
Hierarchical Commensurate and Power Prior Models for
Adaptive Incorporation of Historical Information in Clinical Trials

Brian P. Hobbs1,*, Bradley P. Carlin2, Sumithra J. Mandrekar3, and Daniel J. Sargent3
1 Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, U.S.A
2 Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, U.S.A
3 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, U.S.A

Summary
Bayesian clinical trial designs offer the possibility of a substantially reduced sample size,
increased statistical power, and reductions in cost and ethical hazard. However when prior and
current information conflict, Bayesian methods can lead to higher than expected Type I error, as
well as the possibility of a costlier and lengthier trial. This motivates an investigation of the
feasibility of hierarchical Bayesian methods for incorporating historical data that are adaptively
robust to prior information that reveals itself to be inconsistent with the accumulating
experimental data. In this paper, we present several models that allow for the commensurability of
the information in the historical and current data to determine how much historical information is
used. A primary tool is elaborating the traditional power prior approach based upon a measure of
commensurability for Gaussian data. We compare the frequentist performance of several methods
using simulations, and close with an example of a colon cancer trial that illustrates a linear models
extension of our adaptive borrowing approach. Our proposed methods produce more precise
estimates of the model parameters, in particular conferring statistical significance to the observed
reduction in tumor size for the experimental regimen as compared to the control regimen.
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1. Introduction
Recent years have seen a dramatic increase in the use of Bayesian methods in the design,
interim monitoring, and final analysis of clinical trials. By offering a formal statistical
framework for incorporating all sources of knowledge (structural constraints, expert opinion,
and both historical and experimental data), these methods offer the possibility of a
substantially reduced sample size thanks to their more efficient use of information. This in
turn typically leads to increases in statistical power and reductions in cost and ethical hazard,
the latter since fewer patients need be exposed to the inferior treatment. On the other hand,
the Bayesian approach carries some disadvantages when two or more sources of information
conflict. In such cases, this can lead to higher than expected Type I error, as well as the
possibility of a costlier and lengthier trial, since extra experimental information will be
needed to resolve the conflict.
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A commonly available (but often unincorporated) source of information in clinical trials is
historical data. Such data may be available to the investigator based on previous studies in
similar populations, or may simply be taken from the published summaries of other
investigators. Even when no information related to a novel treatment is available, our
understanding of the “standard care” group in a trial can almost always be augmented by
existing information. Such borrowing of strength from historical data has long been
encouraged in the case of medical device trials by the Center for Devices and Radiological
Health (CDRH) at the U.S. Food and Drug Administration (FDA);
(http://www.fda.gov/cdrh/osb/guidance/1601.html).

One specific challenge involves the problem of borrowing strength from a single historical
study (be it in a control or a treatment group). As described by Irony (2008), simply fitting
hierarchical models that borrow strength across levels in the usual way in such settings is
overly sensitive to the hyperprior distribution on the variance parameters that control the
amount of cross-study borrowing. That is, with only one historical study, there is no way to
reliably estimate cross-study variability, and so this information must be imparted by the
modeler – sometimes with drastic results for power and Type I error. This has led the FDA
to preclude the use of historical information in such settings, even though this is clearly
suboptimal in terms of cost and efficiency.

These issues motivate an investigation of the feasibility of hierarchical Bayesian borrowing
of strength in such settings. The goal of such an approach is to determine a “sensible”
amount of strength to borrow from the historical data that strikes a balance between
increased cost-efficiency and long-run statistical integrity. Put another way, methods for
incorporating historical data that are “adaptively robust” to prior knowledge that turns out to
be inconsistent with the accumulating experimental data would be highly desirable. By
contrast, we seek to utilize historical information given strong evidence of commensurability
with the current.

In this paper, we propose various classes of commensurate priors as a solution to this
problem. Section 2 introduces novel modifications to the traditional power prior approach
which use a measure of commensurability among the historical and current data to guide the
modeling. Then in Section 3 we propose several alternative hierarchical models for which
borrowing depends upon some sensible measure of commensurability. Section 4 compares
the frequentist performance of several of the proposed methods using simulation, while
Section 5 offers an example from a colon cancer trial that illustrates the benefit of our
proposed adaptive borrowing approach. Finally, Section 6 concludes and discusses our
findings.

2. Hierarchical Power Priors
We begin with a review of power priors for general univariate models. Introduced by
Ibrahim and Chen (2000), power priors offer a simple way to incorporate and downweight
historical data, by raising the historical likelihood to a power α0 ∈ [0, 1], and restandardizing
the result to a proper distribution. These priors have been applied in a variety of contexts,
including the sample size estimation problem by DeSantis (2007).

Let D denote data from the current study and L(θ|D) the general likelihood function of the
current data, where θ is the parameter of interest. Adopting the notation of Ibrahim and Chen
(2000), denote the historical data by D0, and the historical likelihood by L(θ|D0). The
conditional power prior for parameter θ is defined as

Hobbs et al. Page 2

Biometrics. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fda.gov/cdrh/osb/guidance/1601.html


(1)

for initial prior π0(θ) and power parameter α0 ∈ [0, 1]. (Throughout the paper we
generically denote priors by π and posteriors by q.) The power parameter controls the
“degree of borrowing”: if α0 = 0, (1) reduces to the initial prior (no borrowing), whereas if
α0 = 1, equation (1) returns the usual historical posterior (full borrowing).

In the case of normal historical data,  known, i = 1, …, n0, under a
flat initial prior, (1) yields a  power prior distribution for θ. Hence α0
plays the role of a relative precision parameter for the historical data. Since 0 ≤ α0 ≤ 1, we
might also think of α0n0 as the “effective” number of historical controls being incorporated
into our analysis. Ibrahim and Chen (2000) introduced power priors to the broad statistical
community, and illustrated their usefulness in a variety of settings; see also Ibrahim, Chen,
and Sinha (2003),Chen and Ibrahim (2006), and Neelon, O’Malley, and Margolis (2008).

If we are willing to specify a particular value for α0, the conditional posterior distribution for
θ given D0, D, and α0 emerges as

(2)

Again in the case of known-variance normal observations, , i = 1, …, n, this
results in another normal distribution for the posterior of θ. We may be able to use the power
parameter’s interpretation as “importance of each historical patient relative to each new
patient” to select a value for α0 (say, 1/2 or 1/3) for approximately Gaussian likelihoods.

More commonly, however, we are uncertain as to the degree to which our new data will
agree with the historical data, and thus somewhat reluctant to prespecify the degree of
borrowing. In such cases, we can enable the data to help determine probable values for α0 by
adopting the usual Bayesian solution of choosing a hyperprior π(α0) for α0.

2.1 Modified Power Priors
Ibrahim and Chen (2000) propose joint power priors consisting of the product of the
conditional power prior in (1) and an independent proper prior on α0. Duan, Ye, and Smith
(2006, p.98) caution against this since it violates the Likelihood Principle (Birnbaum, 1962).
Duan et al. (2006), Neuenschwander et al. (2009), and Pericchi (2009) modify the joint
power prior to the product of the normalized conditional power prior (1) and an independent
proper prior for α0, producing the modified power prior (MPP)

(3)

Modified power priors obey the Likelihood Principle and produce marginal posteriors for α0
that are proportional to products of familiar probability distributions. If we specify π(α0) as a
Beta(a, b) distribution for fixed positive hyperparameters a and b, then the likely degree of
borrowing from the historical data is controlled by a and b: (a = 10, b = 1) would strongly
encourage borrowing, (a = 1, b = 10) would strongly discourage it, and (a = b = 1) would be
agnostic on the subject, essentially letting the data determine the degree of borrowing.
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2.2 Commensurate Power Priors
A problem with modified joint power priors is that they do not directly parametrize the
commensurability of the historical and new data. For example, note that the full conditional
posterior distribution for α0, obtained by multiplying (3) by L(θ|D), is free of the current data
D. Furthermore, Neelon and O’Malley (2010) caution against using Ibrahim-Chen and
modified power priors since they both tend to overattenuate the impact of the historical data,
forcing the use of fairly large α0 (or in our case, fairly informative hyperpriors for α0) in
order to deliver sufficient borrowing. In fact, under a flat Beta(1, 1) prior on α0, the marginal
posterior for α0 is flat for two identical datasets regardless of the sample sizes.

In this subsection, as a solution to the problems raised by the aforementioned authors we
propose a novel adaptive modification to the basic power prior formulation that adjusts the
power parameter prior conditionally through a measure of the degree to which the historical
and current data are commensurate. Heretofore both the historical and current data depended
on a common parameter θ. Now we assume different parameters in the historical and current
group, θ0 and θ, respectively, where θ ∈ ℜ and θ0 ∈ ℜ are continuous location parameters.
This dichotomous parameterization allows us to extend the hierarchical model to include a
parameter that measures the evidence for commensurability between θ and θ0. Suppose we
pick a vague (or even flat) initial prior π0(θ0), but construct the prior for θ to be normal with
mean θ0 and precision τ, where τ parametrizes commensurability. We can use the
information in τ to guide the prior on α0. Specifying a vague prior for τ or log(τ) and
normalizing with respect to θ0 results in a power prior of the form,

(4)

where g(τ) > 0 is a function of the commensurability parameter that is small for τ close to
zero and large for large values of τ. Since inference on θ0 is not of primary interest in the
current analysis, we integrate it out of the joint prior. Specifying τ as a normal precision
parameter offers a clear interpretation of commensurability. When evidence for
commensurability is weak, τ is forced towards zero, increasing the conditional prior variance
of θ by . Therefore, we refer to τ as the commensurability parameter, and to the prior in (4)
as location commensurate power prior (LCPP), since borrowing strength from the historical
study depends upon the evidence in the data for commensurability between the location
parameters θ and θ0. This extended power prior model requires the estimation of more
parameters from the data (notably τ), but we can formulate the model such that the
information gained is aimed directly at improving estimation of the crucial borrowing
parameter α0.

2.3 Single Arm Trial

Now let us turn our attention to the Gaussian case, where μ, μ0 and σ2,  parameterize the
current and historical means and variances, respectively. Suppose a historical study suggests
a true treatment benefit for a particular intervention, where one continuous response with
mean μ can be collected for each subject. Investigators are interested in testing the point null
hypothesis H0: μ = 0 in a new single arm trial. Let x0 = (x01, …, x0n0)′ denote the
independent and identically distributed historical responses, and assume

. If no initial information exists for μ0, we would likely select π(μ0)

vprop; 1 and hence the historical posterior follows as . Next let
x = (x1, …, xn)′ denote the vector of independent and identically distributed responses from
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the new study and assume  and π0(μ) vprop; 1. The power prior
formulation requires that  be fixed and known, therefore, we replace  in the historical

likelihood with its maximum likelihood estimate, . We also assume
the noninformative reference prior for σ2, thus  for both
power prior models. The conditional posterior for μ becomes

(5)

The conditional posterior for the full (no) borrowing model is found by fixing α0 = 1 (α0 =

0) in (5), and thus has mean , and variance . Suppose we assume α0 ~
Beta(a, b), where α0 ∈ [0, 1] and a, b > 0. The joint power prior and marginal posterior for
α0 under the MPP approach are

(6)

and

(7)

Our location commensurate power prior (LCPP) follows as

(8)

Notice that, in addition to adding  to the conditional prior variance of μ, the LCPP in (8)

also inflates the estimated posterior variance of μ0, , by a factor of . The posterior
distribution is obtained from the product of the LCPP prior (8) and the normal likelihood for
x. The full conditional posterior distribution for μ and marginal posterior distribution for α0
and τ follow as

(9)

where , and
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(10)

Information in the data pertaining to τ can be used to guide the Beta(g(τ), 1) prior on our
power parameter, α0. Since τ becomes extremely large (small) for highly commensurate
(conflicting) data we work on the log-scale. In Section 4 we present simulated frequentist
operating characteristics for the LCPP model using g★ (log(τ)) = max (log(τ), 1). Thus as τ
increases and g★ (log(τ)) becomes large relative to the second beta hyperparameter (fixed at
1) the distribution of α0 becomes increasingly peaked at 1 and the prior variance of μ tends

towards , the approximate posterior variance of μ0 given x0. Thus, our model strongly
encourages borrowing from the historical data when the data are commensurate.
Alternatively, for τ ≤ 1 the distribution of α0 becomes flat across the unit interval. Lastly, the
LCPP model used in the simulation study below assumes a Cauchy(0, 30) prior on log(τ).
The fat tails of Cauchy facilitate very large and small values of τ, which provide for a highly
flexible model. Fúquene, Cook, and Pericchi (2009, p.820) endorse the use of robust priors
in hierarchical models to prevent unbounded and undesirable shrinkages.

See Web Appendix A for further discussion on the power and commensurability parameters
under the Ibrahim-Chen, MPP, and LCPP approaches. Web Figure 1 compares marginal
posterior distributions for α0 under the MPP and Ibrahim-Chen power prior models, while
Web Figure 2 compares the marginal posterior and prior distributions for α0 and log(τ) under
the LCPP model.

2.4 Extension to Linear Models
Commensurate power priors are vastly more useful in clinical trials if they can be used in
association with linear models. Ibrahim and Chen (2000) propose a framework for using
power priors in GLMs. We formulate our own commensurate power prior linear model. Let
us assume y0 is a vector of n0 responses from subjects in a previous investigation of an
intervention that is to be used as a control in a current trial testing a newly developed
intervention for which no reliable prior data exists. Let y be the vector of n responses from
subjects in the current trial in both treatment and control arms. Suppose that both trials are
designed to identically measure p−1 covariates of interest. Let X0 be an n0 × p design matrix
and X be an n×p design matrix, both of full column rank p, such that the first columns of X0

and X are vectors of 1s corresponding to the intercept. Now suppose  and
y ~ Nn(Xβ + Zλ, σ2) where Z is an n × r design matrix containing variables relevant only to
the current trial, as well as an indicator for the new treatment. Let D0 = (y0, X0, n0, p) and D
= (y, X, Z, n, p, r).

We can design a commensurate power prior (CPP) model to adaptively borrow strength
from the historical control group and identical covariates. Specifying our commensurate
power prior as in (4) with the same priors on σ2, α0, and log(τ) as in the previous sub-
section, a flat prior on λ, and integrating β0 out of the joint prior leads to a full conditional
prior on β that is normal with mean V−1M and covariance (τV)−1, where

, and . The joint
posterior follows by multiplying the joint prior by the likelihood of y and normalizing. The
full conditional posteriors for λ and σ2 and posterior for β given σ2, α0, and τ follow as,
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(11)

(12)

(13)

where λ ̂ = (ZTZ)−1ZT(y − Xβ), , and w = Z(ZTZ)−1ZT. Notice in (11) that the
full conditional posterior mean for λ, λ ̂, is a function of residuals (y − Xβ), whereas the
conditional posterior mean of β in (13) is an average of the historical and concurrent data
relative to the power and commensurability parameters, α0 and τ. As τ and α0 approach zero,
the marginal posterior for β converges to a normal density with mean

 and variance , recovering the
result from a linear regression that ignores all of the historical data. In this case, λ ̂ also
converges to the no borrowing estimate of the treatment difference.

3. Commensurate Priors
Heretofore, we have considered posterior estimation of commensurability to be adjuvant for
the purpose of facilitating more borrowing of strength in conjunction with a hierarchical
power prior model. Yet, for Gaussian data, (8) reveals that both power and
commensurability parameters inflate the conditional prior variance of μ given weak evidence
for commensurability. In this section we consider hierarchical models that incorporate
commensurate priors as the primary mechanism for weighting the influence of prior
information relative to its consistency with data from the concurrent study.

Again let D0 and D denote data from the historical and current studies and L(θ0|D0) and L(θ|
D) the general likelihood functions, respectively, where θ is the parameter of interest. The
dichotomous parameterization facilitates estimation of commensurability among the
historical and current data in a hierarchical model by specifying the prior for θ to be
“centered” at θ0 and conditional on τ > 0, where τ parameterizes prior precision for θ given
θ0. Multiplying by the historical likelihood function results in a prior of the form,

(14)

As τ approaches zero, π(θ|D0, θ0, τ) → π0(θ), effectively ignoring the historical data. On the
other hand, as τ → ∞, θ approaches θ0 and π(θ|D0, θ0, τ) → L(θ|D0)π0(θ), recovering the
result obtained from pooling the two datasets. If the historical study favors rejecting the
current null, then decreasing τ reduces Type I error, while increasing τ increases power.

The posterior kernel is obtained by multiplying (14) by the current likelihood L(θ|D). Note
that the full conditional posterior distribution for θ0 would be independent of the current
data, since the current likelihood would be nothing but a multiplicative constant. Therefore,
θ0 should be integrated out of the prior when the ∫ L(θ0|D0) π(θ|θ0)dθ0 is tractable.
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Specifying a vague prior for τ, π(τ), and adopting the joint prior π(θ, τ|D0, θ0) ∝ π(θ|D0, θ0,
τ)π(τ) allows the model to utilize data from the current trial to help estimate τ.

Now let us return to the Gaussian case in the context of the simple trial outlined in
Subsection 2.3. We again assume the noninformative reference prior for σ2, thus

. First let us construct a prior on μ such that borrowing
strength from the historical study depends upon the evidence in the data for
commensurability among location parameters μ and μ0. We start by assuming the joint prior
on μ and μ0 is the product of the historical likelihood and a normal prior on μ with mean μ0
and precision τ. Since posterior inference on the scale of the historical data is not of direct
interest we again replace  in the historical likelihood with its maximum likelihood
estimate. Integrating out the nuisance parameter, μ0, leads to the location commensurate
prior (LCP),

(15)

If evidence for commensurability is weak (ie, τ is close zero), the conditional prior variance
of μ in (15) is increased by . Assuming a vague prior on τ completes the prior specification.
The posterior is proportional to the product of the joint prior in (15) and the current data
likelihood. In Section 4 we present simulations to illustrate the frequentist operating
characteristics of the LCP using an agnostic Uniform(−30, 30) prior on log(τ).

Suppose instead we want borrowing from the historical data to depend upon evidence for
commensurability among both the location and scale parameters. We must now extend the
hierarchical model to include a parameter, γ, that measures evidence of commensurability
among σ2 and  by specifying a prior on σ2 that is “centered” at  and has precision γ. An
obvious choice would be to assume an inverse gamma prior on σ2, with mean  and
precision γ. Assuming the reference initial prior on , multiplying by the historical
likelihood, and integrating out μ0 results in the conditional location-scale commensurate
prior (LSCP),

(16)

where  and . One can assume vague priors for the
commensurability parameters, and proceed with posterior inference on μ and σ2. Borrowing
of strength that requires commensurate scales in addition to commensurate locations is more
cautious and perhaps more appealing to skeptics.

Another option involves fixing values of τ and γ and using a mixture prior. Suppose we
specify m distinct relationships of interest among the locations and scales of the historical
and current data represented by fixed pairs of the commensurability parameters, (τ1, γ1), …,
(τm, γm). Let  denote the conditional prior in (16) given τ and γ are
fixed at τj and γj respectively. If we are also willing to specify fixed mixing proportions, ωj
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∈ (0, 1) where j = 1, …, m such that , we can formulate a LSCP for μ, , and σ2

that is a convex combination of the m potential relationships of interest as

(17)

We refer to this prior as the location-scale commensurate mixture prior (LSCMP). In
contrast to the non-mixture commensurate and power priors, the LSCMP does not permit
posterior estimation of commensurability, but instead facilitates measured, “partial
borrowing”. The LSCMP featured in Section 4, an equal mixture of just two pairs of (τ, γ),
corresponding to very high and low commensurability among the location and scale
parameters, is shown to work rather well in our simulation study.

4. Simulation Results for a Single Arm Trial
In this section we investigate the Bayesian and frequentist operating characteristics of the
models described in Sections 2 and 3 via simulation. For the power priors in Subsection 2.3,
we used a MPP model with a Beta(1, 1) prior on α0 and a LCPP assuming a Cauchy prior on
log(τ) centered at zero with scale fixed at 30. Both power prior models use our
noninformative reference prior on σ2. Among the commensurate priors in Section 3, the
simulations were run using a LCP model that assumes a vague, Uniform(−30, 30) prior on
log(τ) and noninformative reference prior on σ2, and a LSCMP model that is a mixture of
(τ1, γ1) = (106, 10) and (τ2, γ2) = (1/2, 1/2) with the mixing proportion fixed at 1/2. We also
ran simulations on a model that ignores the historical data completely (by assuming the
noninformative Jeffreys prior on μ and σ2) and, following Fúquene et al. (2009), a model
that assumes a “robust” Cauchy prior on μ, centered at x̄0 with scale parameter fixed at 1.
We will refer to these as the “no borrowing” and “Cauchy” models.

Figure 1 illustrates the adaptive movement capability of the commensurate prior methods.
Each graph contains 95% posterior credible intervals for μ derived from all simulated
models, generated with n0 = 60 historical observations having x̄0 = 0 and . The top
interval corresponds to results from the analysis of the historical data alone, using
noninformative Jeffreys priors on μ0 and . The interval directly beneath it represents a
pooled analysis using the full borrowing prior, and the bottom interval corresponds to the no
borrowing analysis of the current data that ignores the historical data. Intervals in between
from top to bottom correspond to the MPP, Cauchy, LCPP, LCP, and LSCMP.

Looking at graphs in the left column where the current data is the most inconsistent with the
historical data, we see that intervals for the posteriors using commensurate priors and
modified power priors are virtually identical to that for no borrowing. Conversely, the full
borrowing prior, which contains no mechanism for acknowledging the obvious conflict,
leads to a much tighter interval around the weighted average of the two sample means, . In
fact, for Normal-Normal conjugate priors, increasing the sample sizes, n and n0, always
decreases the length of an equal-tail credible interval, leading to high Type I error. The
Cauchy prior interval is properly centered at −2, but much wider, suggesting the procedure
may be somewhat conservative. The center graphs demonstrates the adaptive shrinkage
capabilities of the commensurate, MPP, and Cauchy models for intermediately
commensurate datasets which lead to good Type I error behavior. The current and historical
datasets have identical sufficient statistics in the third column. Intervals for the MPP, LCPP,
LCP models have narrowed to mirror the pooled result. Notice that the LCPP has narrowed
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slightly more than the MPP, suggesting that the LCPP obtains more power. Intervals for the
LSMCP are more reluctant to shrink towards the full borrowing result in the bottom right
graph given the evidence for incommensurability among  and σ2.

Next, to mimic the case of a single arm trial being run after a promising pilot study to test
the null hypothesis that μ = 0, let μ0 = 0.5 be the true mean of the historical data, and fix n0 =

60 and . We can sample  and  for some fixed true μ, σ2,
and n, and conduct a two-sided test of the null hypothesis μ = 0 using an equal-tail posterior
credible interval. We repeated this entire process Nrep = 5000 times for current sample sizes
of n = 15, 30, and 60 to compare frequentist Type I error and power properties across the
various approaches.

Table 1 contains areas under the resulting power curves, where power was computed for true
μ = 0, 0.05, 0.1, …, 0.5. All models are compared under two approaches to hypothesis
testing. The first uses 95% posterior credible intervals to test the null, which for the adaptive
methods maintain Type I error probability of 0.05 for the considered sample sizes only when
μ0 = μ = 0. The other approach is a “calibrated” one that controls Type I error at 0.05 for all
considered sample sizes by using equal-tail posterior credible intervals with varying tail
probabilities to test the null hypothesis. For discussion about controlling Type I error for
Bayesians designs from a regulatory perspective see Pennello and Thompson (2008).

Notice that the LSCMP, MPP, LCP, and LCPP models result in higher area than the no
borrowing model for all cases. Therefore, the adaptive approaches always facilitate more
power than an analysis that ignores the historical data, even when Type I error is controlled.
Furthermore, the table suggests that the LCPP approach is always more powerful than the
MPP, although the difference is slight for controlled Type I error. Furthermore, the LCPP is
most powerful for the analysis using 95% credible intervals, while the LCP emerges as
slightly better when Type I error is controlled. Our simulations also suggest that the
calibrated analysis for the Cauchy model provides very slight gains in power over an
analysis that ignores the historical data. The reader should note that the calibrated
(controlled Type I error) analysis for the Cauchy model used equal-tail credible intervals
corresponding to tail probabilities larger than 0.025. Type I error results for the full
borrowing model were extremely poor and hence excluded.

Table 2 contains Type I error probabilities for all models and sample sizes given in Table 1.
Comparing results in the left columns of the two tables for all models reveals that larger area
under the power curve corresponds to higher Type I error probability when using 95%
posterior credible intervals to test the null hypothesis. Results in the right column of Table 2
show that Type I error is controlled at 0.05 for all models and sample sizes under the
“calibrated” approach.

Lastly, power curves for the full borrowing (dot-dashed), LCPP (solid), MPP (dashed), and
no borrowing (dotted) models are shown in Figure 2 to augment Table 1. The top row of
plots corresponds to testing the null hypothesis that μ = 0 using the 95% posterior credible
intervals, while the bottom row contains power curves for the analysis with controlled Type
I error. The power curve for the LCPP is clearly above the MPP across the top row of plots,
and either overlapping or slightly larger for the bottom row. This suggests that the LCPP
approach obtains more power than the MPP approach. Notice the atrocious Type I error
resulting from pooling the two datasets in the top row, which achieves a minimum of
approximately 0.8 when n = 60. The ill-fated full borrowing prior has “unbounded
influence” resulting in a dogmatic analysis of the current trial; Fúquene et al. (c.f. 2009, p.
819).
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5. Example Using Controlled Colorectal Cancer Trial Data
We consider data from two successive randomized colorectal cancer clinical trials originally
reported by Saltz et al. (2000) and Goldberg et al. (2004). The initial trial randomized N0 =
683 patients with previously untreated metastatic colorectal cancer between May 1996 and
May 1998 to one of three regimens: Irinotecan alone; Irinotecan and bolus Fluorouracil plus
Leucovorin (IFL); or a regimen of Fluorouracil and Leucovorin (5FU/LV) “standard
therapy”. In an intent-to-treat analysis, IFL resulted in significantly longer progression free
survival and overall survival than Irinotecan alone and 5FU/LV (Saltz et al., 2000).

The subsequent trial compared three drug combinations in N = 795 patients with previously
untreated metastatic colorectal cancer, randomized between May 1999 and April 2001.
Patients in the first drug group received the current “standard therapy,” the IFL regimen
identical to that used in the historical study. The second group received Oxaliplatin and
infused Fluorouracil plus Leucovorin (abbreviated FOLFOX), while the third group received
Irinotecan and Oxaliplatin (abbreviated IROX); both of these latter two regimens were new
as of the beginning of the second trial.

While both trials recorded many different patient characteristics and outcomes, in our
analysis we concentrate on the trial’s measurements of tumor size, and how the FOLFOX
regimen compared to the IFL regimen. Therefore, the historical dataset will consist of the
IFL treatment arm from the initial study, while the current data will consist of patients
randomized to IFL or FOLFOX in the subsequent trial. We omit data from the Irinotecan
alone and 5FU/LV arms in the Saltz study and the IROX arm in the Goldberg study.

Both trials recorded two bi-dimensional measurements on each tumor for each patient at
regular cycles. The trial reported by Saltz et al. measured patients every 6 weeks for the first
24 weeks and every 12 thereafter weeks after, while the trial reported by Goldberg et al.
measured every 6 weeks for the first 42 weeks. We computed the sum of the longest
diameter in cm (“ld sum”) for up to 9 tumors for each patient at each cycle, until the
patient’s final follow-up visit; for 92% of the patients in our very ill study population, this
was the final observation prior to the patient’s death. We then used the average change in ld
sum from baseline to test for a significant treatment difference in ld sum reduction between
the FOLFOX and control regimens. Our analysis will also incorporate baseline ld sum as a
predictor as well as two important covariates identically measured at baseline: age in years,
and aspartate aminotransferase (AST) in units/L.

We restricted our analysis to patients that had measurable tumors, at least two cycles of
followup, and a nonzero ld sum at baseline, bringing the total sample size to 441: 171
historical and 270 current observations. Among the current patients, there are 129 controls
(IFL) and 141 patients treated with the new regimen (FOLFOX). Suppose y0 and y are
vectors of lengths n0 and n for the historical and concurrent responses such that

(18)

where X0 and X are n0 × 4 and n × 4 design matrices with columns corresponding to (1, ld
sum at baseline, age, AST), and Z is the FOLFOX indicator function. Thus the β0 and β
parameters contain intercepts as well as regression coefficients for each of three baseline
covariates, while λ represents change in average ld sum attributed to FOLFOX. Web Figure
3 contains histograms of the average change in ld tumor sum from baseline.
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The “historical data” and “current data” columns of Table 3 summarize results from separate
classical linear regression fits on the historical (y0, X0) and current (y, X) data alone. The
“current data” values constitute the “no borrowing” analysis. Results from both datasets
suggest that ld sum at baseline is highly significant while age and AST are not. Furthermore,
while the estimated intercept corresponding to FOLFOX in the current data is negative,
−0.413, the estimate is not precise enough to conclude a significant treatment difference at
the 0.05 level.

Information about β0 appears to be relevant to β. Therefore, we implemented the
commensurate power prior linear model presented in detail in Subsection 2.4 which borrows
strength adaptively relative to the degree to which (y0, X0) is commensurate with (y, X).
Point estimates (posterior medians) and 95% equal-tail Bayesian credible intervals are given
in the bottom portion of Table 3. First, notice that the posterior for α0 is peaked at 1.
Therefore, our power prior linear model considers the historical and current data to be quite
commensurate, increasing the precision of the parameter estimates. As a result, the 95%
credible interval upper bound for λ is now less than zero, and so we can now conclude that
FOLFOX resulted in a significant reduction in average ld sum when compared to the IFL
regimen. This finding is consistent with those of Goldberg et al. (2004), who determined
FOLFOX to have superior time to progression and response rate compared to IFL.

6. Discussion
In this paper, we have presented classes of hierarchical models using priors that facilitate
adaptive borrowing from historical data when this is justified by its commensurability with
the accumulating current data. Such adaptive borrowing is consistent with recent arguments
on behalf of the ease and desirability of adaptivity in Bayesian clinical trials generally
(Berry, 1993, 2006; Berry et al., 2010). The approach was shown to work well both with
simulated and actual data, the latter based on two recent studies in colorectal cancer.

Before using the proposed linear model in the context of a new clinical trial, investigators
must consider carefully the design (ie, randomized versus single-arm) of the historical study.
Differences in patient populations between the historical and new study and other known/
unknown confounding factors can be potential sources of bias when borrowing from the
historical data. Furthermore, commensurate priors require extra care if the sampling
distributions differ; estimating nuisance parameters like σ2 becomes ever more challenging
if, say, the two distributions were normal and Student’s t, respectively.

Future work looks toward extending our approach to non-Gaussian settings, especially those
involving categorical and time-to-event data. We are also currently pursuing the use of
commensurate priors for adaptive borrowing that allows the sample size or allocation ratio
in the ongoing trial to be altered if this is warranted. For example, if historical and
concurrent controls emerge as commensurate, we might randomize fewer patients to the
control group, thus enhancing the efficiency of the ongoing trial.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
95% posterior credible intervals for μ for all simulated models where x̄0 = 0, n0 = 60, n = 30,
and . Each graph contains results from eight different models: historical (top), full
borrowing (second), MPP (third), Cauchy (fourth), LCPP (fifth), LCP (sixth), LSCMP
(seventh), and no borrowing (bottom). Columns correspond to the current sample mean, x̄,
while the top row shows results for σ ̂2 = 1 and the bottom row assumes σ ̂2 = 3.
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Figure 2.
Power curves for the full borrowing, commensurate power prior, modified power prior, and
no borrowing models where μ0 = 0.5, n0 = 60, and . Each graph shows results for
the full borrowing (dot-dashed), LCPP (solid), MPP (dashed), and no borrowing (dotted)
models. Columns correspond to the indicated current sample size n. The top row
corresponds to hypothesis testing based on the respective 95% posterior credible intervals,
while the bottom row contains results for hypothesis tests that use varying equal-tail
posterior credible intervals such that the Type I Error is controlled at 0.05, except for the full
borrowing model for which controlling Type I error at 0.05 is impossible for the considered
scenarios.
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Table 3

Fits to colorectal cancer data: n0 = 171 (left); n = 270 (right); LCPP (bottom).

Historical data Current data

estimate 95% CI estimate 95% CI

Intercept 0.88 (−1.98, 3.74) −0.47 (−2.28, 1.34)

BL ld sum −0.23 (−0.31, −0.15) −0.40 (−0.45, −0.34)

Age −0.02 (−0.07, 0.02) 0.01 (−0.01, 0.04)

AST 0 (−0.02, 0.02) 0.01 (−0.01, 0.02)

FOLFOX – – −0.41 (−1.02, 0.19)

LCPP

estimate 95% Posterior CI

Intercept 0.180 (−1.11, 1.42)

BL ld sum −0.39 (−0.44, −0.33)

Age 0 (−0.02, 0.02)

AST 0 (−0.01, 0.01)

FOLFOX −0.46 (−0.82, −0.10)

α0 0.86 (0.44, 1.00)

log(τ) 16.53 (1.59, 82.00)
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