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HIERARCHICAL CLUSTERING AND THE CONCEPT OF SPACE DISTORTION

Abstract

An empirical assessment of the space distortion properties of two

prototypic hierarchical clustering procedures is given in terms of an

occupancy model developed from combinatorics. Using one simple example,

the single-link and complete-link clustering strategies now in common

use in the behavioral sciences are empirically shown to be space contract-
.

ing and space dilating, respectively. An extension to an intermediate

r-diameter clustering criterion defined in between the complete-link and

single-link extremes is discussed briefly along with a technique for pre-

processing the original proximity measures to make the results obtained

from these two extreme clustering procedures more consistent with the

data.
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HIERARCHICAL CLUSTERING AND ThT CONCEPT OF SPACE DISTORTION

1. INTRODUCTION

One of the basic properties that supposedly characterizes all hier-

archical clustering methods can be defined in terms of a particular

strategy's ability to conserve "space" in the region surrounding a new

subset formed during the clustering process. Although the necessary

concepts introduced by Lance and Williams (1967) are obviously vague and

lack formal cr precise definitions of any sort, the Lasic idea of a space

conserving or space distorting clustering procedure does seem to have sub-

stantial intuitive appeal, especially for an applied researcher well-

versed in the various techniques for partitioning a set of objects into

homogeneous subgroups. The intent of this paper is to concentrate on two

sc- '-alled space distorting clustering strategies now in general use in

the behavioral sciences, commonly called the single-link and the complete-

link methods. The discussion below offers one possible combinatorial

framework for characterizing a space distorting strategy, and in particu-

lar, for the terms "space contracting" and "space dilating" used in connec-

tion with the prototypic single-link and complete-link clustering schemes,

respectively.

4



2

2. CLUSTERING PROCEDURES

To give a brief tackground summary on clustering, suppose s(,)

; a positive real-valued symmetric function on S x S, where S is a

set of n objects {ol,...,on}; intuitively, the proximity function s,)

assigns smaller numerical values to the more similar pairs of objects,

where it is assumed chat s(o.,oj ) = 0 if o. = o.) . Both the single-link

and the complete-link clustering procedures construct a sequence of

partitions of S,
Zn-1)'

in which 2,0 is the trivial partition

containing each object in a separate class, 2,114 includes all objects in

a single class, and 214.1 is obtained from Lk by uniting two of the sub-

sets in Lk. In particular, the complete -link hierarchy is defined by

uniting those two object classes in Lk with the minimum resulting dia-

meter, where the term "diameter" is defined as the maximum of s(.,.) over

n11 object pairs within a subset. The single-link method, on the other

hand, employs an exact opposite criterion and unites those two subsets

in Lk that minimize s(,.) over all object pairs in which each member of

the pair belongs to only one of the two subsets to be joined.

A number of empirical evaluation:, of the single-link criterion have

documented a chaining characteristic of the method, in the sense that

new partitions in the sequence tend to be formed by uniting single ele-

ments with pre-existing subsets (for example, see Wishart, 1969). In

other words, at a particular partition level the subsets are generally

large and as a new subset is formed, it appears to move nearer to some

or to all of the remaining members of S, and consequently, the region

around the subset appears to contract, For the complete-link procedure,

however, the subsets within a partition tend to be more equal in size,
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and as new subsets are formed, they appear to move further away from the

remaining subsets in the partition. Thus, the region around a newly con-

structed subset is said to dilate and new members of a partition are

formed by uniting the smaller subsets within the previous level.

The concepts of "region," "space," and so forth used in the above

discussion may be intuitively meanin;ful but fail to convey very precise

properties. Consequently, as an alternative approach given below, the

emphasis will be on operationalizing the space-distortion ideas through

the number and type of subsets formed 't a specific partition level by

the two clustering techniques. In particular, a space contracting strat-

eg:- should produce, on the average, a large subset and many small ones at

each partition level, and attempt to minimize the number of subsets con-

taining more than a single object. Conversely, a space dilating technique

should construct subsets of about the same size and maximize the number

of subsets containing more than one object at each partition level.
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3. ASSESSING SPACE DISTORTION

As mentioned above, one of the ways of evaluating the space conserv-

ing or space distorting properties of a clustering method is in terms of

the type of subsets generally produced at a specific partition level in

the hierarchy. Such an evaluation, however, requires some fixed set of

functions s(,) that will be used for developing a frame of reference to

make the phrase "generally produce" more precise. For example, since

both the single-link and the complete-link procedures depend solely upon

the rank order of the obje:t pairs specified by the proximity measures,

the set of functions s(,) that will be employed here corresponds to the

set of all assignments of the distinct integers from 1 to n(n-1)/2 to a

fixed ordering of the n(n-1)/2 object pairs. Thus, for all [a(n-1)/2]!

possible assignments of rank, the complete-link and the single-link strat-

egies may be used to obtain the distributions of subset types produced at

the various partition levels. To carry the discussion one step further,

these distributions can then be compared to an expected distribution that

would be obtained if the clustering procedure were space conserving; in

fact, the differences between the obtained distributions and this standard

could be incorporated into some formal index of the space distortion pro-

pensity of the clustering method.

What is still lacking in this presentation is any specification of

what the standard distribution should be at a particular partition level.

Within the rank order framework, however, there is an obvious suggestion

that can be developed from the enormous literature on occupancy problems.

To be more precise, suppose there are n objects in S and the partition

level under consideration consists of m subsets, i.e., the partition 211.1n
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at level n-m in the sequence (2.0,. "' The number of different ways

in which the n distinguishable objects can be distributed into the m indis-

tinguishable cells of the partition is S(n,m), a Stirling number of the

second kind (Riordan, 1958). Consequently, if 1.3 apply the occupancy

model as a standard for a space-conserving procedure and use our set of

all possible [l(n-1)/2]! assignments of integer ranks to the object pairs,

a space conserving clustering strategy should produce partitions at level

n-m of the form {nl'""nm} according to the distribution

ea )(n-nl)

ni n2 CbS(n,m)),

th.
where n. > 1 is the number of objects in the a subset 1 < i < ny

X.n. = n, and b = R t!. In this context, T is a set of integers con-
].

teT
taining the number of subsets of size ni, 1 < i < m, but which does not

count a set of tied subsets more than once. As an example that will be

carried out in more detail below, suppose n = 12 and m = 3. Then, S(12,3) =

86,526 and the probability of obtaining the partition {6,3,3} is

r12)6)()
t6 3 (2!86,526)

= .107.

To make the computational burden somewhat more manageable, the fol-

lowing discussion is limited to the case of n = 12 and m = 3. Further-

more, instead of studying all [12.11/2]! possible permutations of the

integer ranks for the object pairs, a sample of 1000 permutations was

selected randomly and with replacement, and for each such assignment the

complete-link and single-link partitions obtained at level 9, i.e.,
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when m = 3. Table 1 presents the theoretical distribution over the parti-

tion types calculated from the general expression given above, and Table

2 presents the empirical distributions obtained from the two clustering

procedures using the 1000 randomly chosen permutations of the integer

ranks. Table 3 compares the empirical and the theoretical distributions

obtained by collapsing over partitions in which the largest partition

class has the same number of objects.

Tables 1, 2, and 3 h-

Compared to the reference distribution generated under the occupancy

model, Tables 2 and 3 clearly indicate the space distortion propensities

of the two clustering strategies under study. As an illustration, if n

and m are fixed, the random variable Xn,m
, defined as the size of the

largest partition class, has an expected value of 5.70 under the occupancy

model. Since the sample means corresponding to the 1000 observations on

X
n,m

for the complete-link scheme is 5.55 and 9.06 for the complete -link,

the single-link procedure is obviously biased towards the construct!in of

larger partition classes whereas the complete-link criterion tends to over-

equalize the distribution of objects into the m subsets of the decomposi-

tion. The bias in the single-link method is very large, and rather sur-

prisingly, the bias in the complete-link method is slight although still

evident.
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4. r-DIAMETER HIERARCHICAL CLUSTERING

Although many suggestions have been made for relaxing the partition-

ing criterion used in the complete-link method, or conversely, strength-

ening the single-link criterion, only a very few of these proposals main-

tain a sole dependence upon the rank order of the proximity values. TUn

of the most promising of these new approaches that, in addition, can still

construct disjoint partition classes at each level of the hierarchy are

due to Ling (1973) and Matula (1972). Ling uses the graph-theoretic con-

cept of minimum degree and Matula emphasizes k-line connectivity and graph

cohesiveness. The interested reader is referred to Hubert (1974b) for an

extensive review of the literature relating to these techniques as well

as for a more general background for the method suggested below.

As an alternative characterization of complete-link clustering, sup-

pose the partition Lk has been obtained and the partition Lk is to be

formed by uniting the two subsets in Lk with the minimum resultant dia-

metel.. As mentioned above, the diameter of a subset of S is defined as

the maximum proximity measure over all object pairs within the subset.

As a convenience in defining the generalizations below, this particular

concept of a diameter will be referred to as 1-diameter (see Hubert, 1974b).

The concept of an r-diameter subset follows naturally from Luce's (1950)

notion of a generalized clique and Peay's (1970) application of.this idea

to clustering by means of hierarchical overlapping subsets. In particular,

the r-diameter of a subset S' of S is defined as the minimum proximity

measure Q over all object pairs in S' that satisfies the following pro-

perty:
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for any two objects o. and o. ES', there is a sequence of not
10 it

necessarily distinct objects o. ,o. ,...,o. ,o. such that
10 11 11,...1 it

o. ES', 0 < j < t, and s(o. ,o. ) Q, 0
ij ij,

Clearly, r-diameter hierarchical clustering can be defined by unit-

ing those two subsets in 21 to form 2101 that have a minimum resulting

r-diameter. What is particularly interesting about r-diameter clustering,

however, is the natural relation this generalization has to the single-

link and the complete-link methods; specifically, r-diameter hierarchical

clustering depends only upon the rank order of the proximity measures, pro-

duces a partition at each level of the hierarchy, and corresponds to

complete-link clustering for r = 1 and to single-link clustering for

r = n - 1.

From a computational point of view, the ability to perform any r-

diameter clustering requires only a complete-link algorithm and a set of

modified initial proximity values. More precisely, an r-diameter parti-

tion hierarchy is a complete-link partition hierarchy using a transformed

proximity function

s(k)(oi,oi),

defined as the (i,j) element in a matrix M(k); the matrix M(k) is con-

structed recursively in the standard manner, i.e., M(k) = M(k-1) a M,

where the operation 8 is specified as follows:

suppose A {aij}' Bnxn {bij}' then

A e B = (cij)nxn
{max{aik'bkj}}

k
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A similar matrix relationship is used by Peay (1970) to define a general-

ization of a hierarchical clique detection program using Luce's (1950)

concept of a generalized clique.

Returning to the previous discussion of space-distorting clustering

methods, the notion of an r-diameter subset provides a tentative compromise.

The complete-link (1-diameter) and single-link (n-1 diameter) criteria

can be viewed as forming the two extremes of a space distortion "continuum";

an; r-diameter clustering procedure lies at some point along this continuum,

and as r increases, the strategies become less space dilating and more space

contracting. Consequently, it is up to the applied researcher to choose

that particular point along the continuum that satisfies his specific

data analytic requirements; this vagueness is necessary since no value of

will provide the general space conserving procedure for all partition

levels and for all values of n.

As an example of the decision a user faces in applying the r-diameter

concept, some famous published data from Rao (1952) on the similarity of

12 Indian Castes was clustered using all values of r. Hierarchies differ-

e from those obtained with the single-link and complete-link methods

were constructed for values of r from 2 to 4; the single-link hierarchy

was consistently produced for r > 5, and the complete-link hierarchy for

< 1. Table 4 presents the various partitions obtained at level 7,

which corresponds to the level of Rao's "optimal" partition also obtained

with tne 1-diameter (complete-link) strategy. The progression as r in-

creases from fairly uniform sized subsets to a single elementary subset is

obvious.

Table 4 here
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In general, any application of hierarchical clustering will produce

Some value of r, say r0, such that for any value of r greater than or

equal to r0, r-diameter hierarchical clustering will construct the single-

" link hierarchy. Similarly, there will be some'value of r, say ri, such

such that when r is less than or equal to r1, the complete-link hierarchy

is obtained. The size of the difference r0 -r1 can H1,...dered a "mea-

sure" of how divergent the results obtained from the complete-link and

single-link hierarchical clustering methods will be when used on the same

set of data. In fact, using the paradigm discussed by Hubert (1974a),

the sample distribution of r0 -r1 could be approximated for each n under a

hypothesis of randomness in the assignment of proximity ranks to the ob-

ject pairs. Although these distributions could be of value is assessing

the "randomness" of the basic set of proximity measures, they would be

somewhat expensive to obtain and the topic is not persued here.
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S. THE "g10011IING" OF PROXIMITY VALUES

One of the basic difficulties facing the user of hierarchical cluster-

ing is in the need to make a final selection of one clustering result from

the many that are easily available. Within the behavioral sciences, the

single-link method usually is ignored as a viable strategy since the solu-

tions obtained by the method tend to be substantively less interpretable

than those produced by the complete-link criteria (for instance, consult

Fillenbaum & Rapoport, 1971, or Johnson, 1967). The biological sciences

on the other hand, favor the single-link strategy over the complete-link

and apparently obtain single-link clustering solutions that are usually

more amenable to substantive evaluation; some controversy does exist, how-

ever (see Jardine & Sibson, 1971).

Possibly, one of the reasons for the divergence of empirical opinion

in the two disciplines regarding the utility of single-link clustering

may result from the different types of data usually analyzed. The bio-

logical sciences concentrate on proximity values that have metric pro-

perties by defining proximity through appropriate metric measures based

upon numerical attributes that characterize the objects to be clustered.

Many of the applications in the behavioral sciences, however, are based

upon data that fail to satisfy the standard triangle inequality, for ex-

ample, proximity values are commonly produced by direct estimation proce-

dures from a group of subjects (see Shepard, 1972). If it is true that

the non-metric properties of the standard behavioral science data will

generally prevent reasonable hierarchies from being constructed by means

of the single-link method, alternative single-link related strategies

that have rather elegant axiomatic justifications (Jardine & Sibson, 1971)

14
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may be developed by requiring an initial redefinition of proximity to make

the input data originally more "metric." In fact, the preprocessing of

proximity measures may be beneficial in obtaining meaningful results from

other clustering strategies, or for that matter, from alternative data

analytic techniques such as multidimensional scaling. This initial pre-

processing will generally require more than the ordinal information in

the original proximity measures, but at least in the suggestion given be-

low, any strong interval scale dependencies are avoided; also, if the ori-

ginal data is already metric, then no change is effected by the preproces-

sing.

As one possible suggestion for transforming the original matrix of

proximity measures, a simple modification of the equation used to prepro-

cess the proximity data for the r-diameter clustering could be used.

Specifically, instead of the basic matrix M= P
(1)

, we could input either

P
(2)

,..., or P
(n-1)

to a clustering strategy, where

(k) (k-1) (1)
P =P OP, and

{a..} ® {b..} = {c..} = min{aik b
kJ
.}.

13 13 13

Essentially, the operation 0 forces the triangle inequality to hold in

stages; the final matrix P(n-1) has to be metric and contains the shortest

"distancebetweenanytwoobjectso1 .ando.ina complete graph with

edges weighted by the proximities in M. These matrix operations are well-

known in graph theory and are discussed fully in Marshall (1971).

If the single-link or complete-link clustering procedures are applied

to P(k) ¢ M, then the resultant partition depends upon more than the

ordinal information in the matrix M. The case of P(2) is particularly

15
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instructive since the dependence on M has been given the specific name

of "hypermonotone invariant" by Hubert (1972). More precisely, any mono-

tone increasing transformation of the proximity measures in M is called

hypermonotone invariant if the transformation also preserves the ordering

of all first differences between the measures (Suppes & Zines, 1963).

Thus, any clustering procedure that relies only upon the rank order of

the basic input measures will become a hypermonotone invariant procedure

with respect to NE when applied to P(2). The reader is referred to Hubert

(1972) for a discussion of the value of this type of dependence or to

Suppes and Zinnes (1963) and Kendall (1962) for a discussion of the basic

frrmework that would allow a similar invariance discussion for P(k), when

k> 2.

As a small and exploratory example of the effect of using the matrices

P
(k)

for k > 2 instead of the original matrix P(1) = M, the proximity

values between Rao's 12 Indian castes were reallocated to the 66 object

pairs at random. This procedure was replicated 1G times, and for each

such reassignment, the single-link and complete-link partition hierarchies

were obtained using the input matrices P(k), 1 < k < n-1. Using the data

obtained in this manner, Table 5 gives a goodness-of-fit measure between

each constructed h rarchy and the input data for selected values of k.

Specifically, Hulx 1974a) defines the adequacy of a particular partition

hierarchy through ink order correlation index y; the index is obtained

between the object j airs ranked on the basis of the input proximity values

and a reranking of the object pairs produced by the partition hierarchy

itself. This latter reranking is defined by assigning to each object pair

the partition level at which the object first appears within the same subset.

Table 5 here
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The information given in Table S leads to several rather interesting

empirical conjectures: first of all, the hypothesis of randomness in as-

signing proximity ranks to the object pairs used in generating the sampling

distributions given by Hubert, appears to be a '"lenient" hypothesis. As

k increases, the mean y values obtained for P(k) increase; consequently,

as the data become "more metric," and even though they are still based

upon an initial random assignment of the proximity measures in P(1), it be-

comes much easier to reject the basic randomness hypothesis using the

sampling distributions generated from P(1). Thus a rejection of randomness

in the assignment of proximity values by a sizable y value appears to be

a rather weak criterion that a clustering result should easily pass; if

rejection is not possible, then any further substantive interpretation of

the partition hierarchy is of dubious worth. Secondly, as the initial

data become "more metric," the single-link strategy appears to produce a

more adequate partition hierarchy, at least in terms of y, and the increase

in y is more noticeable for the single-link procedure than for the complete-

link. In fact, for the "metric" data sets,
p(11),

the mean y values

over the 10 replications are fairly close for the two clustering schemes;

clearly, the single-link proced'ire S is affected more by the non-metric

nature of the original data. This result suggests that the inability of

the single-link method to elicit substantively meaningful structures in

the behavioral sciences may be due in part to the non-metric nature of our

common proximity measures. Obviously, the chaining characteristics of

single-link clustering are still present (see Wishart, 1969), but appar-

ently, there is some mitigation of the problem at least as measured by

the overall y index.

17
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TABLE 1. THEORETICAL DISTRIBUTION OVER PARTITION
TYPES AT LEVEL 9 FOR n = 12 OCCUPANCY MODEL

Partition Type Number of Realizations Probability

{10,1,1} 66 .001

{9,2,1} 660 .008

{8,3,1} 1980 .023

{8,2,2} 1485 .017

{7,3,2} 7920 .092

{7,4,1} 3960 .046

{6,5,1} 5544 .064

16,4,2} 13860 .160

{6,3,3} 9240 .107

{5,5,2} 8316 .096

{5,4,3} 27720 .320

{4,4,4} 5775 .067
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TABLE 3. COMPARISON OF EMPIRICAL AND THEORETICAL DISTRIBUTIONS
OVER PARTITION TYPES AT LEVEL 9 FOR n = 12 - COLLAPSED OVER PAR-
TITION TYPES CONTAINING THE SAME SIZE LARGEST SUBSET

Empirical Probabilities
Partition Type Theoretical Probability

20

Single-link Complete-link

{10,1,1} .001 .546 .000

{9,2,2} .008 .209 .003

{8,3,1}
.040 .193 .029

{8,2.2}

{7,4,1}
.137 .061 .101

{7,3,2} j

{6,5,1}

{6,4,2} .331 .066 .328

{6,3,3}

{5,5,2}

{5,4,3} .416 .015 .458

{4,4,4}
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TABLE 4. LEVEL 7 PARTITIONS OBTAINED FROM RAO'S CASTE

DATA USING r-DIAMETER CLUSTERING ABBREVIATIONS ARE RAO'S

r Partition

1 {{A1, A2,A3,A4},{B1,B2},{Ch,M},{Bh,D},{C1,C2}}

2 {{A1, A2,A3,A4},{B1,B2,C2},{Ch,M},{Bh,D},{C1}}

3 {{131,112,A1,A2,A3,A4},{Ch,M},{Bn,D},(C1},{C2}}

4 {{B1,B2,A1, A2,A3,A4},{Ch,M},{Bh,D},{C1 },{C2}}

5 {{ B1, B2, A1, A,, A3,A4,Ch,M }, {Bh}, {D}, {C1}, {C2}}
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TABLE 5. SELECTED GOODNESS -OF -FIT y VALUES FOR SI`

LINK AND COMPLETE-LINK CLUSTERING USING THE MATRICES. P(k)-

SAMPLE SIZE IS 10

Single-l;nk
Data Set

Complete-link

k: 1 2 4 11 1 2 4 11

1 .13 .39 .59 .59 .39 .39 .70 .70

2 .27 .53 .65 .65 .39 .56 .39 .39

3 .20 .49 .72 .73 .36 .51 .68 .69

4 .31 .53 .60 .60 .42 .64 .44 .44

5 .25 .46 .60 .60 .49 .60 .66 .66

6 .26 .53 .59 .59 .38 .64 .54 .54

7 .13 .54 .73 .73 .33 .44 .75 .75

8 .13 .53 .62 .62 .40 .64 .68 .68

9 .41 .72 .82 .82 .40 .51 .78 .78

10 .47 .80 .85 .85 .29 .77 .85 .85

Means: .26 .55 .68 .68 .39 .57 .65 .65

Original Data: .50 .62 .64 .64 .48 .65 .68 .68
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