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The identification of clusters or communities in complex networks is a reappearing problem. The

minimum spanning tree (MST), the tree connecting all nodes with minimum total weight, is

regarded as an important transport backbone of the original weighted graph. We hypothesize that

the clustering of the MST reveals insight in the hierarchical structure of weighted graphs.

However, existing theories and algorithms have difficulties to define and identify clusters in trees.

Here, we first define clustering in trees and then propose a tree agglomerative hierarchical

clustering (TAHC) method for the detection of clusters in MSTs. We then demonstrate that the

TAHC method can detect clusters in artificial trees, and also in MSTs of weighted social networks,

for which the clusters are in agreement with the previously reported clusters of the original

weighted networks. Our results therefore not only indicate that clusters can be found in MSTs, but

also that the MSTs contain information about the underlying clusters of the original weighted

network.VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908014]

Clustering or community structure has been regarded as
one of the most significant features of complex networks.
The minimum spanning tree (MST) is the spanning tree
in a weighted graph for which the sum of the weights of
its constituting links is minimal. There are many different
kinds of algorithms for identifying clusters in general
networks, but a general definition and algorithm for the
detection of clusters in trees has not been established. In
our current study, we first define clusters in trees and
propose a tree agglomerative hierarchical clustering
(TAHC) method for the detection of clusters in MSTs. By
detecting clusters in both artificial trees and the MSTs of
two weighted social networks, we demonstrate that the
clustering of the MSTs reveals the underlying clusters of
the original weighted graphs.

I. INTRODUCTION

In the past decade, complex network theory has been

widely used in different disciplines, such as social, techno-

logical, and biological systems.1–3 Clusters, also called the

community structure or modules, are important features of

complex networks.4–6 Qualitatively, clusters can be defined

as groups of nodes within a graph such that there is a higher

density of links within clusters than between them.

In contrast to general graphs, trees are maximally sparse

connected graphs.7 To date, there are few studies that present

methods for the detection of clusters or community structure

in trees.4 However, trees, especially MSTs play an important

role in the investigation of the dynamical and topological

properties of complex networks.8 The MST has been identi-

fied as an important transport backbone of the original

weighted graph.9 Several studies have demonstrated that

under certain conditions the transportation in weighted

graphs is dominated by their MSTs.10–12 In addition, for the

comparison of empirical brain networks, the MST has been

shown to be a sensitive and practical tool to overcome prob-

lems caused by differences in network density (the number

of links) or average link weight.13,14 The importance of both

the MST and community structure in weighted graphs has

motivated us to investigate whether the MST contains infor-

mation about clusters in the underlying weighted network

and whether these clusters can be detected in minimum span-

ning trees.

Many different kinds of clustering algorithms have been

developed.4,5 Among them, hierarchical clustering methods

play an important role in linking the well-known scale-free

and small-world network models, and also in predicting

missing links.15–19 There are two types of hierarchical

clustering methods: divisive and agglomerative. Divisive

algorithms start with all connections in the network and iter-

atively remove links, which divides the graph progressively

into smaller and smaller disconnected sub-graphs identified

as the clusters. The divisive approaches differ in how links

are removed. The best-known divisive method, the Girvan-

Newman (GN) algorithm, is based on the removal of links

with high betweenness (In an unweighted graph, the shortest

path length (hopcount) is the minimum number of links that

must be traversed to move from one node to another.20 The

betweenness of a link is the number of shortest paths

between all possible pairs of nodes in the graph that traverse

that link). The GN algorithm is able to detect known clusters

in both computer-generated and real-world graphs.21
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However, in trees with many low degree nodes connected by

links with high betweenness, the GN algorithm will produce

too many isolated nodes.

In contrast, agglomerative algorithms start from an

empty graph with the same number of nodes as the original

network, but without links. Links are then iteratively added

in order of decreasing similarity22 until all the nodes are

merged into one cluster. The so-called Louvain method is a

popular agglomerative method.23 The Louvain method is a

greedy optimization algorithm, based on optimizing the

modularity of a partition (the modularity of a partition meas-

ures the density of links inside clusters compared to links

between clusters)6,20,24 of a graph. In the Louvain method,

the similarity between two nodes is quantitatively measured

by the gain of modularity that would take place by merging

the two nodes. This method will iteratively merge pairs of

nodes until a maximum of modularity is attained. This

greedy algorithm can deal with very large networks (net-

works with millions of nodes and billion of links) with high

computational efficiency. However, several studies have

shown that the optimization of modularity has a resolution

limit: relatively small, but very dense clusters may be unde-

tectable in the presence of relatively large clusters.25,26

These studies imply that the resolution limit of modularity

depends on the comparison between the total number L of

links in the entire graph and the number ls of links inside

clusters. Usually, the resolution problem25 will occur in clus-

ters with a about
ffiffiffiffiffiffi

2L
p

number of internal links or smaller

(ls !
ffiffiffiffiffiffi

2L
p

). Trees, being maximally sparse connected

graphs, will consist mainly of sparse clusters. Hence, apply-

ing the Louvain algorithm or other optimization algorithms

to trees will suffer from the resolution limit.27 Moreover,

trees and tree-like graphs can possess unexpectedly high

modularity, so the Louvain method, as one of the modularity

maximization algorithms, might behave unexpectedly in

trees.27 Recently, another agglomerative algorithm, called

spanning tree separation (STS) clustering was introduced to

identify clusters in general graphs.28 The STS is based on

calculating the number of spanning trees running through all

the links in general graphs. However, the STS algorithm is

not applicable to trees, since the number of spanning trees

running through all the links would always equal to 1. In

order to deal with the limitations of existing algorithms, we

introduce here a new hierarchical clustering method based

on an agglomerative algorithm that is able to detect clusters

in trees. Moreover, rather than using modularity or any other

criterion to stop the agglomerative process, we present the

entire hierarchical clustering in the form of a dendrogram.

The paper is organized as follows. In Sec. II, we first

describe how clusters can be defined for trees and hypothe-

size that trees consist of two fundamental motifs with charac-

teristic clustering structures. We then detail the shortcomings

of the existing divisive and agglomerative methods for tree

clustering, with the GN algorithm and Louvain method as

examples, respectively. To avoid these shortcomings, we pro-

pose a new agglomerative method and describe its implemen-

tation. In Sec. III, we demonstrate the performance of the

method using two artificial trees with known clustering struc-

tures, as well as for the MSTs of two well-known weighted

social networks containing clustering structure. We finish

with a discussion and conclusions in Sec. IV.

II. FINDING CLUSTERS IN TREES

A. The definition of clusters in trees

In this paper, we present a hierarchical clustering

method to discover clusters in MSTs. Our study concentrates

on undirected (non-rooted) MSTs with unweighted links.

Since MSTs possess all the properties of trees, we will start

by discussing how to define clusters in trees.

To date, there is no standard definition of for clusters in

a tree. Trees do not accord with the conventional definition

of clusters, which are groups of nodes within a graph such

that there is a higher density of links within clusters than

between them. There are two extreme configurations for

trees: a star and a path (Figs. 1(a) and 1(b)). A star consists

of one central node (hub: nodes with higher degree than

others) and several peripheral nodes (leaves, degree 1 nodes)

connected to the central one with only one link. Trees can be

constructed by connecting several stars of possibly different

size. According to the definition of clusters as internally

dense and externally sparse sub-graphs, each star within one

general tree naturally forms one cluster, because in each star

most leaves only connect to their own hub, except for a small

number of leaves connecting the rest of the graph (Fig. 1(c)).

In a path, however, except for the leaves at either end, all

nodes are connected to their two neighbors (Fig. 1(b)). A

path has no density fluctuations (except at the extremes), so

none of the sub-graphs in a path satisfies the cluster defini-

tion. Therefore, clustering detection in trees consisting of

paths will have to rely on their topological structure. For

instance, in the Cayley tree (a Cayley tree is a regular tree in

which every node i is linked to k neighbours (k ¼ 3 in

Fig. 1(d)), except for leaf nodes on the boundary29), every

FIG. 1. Examples of two fundamental motifs in general trees. (a) star-motif

with one central node and (in this case) eight leaves; (b) line-motif with (in

this case) five nodes; (c) five connected star-motifs; (d) three connected line-

motifs: Cayley tree. Note that in (c), nodes 1, 2, 3, 4, 5 are five hubs; in (d),

the three line-motifs connecting to the central node 1 by three bold links cor-

respond to three clusters, respectively.
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node has the same degree except for the leaves on the bound-

ary (Fig. 1(d)). In this case, we consider that the Cayley tree

consists of one central node (node 1) and three “paths” (In

the Cayley tree (Fig. 1(d)), the nodes in the three “paths,”

except for the leaves at either end, are connected to three

neighbors. Here, we consider that the nodes belonging to the

same line-motif in the Cayley tree form a “path,” because

the “path” also have no density fluctuations (except at the

extremes). In the Cayley tree, node 1 plays an important role

as the concentrator to integrate and separate the information

from and to the three line-motifs. Given the symmetrical

structure of the three “paths,” we regard the three “paths” in

Fig. 1(d) as three clusters and node 1 as one single cluster in

the Cayley tree.

In our study, we define stars and paths as star-motifs and

line-motifs in general trees, respectively. We hypothesize that

any general tree that consists of some combination of the two

motifs will possess corresponding clustering structures.

B. Shortcomings of divisive methods in the case
of trees

Our proposed approach is based on agglomerative hier-

archical clustering, since divisive methods have shortcom-

ings for tree clustering, as will be illustrated here for the GN

algorithm.

If two approximately equally large clusters in a graph are

loosely interconnected by a few links, these intercluster links

will have higher link betweenness than links within each clus-

ter. The GN algorithm aims at finding and removing links

with high betweenness. The link betweenness must be recal-

culated following the removal of each link, because the link

betweenness for remaining links will no longer be correct for

the remaining graph24 (note that this step is redundant for

trees, since for these acyclic graphs there is exactly one path

connecting two clusters). By removing these links consecu-

tively, the GN algorithm can identify the underlying cluster-

ing structure. However, as mentioned in the Introduction

section, the GN algorithm will produce too many isolated

nodes in trees consisting of low degree nodes. Trees are max-

imally sparse graphs, which could contain many of the line-

motifs mentioned above. Fig. 2(a) shows a tree that consists

of two star-motifs connected by one line-motif between them.

In Fig. 2(a), node 5 is a concentrator playing the same role as

node 1 in the Cayley tree (Fig. 1(d)), which can be regarded

as one single cluster. The links belonging to the line-motif

have higher betweenness. According to the GN algorithm,

these links with higher betweenness will be removed step by

step. As a result, there will be two star-motifs with several

isolated nodes left. In fact, Fig. 2(a) has symmetrical struc-

ture, but the GN algorithm will ignore it.

C. Shortcomings of existing agglomerative methods
in the case of trees

Although the agglomerative methods can deal with the

disadvantages of divisive methods, the existing agglomera-

tive methods still have limitations for tree clustering. The

Louvain method is a typical agglomerative method, which

has been successfully used to identify hierarchical clustering

in huge real-world networks. In this section, we concentrate

on presenting the limitations of the Louvain method.

Due to the resolution limit caused by modularity maxi-

mization, the Louvain method usually fails to detect small

clusters when the following condition is met for the number

of links within the cluster, ls !
ffiffiffiffiffiffi

2L
p

.25 Fig. 1(c) shows a tree

constructed by connecting five star-motifs. The five star-

motifs correspond to five clusters. In this artificial tree, the

total number of links is L ¼ 24, and the number of links

inside each cluster from left to right are lsi ¼ f6; 5; 4; 3; 2g
(i 2 f1; 2; 3; 4; 5g corresponds to the five clusters from left

to right, respectively). In this case
ffiffiffiffiffiffi

2L
p

# 6:93, and there-

fore, lsi <
ffiffiffiffiffiffi

2L
p

(i 2 f1; 2; 3; 4; 5g) for all the five clusters.

Hence, the Louvain method applied to these kinds of trees

will unavoidably be hindered by the resolution limit.

D. New agglomerative hierarchical clustering based
on geodesic distance matrix

In this paper, we propose a new TAHC method to iden-

tify clusters in trees. In graph theory,6 a graph can be

expressed by its adjacency matrix A, whose entries aij take

the value 1 if there is a link between node i to node j in the

tree and 0 otherwise. Based on the adjacency matrix A, tradi-
tional agglomerative hierarchical clustering methods tend to

FIG. 2. A tree and its corresponding dendrogram of the hierarchical cluster-

ing structure. (a) A tree consisting of two star-motifs connected by one line-

motif in the middle. (b) The dendrogram of the hierarchical clustering result

for this tree. The numbers along the horizontal axis correspond to the 21

nodes in (a) and the upside-down U-shaped lines denote the links between

the 21 nodes; the height of the U-shaped lines is the Spearman distance

between two nodes, indicating that two nodes merged at that hierarchy have

identical similarities; from bottom to top, nodes will be joined together by

the U-shaped lines until all nodes are merged into a single cluster; the hier-

archical clustering result can be obtained by the cross-section of the dendro-

gram at any hierarchy indicated by a solid line. From top to bottom, we

define that the first hierarchy of the dendrogram starts with the highest

U-shaped line, so the solid line in (b) is positioned between the second and

the third hierarchy.
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find only the core nodes of clusters, but not the peripheral

nodes.24 Therefore, for tree clustering, rather than directly

analyzing A, we utilize the geodesic distance matrix C as

input for the clustering algorithm.

The geodesic distance matrix C is a weighted matrix in

which the entries are the geodesic distances between all pos-

sible pairs of nodes in a graph. Here we confine to a graph

that is a tree. The geodesic distance between two nodes in a

tree is equal to the number of links in the shortest path (there

is only one path linking two nodes in a tree) between the two

nodes (and therefore equal to 1 for directly linked nodes).

Agglomerative hierarchical clustering starts with an

empty graph of N nodes with no links between them. In the

agglomerative process, similarities between node pairs are

calculated, hence a similarity measure is required. In the

symmetric geodesic distance matrix C, each node corre-

sponds to a row and a column vector. Based on C, we calcu-
late vector similarities between all row pairs of the C. Here,
we employ the commonly used Spearman’s rank correlation

rSpearman.
30 The vector similarity is then simply the so-called

Spearman distance, defined as dSpearman ¼ 1$ rSpearman. This

measure is computed for every node pair and used as the

input matrix for hierarchical clustering. After obtaining

the similarities between every node pair, links are added to

the node pairs in order of decreasing similarity, starting

with the nodes pairs with highest similarity. When two nodes

are merged into one cluster, we use the average-linkage clus-

tering (When there is more than one node in one cluster, the

distance between this cluster and other clusters can be calcu-

lated in different ways. In the average-link clustering, the

distance between two clusters is equal to the average dis-

tance from any nodes of one cluster to any node of the other

cluster) to define the distance between the new cluster and

other nodes. Based on average-link clustering, node pairs

will be merged into corresponding clusters in order of

decreasing similarity. In the final step, the agglomerative

method will merge all nodes into one single cluster. The

merging during the different stages of the algorithm can be

represented in the form of a dendrogram (see Fig. 2(b)).

To summarize our TAHC algorithm:

(1) Calculate the geodesic distances between all possible

pairs of nodes of the given graph (which is a tree) and

use the geodesic distance matrix C as input to the

agglomerative hierarchical clustering algorithm.

(2) Assign each node (the row vector of C) to one cluster.

(3) Define the dSpearman as vector similarity distance between

all row pairs of C.
(4) Find the most similar pair of clusters and merge them

into a single cluster.

(5) Calculate similarities between the new cluster and each

of the old clusters based on average-linkage clustering.

(6) Repeating steps 4 and 5 until all nodes are merged into a

single cluster.

E. Time complexity

For a MST with N nodes and N$ 1 links, the geodesic

distance matrix C can be obtained by Dijkstra’s algorithm in

time O((2N$ 1)log(N)). The average-linkage clustering needs

O(N2) time steps. If N!1, O((2N-1)log(N))¼O(Nlog(N)),

and O(Nlog(N)þN2)¼O(N2).31 Thus the overall run time of

the TAHC algorithm scales as O(N2) on a MST.

F. Comparing the clusters in the original weighted
graph and the MST

To evaluate the performance of the TAHC method, we

adopted normalized mutual information (NMI)32 to quantify

the similarity between the underlying “real” clusters and the

clusters detected by the TAHC method. NMI is based on the

confusion matrix N, in which the entries Nij are the number

of nodes in the “real” cluster i that appear in the “detected”

cluster j. The measure of similarity between different cluster-

ing results is defined as follows:

NMI A;Bð Þ ¼

$2
XCA

i¼1

XCB

j¼1

Nij log
NijN

Ni(N(j

" #

XCA

i¼1

Ni( log
Ni(

N

" #

þ
XCB

j¼1

N(j log
N(j

N

" #

;

where CA and CB are the number of “real” clusters and

“detected” clusters, respectively. The sum over row i of

matrix N is denoted Ni( and N(j is the sum over column j of

matrix N. NMI takes the maximum value of 1 when the

“detected” clusters are equal to the “real” clusters. NMI

equals zero when the “detected” clusters are completely in-

dependent of the “real” partitions.

III. APPLICATIONS

A. Artificial trees consisting of star-motifs
and line-motifs

To test the performance of the proposed algorithm, we

first applied it to two artificial trees.

Fig. 3 shows the hierarchical clustering result for the ar-

tificial tree shown in Fig. 1(c), which consists of five star-

motifs, where five hubs connect to each other in order of

decreasing number of leaves. Five clusters were obtained by

the TAHC algorithm, which is in line with the definition of

clustering for star-motifs in Sec. II. However, the Louvain

method was able to detect only four clusters (see Fig. 3), as

it incorrectly merged the two star-motifs that have few leaf

nodes due to the limited resolution of this approach.

For the Cayley tree, each node has the same degree (all

equal to 3), except for leaf nodes (see Fig. 1(d)). Using our

definition for line-motifs in trees (Sec. II), this Cayley tree

can be considered as containing one central node (node 1)

connecting three line-motifs. Given that the three line-motifs

have equivalent structures, which all link to node 1 by one

node, there is no unequivocal way to decide to which cluster

node 1 should be assigned, so node1 should be one single

cluster. Nodes that are part of the line-motifs are symmetric

in the lower hierarchy of the dendrogram (see Fig. 4) due to

the symmetrical structures of the Cayley tree. The TAHC

method can detect four expected clusters (Fig. 4), but the

Louvain method fails (see Table I).
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Note that: L and ls denote the total number of links in a

graph and the number of links inside clusters, respectively.

Usually, the resolution problem will occur when ls !
ffiffiffiffiffiffi

2L
p

.25

B. MSTs of the Zachary’s karate club network

and the Les Mis!erables network

Next, we tested the TAHC approach to the MSTs of two

weighted social networks (Zachary’s karate club network

and Les Mis!erables network) that have been characterized

previously in terms of clustering structure. Here, the MST

was obtained by Kruskal’s algorithm.33 The two social net-

works belong to a widely used benchmark to test the per-

formance of clustering detection algorithms, including the

GN algorithm.21,24 Although the original versions of the two

social networks are weighted networks, most studies have

only considered their unweighted version for simplicity,

thereby missing the important underlying information

reflected by the link weights. Here, we investigated the hier-

archical clustering of the MSTs of the two weighted social

networks. The key question here is whether the MSTs can

reveal the clusters that are present in their original weighted

networks.

The Zachary’s karate club network34 consists of 34

members of the karate club at a U.S. university in 1970.

Their mutual relationships were investigated over a period of

2 yr. The club split into two groups after a dispute between a

teacher (node 1 in Fig. 5) and the administrator (node 33 in

Fig. 5) of the club.

Fig. 5 illustrates that the weighted Zachary’s karate club

network consists of two groups Fig. 6(a) shows the MST of the

weighted network. The two biggest star-motifs in the MST

consist of the two largest hub nodes 1 and 34, respectively.

Fig. 6(b) shows the hierarchical clustering for the MST

using the TAHC method, which showed that the MST can be

divided into two clusters. This result successfully corre-

sponds to the actual division in the original weighted net-

work (Fig. 5), except for node 29 (NMI¼ 0.8372). This node

is a leaf of node 3 in the MST, both of which will therefore

always be assigned to the same cluster. Thus, for the

weighted Zachary’s karate club network, these results dem-

onstrate that its MST can establish the known clustering with

a high accuracy.

The co-appearance network of major characters in the

novel Les Mis!erables, authored by Victor Hugo, as compiled

by Knuth,35 was also analyzed. In this network, the 77 inter-

acting characters are represented by 77 nodes, and two nodes

are linked if the two characters appear together in one or

more chapters of the book. The weights of the links are the

number of the co-appearances.

Fig. 7 shows the MST of the weighted Les Mis!erables

network, which consists of six relatively larger star-motifs.

These star-motifs contain six relatively higher degree nodes

(six characters): the higher degree node Valjean (the leading

FIG. 3. Hierarchical clustering results for the artificial tree with five con-

nected star-motifs in Fig. 1(b). The dotted line between the third and fourth

hierarchy represents the results of Louvian method, and the solid line

between the fourth and fifth hierarchy represents the results of the TAHC

method. Note that the TAHC method finds the correct clusters, whereas the

Louvain method erroneously merges two clusters.

FIG. 4. Hierarchical clustering results of the Cayley tree using the TAHC

method. The solid line between the second and third hierarchy provides the

correct clustering for the Cayley tree, namely, the single central node (node

1), and three symmetric clusters.

TABLE I. Clustering results in Cayley tree of TAHC compared with

Louvain Method.

Cluster Louvain TAHC

1 1,2,5,13,14 2,5,10,11,12,13,14

2 3,6,7,19,20,21,22 3,6,7,19,20,21,22

3 4,8,9,15,16,17,18 4,8,9,15,16,17,18

4 10,11,12 1

ls ¼ 6 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L # 6:48
p

FIG. 5. Weighted Zachary’s karate club network consists of the two known

clusters. Link thickness represents the strength of the relationships between

any two of the 34 members (i.e., the weights). The teacher and the adminis-

trator of the club are represented by nodes 1 and 34, respectively.
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hero: degree¼ 20); node Myriel (the Bishop, who saved

Valjean: degree¼ 10); node Courfeyrac (one of members of

the friends of the ABC society: degree¼ 8); node Thenardier

(the leading villain: degree¼ 7); node Marius (the young

hero: degree¼ 6); node Fantine (the leading heroine:

degree¼ 4). In this MST, there is one node Cosette (the

young heroine who is the daughter of Fantine and also the

wife of Marius), linking Valjean and Marius (the husband of

Cosette), playing an important role in the book.

The TAHC method successfully detects seven clusters

consisting of the six large star-motifs and one important

node Cosette with its leave Toussaint (who was appointed by

Valjean to protect Cosette) (Fig. 8). The detailed description

of the relationships between the characters in each cluster

can be found in Appendix A.

For comparison, we also directly applied Louvain

method to the weighted Les Mis!erables network (Fig. 9).

The Louvain method detected six clusters in the original

weighted Les Mis!erables network, which were similar to the

seven clusters found in the MST by the TAHC method

(NMI¼ 0.8237).

Hence, the TAHC algorithm can effectively detect the

underlying hierarchical clustering embedded in the MST of

the weighted Les Mis!erables network.

IV. CONCLUSION

In this article, we first defined the clusters in general

trees in terms of two basic motifs (stars and paths) and then

presented a novel TAHC method to investigate these types

of clusters in MSTs. This is the first clustering method that

can be successfully applied to trees, i.e., maximally sparse

connected graphs. The TAHC algorithm used the geodesic

distance matrix C to compute the similarity between

two nodes in the tree. This similarity was defined as the

Spearman distance between row pairs in the geodesic

distance matrix C. We tested the effect of using a simpler

metric for the hierarchical clustering, i.e., we replaced the

Spearman distances between row pairs in the geodesic dis-

tance matrix C by the geodesic distances between pairs of

nodes. This gave similar results, yet for the real social

networks this simpler metric was less sensitive to the intri-

cate details of the underlying clusters (see Appendix B).

We have shown that the TAHC method can detect the

underlying known clusters for two artificial trees that consist

of these two fundamental motifs. The TAHC method

presents better results on the artificial trees compared to the

Louvain method, which suffers from a resolution limit. We

have also demonstrated the utility and reliability of the

TAHC method by applying it to the MST of two weighted

social networks. In 2002, Girvan and Newman first applied

the GN method to the unweighted Zachary’s karate club net-

work and detected the two known clusters.21 However, only

FIG. 6. The MST and corresponding hierarchical cluster of the Zachary’s

karate club network. (a) The MST of the weighted Zachary’s karate club net-

work. (b) The hierarchical clustering result of the MST. Note that the labels

of the 34 nodes in the MST and the dendrogram correspond to the 34 labels

in Fig. 5. The solid line between the first and the second hierarchy gives the

clustering result obtained with the TAHC method, which correctly identified

the two clusters in the network. Only the cluster assignment of Node 29

(squared) was inconsistent with that of the underlying weighted network

(see Fig. 5).

FIG. 7. The MST of the weighted Les Mis!erables network. Each node is

labelled with the name of each character in the book.
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considering the unweighted network misses important infor-

mation embedded in link weights. In 2008, Arenas and col-

leagues successfully detected the two clusters in the original

weighted Zachary’s network. In our study, the TAHC

method extracts the known clusters in the MST of weighted

Zachary’s karate club network with a high degree of success

(only one node was classified incorrectly). Similarly, many

studies have analyzed the unweighted Les Mis!erables

network, but the original weighted Les Mis!erables network

has not yet been studied.24,36,37 Application of the TAHC

method to the MST of the weighted Les Mis!erables network

revealed clusters that largely overlapped with the clusters we

found for the original weighted network using the Louvain

method. Our clustering results of the MST of two weighted

social networks indicate that the MSTs can reveal most of

the known clusters of their original weighted networks.

There were some small differences between the clusters

of the original weighted networks and the clustering as

obtained using the TAHC method applied to the MSTs.

There could be several reasons for this: first, the TAHC

method may not be sensitive enough to fully detect the

underlying clustering structure in MSTs, especially for

MSTs containing many line-motifs. Second, there may be

overlapping clusters in the two employed social networks,38

which have not been considered in this article. Third, by con-

structing the MST some information about the clustering of

the underlying weighted network may have been removed.

Finally, the previously reported clustering for the underlying

weighted networks was used here as gold standard, yet this

gold standard may not be the perfect.

Future studies will focus on finding more sensitive clus-

tering method for MSTs and on the collection of weighted

FIG. 8. The hierarchical cluster of the

MST of the weighted Les Mis!erables

network. Note that the label of each

node corresponds to the label in Fig. 7.

The solid line between the sixth and

seventh hierarchy gives the clustering

result obtained with the TAHC

method, which identified the seven

clusters in the network.

023107-7 Yu et al. Chaos 25, 023107 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

112.19.190.59 On: Wed, 11 Feb 2015 14:51:31



real-world networks with well-documented clusters for anal-

ysis. Moreover, we have not presented an objective metric

(for example, the modularity24) to evaluate the hierarchical

clustering results, because trees are likely to suffer from the

resolution limit when using modularity.25,27 In our study, we

presented the entire hierarchical dendrograms and obtained

clusters by comparing with previously reported clustering

results of the original weighted networks. However, in prac-

tice, the clusters are not known in advance. Future studies

should therefore develop an objective heuristic to set the

threshold for the dendrograms. Some studies aimed to find

relationships between MSTs and the single-linkage and

average-linkage cluster analysis of the original graph.39,40 In

our study, we applied the average-linkage cluster analysis to

the geodesic distance matrix of the MSTs rather than the

original graph. We represented the results of the TAHC algo-

rithm in the form of dendrograms, in which the nodes of the

MSTs are depicted at the bottom. The roots of the dendro-

grams represent corresponding hierarchies, at which nodes

are merged into a cluster. The hierarchical clustering results

can be obtained by the cross-section of the dendrograms at

any hierarchy or root. However, there may be also some rela-

tionships between finding clusters in the MSTs and finding

an appropriate root in corresponding dendrograms of the

MSTs. We believe that this is an interesting direction for

future research.

We have demonstrated that MSTs contain information

about the clustering in the underlying weighted networks,

and that these clusters can be detected successfully in the

MST using an agglomerative hierarchical clustering

approach. We envisage that the TAHC method will be useful

in the identification of clustering in various MSTs, as

obtained from a range of complex networks, including social

networks, genetic control networks, as well as functional and

structural brain networks.
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APPENDIX A: THE RELATIONSHIPS BETWEEN THE
CHARACTERS IN EACH CLUSTER OF THE MST OF
THE WEIGHTED LES MIS!ERABLES NETWORK

From top to bottom in Fig. 8, the first cluster includes

the leading villain, Thenardier and persons related to him:

MmeThenardier (his wife); Anzelma (his daughter); Magnon

(the servant of Marius); six bandits (Brujon, Claquesous,

Boulatruelle, Gueulemer, Babel, and Montparnasse).

The second cluster includes the Bishop Myriel;

MlleBaptistine and MmeMagloire (two servants of Myriel);

and some persons have important relations with Myriel dur-

ing his life: Napoleon; CountessDeLo; Geborand;

Champtercier; Cravatte; Count; OldMan.

The third cluster consists of the leading hero Valjean,

his enemy and also life-saver Javert (the policeman who

had been hunting Valjean all the time, but released

Valjean at last), two sisters (Perpetue and Simplice) helped

Fantine (the leading heroine) appointed by Valjean, two

women (two servants of Valjean, who was also appointed

by Valjean to protect the young heroine, Cosette); six pro-

tagonists in the “Champmathieu affair”: Champmathieu (a

thief who was wrongly regarded as Valjean), three con-

victs accused Champmathieu (Cochepaille, Brevet, and

Chenildieuthree), Bamatabois (a juror), a judge; and

FIG. 9. The six clusters, represented in

different colors, of the original

weighted Les Mis!erables network

identified by Louvain method. Link

thickness indicates its weights, which

represent the number of the co-

appearances of corresponding charac-

ters in this book.
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several persons who did not treat Valjean well after he was

released from jail: Labarre (an innkeeper), Gervais (a

little boy), Isabeau (a baker), MmeDeR, Sacufflaire (a

horse merchant); three persons met by Valjean in rela-

tively later chapters: Fauchelevent (an aged notary),

Gribier (a gravedigger), MotherInnocent (prioress of a

convent).

The fourth cluster corresponds to the leading heroine,

Fantine; Marguerite (one woman who helped Fantine); her

three friends: Zephine, Favourite, and Dahlia; the four

Parisian students (Tholomyes, Listolier, Fameuil, and

Blacheville), who often contacted with Fantine.

The fifth cluster consists of the young heroine, Cosette

(the wife of Marius) and Toussaint (who was appointed by

Valjean to protect Cosette).

The sixth cluster consists of the young hero, Marius;

Pontmery (one of the family members of Marius); Eponine

and Baroness (two friends of Marius); the family members of

Marius: Gillenormand, MlleGillenormand, LtGillenormand,

MmePontmercy, and one friend of Marius, MlleVaubois.

The seventh cluster contains the eight members of the

friends of the ABC society (Courfeyrac, Enjolras,

Combeferre, Pouvarie, Feuily, Bahorel, Grantaire, and Joly);

MmeHucheloup (the innkeeper); and their friends, Mabeuf

(the church prefect) and MotherPlutarch (the mad of

Mabeuf); Gavroche (a street urchin); Jondrette (the father of

Gavroche); MmeBurgon (a landlady); two children.

APPENDIX B: A SIMPLER AGGLOMERATIVE
HIERARCHICAL CLUSTERING METRIC

In the main manuscript, we used the geodesic distance

matrix C to compute the similarity between two nodes in the

tree. This similarity was defined as the Spearman distance

between row pairs in the geodesic distance matrix C.

Here, we evaluated the use of an alternative, simpler

metric: that is, the agglomerative hierarchical clustering was

based directly on the geodesic distances between the node

pairs.

Here, we take the MST of the weighted Zachary’s karate

club network as an example to show the reduced sensitivity

when using this simple metric. Fig. 10 shows the hierarchical

clustering for the MST. Besides node 29, which was classi-

fied correctly using our original approach, nodes 9 and 31

are now also classified incorrectly. This demonstrates that

using a simpler metric reduces the sensitivity as compared to

the TAHC method. In fact, node 9 and its leave node 31 are

located almost in between the two known clusters (see Figs.

5 and 6(a)), which is difficult to detect by simply considering

the geodesic distance.
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