmcmpCargpl nIf=",3 ))
input = open(*argp+3 , 0 ); 7 

ELF (!strncmpCargp, "of=",3 )){

output = creatfargp+3, 0644);
close(output);
output = open(*argp+3 , 2 );

} ELF (!strncmpfargp, “cf=",3 )){ 

fp = fopen(*argp+3 , V ) ;
} ELF (!strncmpfargp, Bsf=n.3 )){ 

sfd = openfargp+3 , 0 );
} ELF (!strncmpfargp, “nc=”,3)){

num_centers = a to if argp + 3 ); 

clneed = num_centers;
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} ELF (!strncmp(*argp, "pc="f3 )){ 
min_changes = atoi(*argp + 3 );

} ELF (!strncmpfargp, "-vH,2 )) 

vflag++;
ELF (!strncmp(*argp, ”-\V\3 )) 

tf1++;
ELF ( !strncmpfargp, ,,-t2 ",3 )) 

tf2++;

ELF (!strncm pfargp,"-t3 ",3 )) 
v- ‘ tf3 ++J .

else {
errors++;
printffbad option: %s\n"f- *argp);

‘ :■ } -■ ■
}

need(input, "input", "if"); 
needfoutput, "output"/"of"); 
if(!clneed){

printf(M\"nc=...\" (number of centers to create)\n"); 
errors++;

if(errors)
exit(1); ;

setup_files();

} -■

help()

I
printfC'Summary of cluster parameters:\n\n"); 
printff'if=,.. input data file\n");
printf("of=... output results file\n");
:printf("cf=... initial cluster center file\n");
prin tffs f= ... output statistics file\n");

'■ * printffpc=.. percent change desired(0-100) \n " ) ;
printf("nc=nnn number of centers to create\n"); 
printff’option -t1 -t2 -t3 -v\n");

* need -  see if a needed file is present 
7  ■ ' ■ ■ ■'•

need(fd, fn. fi) 
char *fn, *fi;

{■ ■

if(fd == 0){
printf("required %s file (%s=...) missing\n", fn , fi); 
errors++;

■ ' I . '
J

/ 7
* setup jiles -  read in once-only files & get ready to cluster 
7

setup_files()

{
int i,j;

/* output file 7

if(fp){
for(i=0; i<num_centers; i++) 

for(j=0; j<num_chan; j++)

fscanf(fp, "%f", &centers[i].origin[j]);

}
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}

* rewind_files -  rewind I/O files, and prepare for another pass
7  ' . '■

iewind_files()

{ ■ : .

Iseek(input, 0L, 0); 
lseek(output, 0L, 0); 
if(!first_pass){

nob = read(output, obuf, NP); 
lseek(output, OLs 0 );

.. nob = 0; .
obp = obuf;

}
} :'■■■■■ : ' ' - ■■■'■- ■! '
/*
* print_stats-- output summary of clustering run 
7

print_stafs()

{ ■ ■■ :
register i;
register float *fp1, *fp2; 
int j;

I

time(&t2);
printf(B\tNumber of passes = %dV num_passes); 
printf("Vn\tNumber of changes = %d\n\telapsed time = %ld /" , 

nunvdiff, t2-t1);
printfC%ld\h", t2-t0); ' :1

for(i=0; i<num_centers; i++){
printf("\n\n\tCenter %d, (%5/1f points):\n", i+1, centers[i].count); 
printf (”\tOrig in :\t\t");

printl(B%6.2f\tB, nurrrchan, centers[i3.origin); 
printf ("\n\tVariance: ");
printl("%6 .2 f\t", num_chan, C6nters[i].sumsq); 

printf(”\n");

.} ■ ■ . -
t1-= t2; '

printl(f, n, afp) 
char *f; 
int n; ; 

float *afp;

register int i; 
register float *fp;

fp  = afp; 
for(i=0; kn ; i++)

..printfff,'*fp+^j|'
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Appendix B Normalized SSE Clustering Pragrern

#include <stdid.h>
#include <math.h>

- I '  '
5 * Cluster -- MuItispectraI (mage Clustering Program

* Normalized Euclidean Distance Measure is used.
* Specify NPfMXCH,num_chan.(NL is for min_chan) 
V Usefor BILformat.

7

^ . .. :v ';

#define NP j  T #  of pixels per line 7
#define MXCH 11 T maximum number of channels 7
#define MAXCENTERS 10 T maximum number of cluster centers 7

#define ELF else if 

#define c2f(n) (float)((n)&0377 )

struct center {
float origin[MXCH]; 
float mean[MXCH]; 
float sumsq[MXCH]; 

float det;
float cov[MXCH][MXCH];

-  float inv[MXCH][MXCH]; 
r float count;

struct center centers[MAXCENTERS];

/* current cluster origin */ 
/* accumulated mean V 

T sum of squares 7

T number points currently in this cluster 7

int first_pass; T flag to indicate first pass 7

int tf1 = 0 ; T trace cluster main loop flag 7

int tf2 =0; T trace clasify 7

int tf3 =0; T trace I/O 7

int vflag = 0; T ve rbose flag */

int num__centers; Tnum berofcluS tercentersthisrun */
int num_chan=11; Tnum berofchannelsthis run */
long int num__diff; T numberofchangesthispass */
int min_changes; Tminimumnumber of changes forcpmpletibn */
int num_jD asses; T number of passes until clusters converge 7

int Clneed = O; T num be ro fc iu s te rs to b ec rea ted * /

int Ipput = O; T inpu tfiledescrip to r*/
int Output = O; T output file descriptor 7

int sfd = 0; T s ta t f i le fd * /
FILE *fopen(),*meaf*co; T initialize fp=0, cluster center file 7

float d1 ,d2,fac[MXCH][MXCH];
long int tO; T s ta rting tim e*/ .

long int t 1 T tim eofstartofcurrentiteration */
long int t2; T tim eo fend  ofeurrentiteration */

7* '

* main— supervisory control program 

7 "

main(argc, argp)

■- ■ - • i



min_changes = 0 ;  
parse(argc, argp); 
if(!mea)

clinit(clneed); 
time(&t0); 
t1 = tO; 7 : 

clumpQ; ' ;
print_stats();
exit{0);

}

/ * ^ 7  ■ /  ; '■■■ ■
* clump -  main clustering loop
7 : ; v
' ''' ■ " / . ; ' ■ ■ ■ ■

plumpO c

register i;
register float *fp1, *fp2 ,*fp3 ; 
float *getpt<), n; 

int j,k;

first_pass = 1; 
num_passes = 0; 
nunvdiff = 1000*1000; 
do{ 
if (tf 1)
print_stats(); 

min_changes=num_diff; 
numjdiff = 0; ;
rewind_files();
for(i=0; i<num_centers; i++){ 

centers[i].count = 0.0; 
fp1 = centers[i].mean; 
fp2 = centefs[i].surrisq; - ■
for(j=0; j<num_chan; j++){
*fp1++= *fp2++ = 0.0; 
for(k=0;k<num_chan; k++) 

centers[i].cov[j][k] = 0.0;

H
while((fp1 = getpt(input)) I= 0) 
clasify(fpl);

7 * compute new cluster centers: * /, 
for(i=0; i<num_centers; i++){ 
fp1 = centers[i].mean;

if(centers[i].count I= 0)

*fp1++ /= centers[i].count; 

else
K ; *fp1++ = 0.0;

}

fp l = centers|i].origin; 
fp2 = centers[i],mean; 
for(j=0; j<num j:han; j++)

*fp1++ = *fp2++; 
n = centers[i].count; 
for(j=0; j<num_chan; ]++){ 
if(n>1)

centers[i].sumsq[j] = centers[i].sumsq0]/(n-1)-

(n/(n-1 ))*centers[i].mean[j]*centers[i].mean[j]
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else
ceritersii].sumsq[jj = 0.01; 

for(k=0; k<num_ehan; k++){ 
if(n > 1)

eenters[i].eov[j][k]=centers[i].cov[j][k]/(h-1) - (n/(h-1 j) * 
centers[i].mean[jXcenters[i].mean[k];

else ■

centers[i].cov[j][k]= 0.01;

}}
Iftds^&rium^hah^centersIO.cov.&num^chan.fac.&num^hah); 
Ifdds^&num^chan.fac.&num^han.&dl f&d2); 
centers[i].det=d1 *pow(10.0,d2);;
linds_(&num_chanfceoters[i].cov ,Snum^chaniCentersti^iriV, 

&num_ehan);

} : ■ ■ ■ . . ■
IirstjDass = O;
numjDasses++;
oflushO;

r
} while(num_diff > min_changes);

V  . .
} whiie(num_diff < min_changes);

if (vf lag) ;
fprintf(stderr, "clustering complete^");

r
* clasify -- clasify a point and update cluster
* center information
*

clasify(pt) 
float *pt;

register float *fp1, *fp2 ,*fp3 ; 
register int i,j,k; 
float d is ii, dist2, 

iht index;

index = 0; 
fp2 = pt;
dist2 = dist(centers[0].origin,cehters[Oj.inv, 

centers[0].det,fp2); 
for(i=1; i<num_centers; i++){

distl = dist(centers[i].origin,centers[i].inv, 
centers[i].det,fp2);

if(distt < dist2) {
dist2 = d istl; 
index = i;

■ }

centers[index].count = centers[index].count + 1.0; 

/* '
* add this point to current mean

;*/ . 
fp l  = centers[index].mean; 

for(i=0; i<num_chan; i++j 

*fp1+++= *fp2++;
/ *

* accumulate sum of squares:

7
f p l  = centers[index].sumsq;
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fp2 = Pt;
for(i=0; i<num_chan; i++){

*fp1++ += *(fp2+i) * *(fp2+i); 
for(j=0; j<num_chan; j++){ 

centers[index].cov[i][jj+= *(fp2+i) * *(fp2+j);

• H .
if (tf2){

printf("\nCenter %5d (%6 .1f):\t\t", index+1 , centers[index].count); 
printl("%6.1f\t", nunvchan, pt); 
printf("\nnew mean:\t\t\t");
printl('‘%8,2f\t'', num_chah, centers[index].mean); 

printf(”\n”);

}
putpt(index);

;• :
* getpt -- get a multispectral input point, and convert
* it to a floating point vector

char ibuf[MXCH][NP];
char *ibp[MXCH] = ibuf[MXCH];

Int nib = 0;

float *getpt(fd)

{ char buf[MXCH];

static float fbuf[MXCH]; 
register char *p; 
register float *fp; 
register int

fp = fbuf; 
if(nib <= 0){
for(i=0; i<num_chan; i++){

if((nib = read(fd, ibuf[i], NP)) <= 0){ 
if(tf3 )

- ' printf("EOF on input\n“);
V return(O);

ibp[i] -  ibuf[i];

■■ : ■ ■

for(fc0; i<num_chan; i++){
: *fp++= c2f(*ibp[i]++);

'
■■ n ib -; 

if (tf3 ){
printf ("\nlNPUT :\t\t”); 
printl('’%8.0f", num_chan, fbuf); 

printf (’V ) ;

■ }
return(fbuf);

r
* putpt -  output a Glasified point
*

V

char obuf[NP]; 
char *obp = obuf;
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int nob = 0;

putpt(n)

{
if(first_pass || *obp != n){ 

num_dif{++;

if (tf3 )

printf ("OUTPUT:\t%5d (%d)\n", n, *obp); 
■obp++ = n; 
if (++nob >= NP){

write(output, obuf, nob); 
if (!first _pass){

nob = read(output, obuf, NP); 
lseek(output, (long)(-nob), 1);

}

nob = 0; 
obp = obuf;

}

} •

oflush()

{' :.■■■
if(nob)

write(output, obuf, nob);

7* ’ /7.
* dist -  compute distance between 2 points

■ *

*

*/

float dist(fp1,fp2 ,fp3 ,fp4 )
float *fp1 ,fp2 [MXCH][MXCH],fp3 ,*fp4 ;

{

register float *p1,*p4 ; 
register int i,j,k;

float sum,terml [MXCH],term2[MXCH];

p i = f p i ;  
p4  = fp4 ; 
sum = 0;
for(i=0; i<num_chan; i++){

terml [i] = fabs(*(p1+i) - *(p4+i));

} '■

for(i=0; i<num_chan; i++){ 
term2[i] = 0.0; 
for(j=0; j<num_chan; j++){ 

term2[i] += te rm l[j] * fp2[i][j];

}
sum+= terml [i]*term2[i];

■■ J”. '
sum += log(fp3 ); 
return(sum);

}

clinit(nc)

register i;

register float *fp1, *fp2; 
float *pt, n;

i
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int j;

/ *

* clear everything:

V .
, rewind_files(); 

n « 0.0;
fp1 = centers[0].mean; 
fp2 = centers[0].sumsq; 
for(j=0; j<num_chan; ]++)

*fpt++ = *fp2++ = 0.0;

* now, accumulate mean & st. dev. for entire pix:
7 '■ ■ ■

while{(pt == getpt(input)). I=
n +Ss 1 .Oj 

" /*
‘  add this point to current mean

■ 'I ■ .
fp1 = centers[0].mean; 

fp2 = pt;
for(i=0; i<num_chan; i++)

*fp1+++=*fp2++;
/*
‘  accumulate sum of squares:

" * /  :

fp1 = centers[0].sumsq; 
fp2~  pt;
for(i=0; i<num_chan; i++){

*fp1+++=*fp2“ fp2; 

fp2++;

if(n <2.0){
■ prihtf("input file is empty\n’'); 
exit(4 );

} :■ :
/ *

* now convert sum and sumsq to mean and st. dev.:

fp1 = centers[0].mean; 
for(i=0; i<num_chan; i++)

*fp1++/= n;
fp l = centers[0].sumsq; 
fp2 = centers[0].mean; 
for(j=0; j<num_chan; j++){

*fp1 = sqrt((*fp1/(n-1)) - (n/(n-1)) * (*fp2 **fp2));
fp1++;
fp2++;

} ■' ^
/* ' / . . / ~
* now compute each of the new duster centers:
; V ■
fp l = centersfOJ.mean; 
fp2 = centers[0].sumsq; 

for(j=0; j<nc; j++){

for(i=0; i<nunvchan; i++){
centers[j].origin[i] = fp1[i] + fp2[i] * 

((j-(nc/2.0))/(2*(nc-1)));

■ } ..

if(vflag)

fprintf(stderr;"cluster initialization complete\n");



107

}

/ *

* parse -  parse input arguments

7

int errors;

parse(argc, argp) 

char **argp;

{

errors = 0;

if(argc == 1){
helpO;
exit();

}
while(-argc > 0){ 

argp++;
if(!strncmp(*argp, "if*",3 ))

input = open(*argp+3 , 0); .
ELF (!strncmp(*argp, "of=",3 )){

output = creat(*argp+3 , 0644);
close(output);

output = ppenf argp+3 , 2 );
} ELF (!strncmp(*argp, "cm=",3 )){ 

mea = fopen(*argp+3 , 7 ");
} ELF (!strncmp(*argp, "cc=",3 )){ 

co = fopen(*argp+3 , "r");
} ELF (!strncmp(*argp, "sf=",3 )){ 

sfd = open(*argp+3 , 0 );
} ELF (!strncmp(*argp, "nc=",3 )){

num_centers = a to if argp + 3 ); 
clneed = num_centers;

} ELF (!strncmp(*argp, "pc=",3 )){ 
min_changes = atoifargp + 3 );

} ELF (!strncmp(*argp, "-v",2 )) 
vflag++;

ELF (!strncmpfargp, "-t1",3 )) 

tf I ++;
ELF (!strncmp(*argp, "-t2 "f3 )) 

tf2++;
ELF (!strncmp(*argp, H-t3 ",3 )) 

tf3++;
else {

errors++;
printffbad option: %s\n", *argp);

}
}
need(input, "input", "if");
need(output, "output", "of");
if(!clneed){

printf("\"nc=...\" (number of centers to create)\n") 
errors++;

if (errors)
exit(1);

setup_files();

I

help()

{
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printf(BSummary of duster parameters:\n\n“); 
printf("if=... input data file\n“);
printf("of=... output results file\n");
printf("cm=... ■■ initial duster mean file\n"); 
printf("ce=... initial cluster covar file\n“);
printf(*'sf=... output statistics file\nB);

printffpc=.. percent change desired(0-100) \n ") ; 

printf("nc=nnn number of centers to createV); 
printf("option -t1 -t2  -t3 -v\nB);

!• ::: ::
* need -- see if a needed file is present
7

needffd, fn. fi) 
char *fn, *fi;

{

if(fd == 0){
printf("required %s file (%s=...) missing\n”, fn . 
errors++;

}

fi);

I *

* setup_files -  read in bnce-only files & get ready to cluster

■ 7  -.V'

setup__files()

•{ - 7  :
int i,j,k;

}

7* output file 7  

if(mea){

for(i=0; i<num_centers; i++){ 
for(j=0; j<num_chan; j++){

fscanf(mea, M%f", &centers[i].origin[j]); 
for(k=0; k<num_chan; k++){

fscanf(co, M%f", &centers[i].cov[j][k]);

•}}. , ' . ' . -Vj -
Iftds^&num^chan^centerstO.cov.&num^han.fac.&num^han) 
ifdds_(&num_chan,facl&num_chan,&d1 ,&d2); 

centers[i].det=d1*pow(10.0,d2);;
linds__(&num_chanfcentersti].cov ,Snum^han^enterst^inV, 

&nunrchan);

} }  ' •

r  ' ; /  ,
* rewindJ iles  -- rewind I/O files, and prepare for another pass

- ■■■■' - '

■ 7 : ■

rewind_files()

{ ■ v '
Iseekfinput, OL1 0 ); 
lseekfoutput, 0L, 0); 

if(!first_pass){

nob = readfoutput. obuf, NP); 
Iseekfoutput1 OL1 0); 
nob = 0; 
obp = obuf;
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* print_stats -  output summary of clustering run
*

* /

print_stats()

{ ' ■

register i;
register float *fp1, *fp2;

V; infj; _

firne(&t2);
printffUNumber of passes = %d", num_passes); 
printf(”\n\tNumber of changes = %d\n\telapsed time = %ld / 

num_diff, t2-t1); 
printf(“%ld\n", t2-t0); 
for(i=0; i<num_centers; i++){

printf("\n\n\tCenter %d, (%5 .1 f points):\n", i+1,

centers[i].count);
printf("\tOrigin:\t\t”);
printl(”%6.2f\t”, num_chan, centers[i].origin); 

printf("\n\tVariance: ");
printl("%6.2f\r, num_chan, centers[i].sumsq); 
printf(”\n");

for(j=0; j<num_chan; j++){
printl("%6.2f ”, nunvchan, centers[i].cov[j]); 
printf(“\n”);

}

■■■■ I  ■ •
t1 = t2;

}

printl(f, n, afp) 
char *f; 
int n;

float *afp;

register int i; 
register float *fp;

fp = afp; 
for(i=0; i<n; i++)

printf(f, *fp++);

}
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