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importance in many disciplines, namely physics, sociology, biology and
computer science, where systems are often represented as graphs. One of
the challenges is to find local communities in a graph from a local view-
point, in the absence of the access to global information, and to reproduce
the subjective hierarchical vision for each vertex. In this paper, we present
the improvement of an information dynamics algorithm in which the la-
bel propagation of nodes is based on the Markovian flow of information in
the network under cognitive-inspired constraints. We introduced two more
complex heuristics that allow to detect the hierarchical community struc-
ture of the networks from a source vertex or a community, adopting fixed
values of model’s parameters. Experimental results show that the proposed
methods are efficient and well-behaved in both the real-world and synthetic
networks.
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1. Introduction

We live in a world of networks. The networks around us and ourselves,
as people, we are part of the network of social relations between individuals.
Examples of networks in the world are the WWW, the rail network, the
subway, neural networks, the telephone network, or less concrete entities,
such as the relations of knowledge and collaboration between people. In
general, a graph or network is a very general approximation of a system
constituted by many entities, called nodes (persons, computers, proteins,
chemicals, etc.) linked to each other and interacting through connections
(which may be, therefore, cables among computers, hyperlinks between web
pages, collaborations among people, reactions among chemical substances,
etc.). The study of networks is, therefore, very relevant in many disciplines,
given the wide variety of structures and systems of the real world that can
be incorporated into the category of “complex networks”.

A complex network is a system with non-trivial topological features
which would not be detectable in simple graphs. The majority of real net-
works, being them social, biological or technological, may be considered
complex: this depends on some features such as, e.g., the nodes’ degree
of distribution [1, 2], the assortativity among vertexes [3], relatively short
path lengths [4, 5] and, often, an evident hierarchical structure [6]. An-
other important feature of complex networks is the presence of a community
structure [7]. Many real networks are not homogeneous and do not consist
of a single block of indistinct nodes, rather they exhibit community struc-
tures, i.e., groups of vertexes exhibiting a high densities of internal arches,
compared to a relatively lower number of connections with other groups.

In recent years, the possibility of automatically identifying communities
within networks has been explored in detail, giving rise to a new field of
research called “community detection” [8, 9]. The problem of community
detection has attracted the attention of various researchers coming from
different disciplines from physics to social sciences. Nowadays, no common
definition for community has been agreed upon: it is widely accepted that a
community is a group of vertexes more linked than between the group and
the rest of the graph.

This is clearly a poor definition, and indeed, on a connected graph, there
is not a clear distinction between a community and the rest of the graph. In
general, there is a continuum of nested communities whose boundaries are
somewhat arbitrary. Moreover, in complex networks, and, in particular, in
social networks it is very difficult to give a clear definition of the community
concept: this is due to the fact that nodes are often attributed to overlap-
ping communities, since they belong to more than one cluster or module or
community. For instance, people usually belong to different communities
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at the same time, depending on their families, friends, colleagues, etc. [10]:
so people, making a subjective screening of the network in which they live,
have their local vision of communities to which they belong.

In order to have a subjective vision of the surrounding world, it is nec-
essary to develop community detection algorithms based on the local link
structure of the network, algorithms that work by getting information from
neighbouring sites [11–16].

In this paper, we show a method for detecting communities where each
node discovers its representation of the network by “talking” with the neigh-
bours and then elaborating the information trough a cognitive-inspired mech-
anism [17]. In particular, we introduce more accurate heuristics in order to
free the method from the tuning of parameters. The main feature of these
two heuristics called respectively IDA + LTE and Double pruning is to re-
veal the hierarchical community structure of complex networks from a local
viewpoint. We demonstrate that a node can discover the network’s multi-
levels giving its subjective vision of the world until it wants or can explore
the graph without needing any global information about it.

The reminder of the paper is organized as follows. First, in Section 2,
the general method [17] is presented. Then, we introduce two more complex
heuristics applied to this model in order to reveal the multi-resolution com-
munity structure of both synthetic and real networks. In the result, we also
compare out method with other well-known community detection algorithm
by evaluating the so-called Normalized Mutual Information (NMI) on LFR
benchmarks [18]. The paper is closed by final remarks and conclusions.

2. The method

We consider N individuals, labelled from 1 to N . Let us denote by A
the adjacency matrix, Aij = 1 (0) indicates the presence (absence) of a link
from site j to site i. Each individual i is characterized by a state vector Si,
representing his/her knowledge of the outer world. We interpret S as a
probability distribution, assuming that S(v)

i is the probability that individ-
ual i belongs to the community v. Thus, S(v)

i is normalized on the index v.
We shall denote with S = S(t) the state of the all network at time t, with
Siv = S

(v)
i . We shall initialize the system by setting Sij(0) = δij , where δ is

the Kroneker delta, δij = 1 if i = j and zero otherwise.
In other words, at time 0 each node knows only about itself. In this

implementation, we assume that each individual spends the same amount
of time in communications, so the information delivered depends on the
connection degree. Let us consider the node i that communicates with the
node j as shown in figure 1. We can assume that people with more connec-
tions dedicate less time to each of them. Since the amount of available time



382 E. Massaro, F. Bagnoli

is limited, we say that the knowledge of node i about node j depends on the
connectivity degree of j, then Si←j is a function of the connectivity degree k
of node j. Alternatively, we can consider that the information depends on
the connectivity of i, in this way, we give much more importance to the
speaking phase.

i j

v

Fig. 1. Communication phase. Let us consider the node i that communicates
with the node j. The node j passes his knowledge of the world to the node i.
Here, we can consider three different scenarios: the first one takes into account
that the knowledge depends on the connection degree of the incoming node. In
this way, the most connected nodes have less time to talk with others. In the
second hypothesis, the spread information depends of the connectivity degree of
the selected nodes: then Eq. (1) becomes Siv←j = mSiv + (1 −m)Sjk/ki. In the
third one, it depends both on the degree of node i and on the degree of node j:
Siv←j = mSiv + (1−m)Sjv/

√
k2i + k2j .

The dynamics of the information is given by an alternation of communi-
cation and elaboration phases. Communication is implemented as a simple
diffusion process, with memory m. The memory parameter m allows us
to introduce some limitations in human cognitive such as the mechanism
of oblivion and the timing effects: in fact, the most recent information has
more relevance than the information gathered in the past. The knowledge of
a generic node v for the node i trough j occurs via a communication phase
where the state of the system evolves as

Siv←j = mSiv + (1−m)
Sjv
kj

. (1)

The representation of the model is consistent with the ecological ratio-
nality of the system since the knowledge is distributed among the network
elements (state vectors Si). Our model is an improvement of the MCL al-
gorithm proposed by Van Dongen [19] that simulates a random walk within
the graph by an alternation of two phases called expansion and inflation.
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In our method, we consider the Markov matrix Mi,j =
Aij
ki

, where ki is the
connectivity degree of node i. Finally, the evolution of the system is given
by the sequence S0 → S1 → S2.

The communication phase based on the connectivity of incoming nodes
is given by the following

S1 = mS0 + (1−m)M ′S0 , (2)

where 0 < m < 1 is a memory parameter and M ′ is the transpose of M .
In this way, the resulting matrix is still stochastic, i.e., the matrix elements
(on each row) correspond to probability values. The second phase, called
elaboration or inflation, is implemented as the rising of each element of the
the matrix S1 to the power α, where α > 1 corresponds to the inflation
parameter

S2
ij =

(
S1
ij

)α
. (3)

After this phase, in order to have a probability matrix, we normalize
the matrix S2 over the columns. We assume that individuals have a large
enough memory so that they can keep track of all information about all
other individuals. In a real case, one should limit this memory and apply
an input/output filtering.

3. Improvement of the method

In this section, we want to explore the performances of our method
taking into account two different heuristics in order to free the method from
the precise tuning of the parameters m and α. The main feature of these
two heuristics called respectively IDA + LTE and Double pruning is to
reveal the hierarchical community structure of complex networks from a
local viewpoint.

3.1. IDA + LTE

Recently, Huang et al. [16] proposed a local algorithm for detecting com-
munities in networks. Here, we report a general description of this method,
known as Local Tightness Expansion (LTE), while it is well described in
Appendix. This method can reveal the community from a starting vertex
via local optimization of the tightness measure which is proposed in Ref [20],
but the expansion is given by a tunable parameter which is not ecological
in social networks where people elaborate the information trough mental
scheme or cognitive heuristics. The LTE algorithm can be summarized in
the following:

1. Pick a vertex s ∈ V as the starting vertex.
Let C = {S} and N = Γ (S)− {S}.
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2. Select the vertex a ∈ N that possess the largest similarity with vertices
in C.

3. If τCβ(A) > 0,
set C = C ∪ {a} and N = N ∪ Γ (a)− C.

4. Repeat 2 and 3 until N = ∅.

The LTE algorithm is very efficient for detecting communities in net-
works from an individual point of view. When N = ∅, we arrive at a static
convergence. Here, we want to introduce a new method merging together our
algorithm, that we call Information Dynamics Algorithm (IDA), and LTE
for analysing how the information dynamics can improve the performance
of LTE and vice versa. We describe the new algorithm in the following (its
representation is illustrated in Fig. 2):

1. Pick a vertex s ∈ V .

2. Run LTE and discover CLTE for the vertex s.

3. Run IDA and take information of other nodes by community nodes.

4. Run LTE and decide to accept new nodes.

5. Repeat 3 and 4 until a fixed memory or when the vertex s knows the
whole network.

17
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32
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Fig. 2. Schematic representation of IDA + LTE algorithm. We suppose that LTE
detect for the node 1 the dark grey nodes as community nodes (CLTE): after that,
we compute the IDA on the selected nodes. The node takes the information from
those accepted as its community creating a virtual link with these (dotted line
in figure). The LTE decides whether to accept the new nodes members of own
community or not.

For testing purposes, we use two real networks analyzing and discussing
our model peculiarities. The two case studies, of growing or different com-
plexity, are the Zachary’s Karate Club network [21] as reported in the Fig. 3
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and Fig. 4, and the NCAA College Football network [22] as shown in Fig. 5
and Fig. 6. For all the simulations, we used always the same parameters. For
the IDA, we assumed α = 1.4 and m = 0.2. For the LTE, we used β = 0.3
for the first step and β = 2 during LTE+IDA dynamics. As shown in these
figures, our algorithms are able to discover the multi-resolution community
structure of each node detecting the different local inner circles [23, 24].

1 2 3

4 5 6
Fig. 3. Node 17 in the Zachary’s Karate Club network. In the first step, the LTE
algorithm accepts 3 nodes for the local community. After that, we compute the
IDA + LTE algorithm: the knowledge of the other nodes permits to discover the
structure of the whole network. From the starting vertex (black node at T = 1)
at time T = 2 the community nodes are 17–6–7 (black nodes) and finally, all the
network is discovered by the node 17 thanks the information dynamics algorithm.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Steps

C
o

m
m

u
n

it
y

 S
iz

e

Fig. 4. Temporal evolution (x-axis) of community size (y-axis) for the node 17 in
the Zachary’s Karate Club network.
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1 2 3

4 5
Fig. 5. Washington (black node in 1) in NCAA College Football network. Black
nodes indicate the community of Washington for different time steps.
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Fig. 6. Temporal evolution (x-axis) of community size (y-axis) for Washington in
the NCCA College Football network.

3.2. Double pruning

Our model has two free parameters m and α and in previous works
we have shown that it is very difficult to find the specific values of these
parameters needed to have a good representation of community distribution
for different networks [17, 25, 26]. However, there is a simple procedure that
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can be used: at some moments for each node we evaluate the histogram of
the state vector with 3 bins and we set to zero the values that are lower then
the second bin values, as reported in Algorithm 1.

Algorithm 1 pseudocode for double pruning heuristic
1: T , Tmax, tb = 0, t1 = 0, c = 0, a = 0
2: m = 0.2, α = 1.4
3: while t < T do
4: t = t+ 1; b = b+ 1;
5: if b < 2 then
6: tmax = b ∗ 50
7: else
8: tmax = b ∗ 10
9: end if

10: for t1 = 1 : ttmax do
11: a = a+ 1;
12: if a = b then
13: we evaluate the state vector of each node, then S1 is vector state of node 1, S2 of

node 2 and so on...
14: for i = 1 : N do
15: dxi = (Simax − Simin)/3
16: for j = 1 : N do
17: if Si,j < Simin + 2 ∗ dxi then
18: Si,j = 0
19: end if
20: end for
21: end for
22: we normalize S
23: else
24: S1 = mS0 + (1−m)M ′S0, S2 = Sα1
25: we normalize S
26: a=0
27: end if
28: end for
29: S = I(N)
30: end while

In this way, we are able to generate different view of the clustering levels
on hierarchical community structure networks as shown in Fig. 7. We use
the Lancichinetti–Fortunato–Radicchi (LFR) benchmark graph [18, 27] to
evaluate the accuracy of this method. We adopt the normalized mutual
information (NMI) to evaluate the quality of detected communities which
is currently widely used in measuring the performance of graph clustering
algorithms [27]. The accuracy of our method is compared with three other
well-known community detection algorithms. The observed results on our
hierarchical networks allow us to state that for b = 4, we are able to detect
the principal communities. For this reason, for comparing our method with
others, we set b = 4.
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Fig. 7. (a) Adjacency matrix of a network composed by 200 nodes and 3 levels,
where p1 = 0.9, p2 = 0.2 and p3 = 0. Trough the double pruning heuristic it is
possible to detect the different community levels reaching the discovery of the four
principal communities for b = 8.

In order to evaluate and partially validate our approach, we have ap-
plied our algorithm comparing its performance with 3 community detection
algorithms namely Infomap [28], Infomod [29] and MCL [19] as reported in
Fig. 8. The input parameters of the benchmark graphs used here are: num-
ber of nodes N = 1000, average degree is k̂ = 20, maximum degree k̂ = 50
for all the networks. Moreover, we changed the range of community size
generating two kinds of networks of 1000 nodes: 1000S (S stays for small)
means that communities have between 10 and 50 nodes and 1000B (B stays
for big) means that communities have between 20 and 100 nodes. Results
of the performance’s comparison between our algorithm and the others are
reported in Fig. 8. Our algorithm with the double pruning heuristic is very
competitive with the other algorithms except for the Infomap method which
is nowadays the best algorithm for detecting communities in static network,
even if it cannot be easily applied in dynamic environments.
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Fig. 8. (a)–(b) Comparison between our method (IDA) and other algorithms
(Infomod, MCL and Infomap) on the LFR Benchmark graphs with different size of
communities respectively Small (a) and Big (b) increasing the mixing parameter µ.

4. Conclusions

In this paper, we presented two extensions of a community detection
algorithm which is based on pure local information propagation inspired by
the so-called Markov Clustering Algorithm (MCL) by Van Dongen [19]. The
proposed method is able to identify both overlapping and non-overlapping
communities, and we have shown that it is capable to identify communi-
ties also in dynamic networks [17, 25, 26]. Our algorithm proved to be a
multi-level solution that can be used to capture the hierarchical community
structure from a local viewpoint at any resolution. Experimental results on
the real-world and synthetic datasets show that our algorithm achieves good
performance. Concluding, we showed how the adaptation of two heuristics,
namely IDA+LTE and Double Pruning are effective in freeing the method
of the precise tuning of parameters.
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Appendix

Usually, a network can be represented by a graph G = (V,E), where V
is the set of vertices and E is the set of edges.

Definition 1 (Neighbourhood) Let G = (V,E,w) be a weighted undi-
rected network and w(e) be the weight of the edge e. For a vertex u ∈ V ,
the structure neighbourhood of vertex u is the set Γ (u) containing u and its
adjacent vertices which are incident with a common edge with u : Γ (u) =
{v ∈ V | {u, v} ∈ E} ∪ {u}.

Definition 2 (Structural Similarity) Given a weighted undirected net-
work G = (V,E,w), the structure similarity s(u, v) between two adjacent
vertices u and v is

s(u, v) =

∑
x∈Γ (u)∩Γ (v)

w(u, x) · w(v, x)

√ ∑
x∈Γ (u)

w2(u, x) ·
√ ∑
x∈Γ (v)

w2(v, x)

. (A.1)

When we consider an unweighted graph, the weight w(u, v) of any edge
{u, v} ∈ E can be set to 1 and the equation above can be transformed to

s(u, v) =
|Γ (u) ∩ Γ (v)|√
|Γ (u)| · |Γ (v)|

. (A.2)

It corresponds to the so-called edge-clustering coefficient introduced by
Radicchi et al. [20].

Definition 3 (Tightness) By employing the structural similarity, we in-
troduce tightness, a new quality function of a local community C, which is
given as follows

T (C) =
SCin

SCin + SCout
, (A.3)

where SCin =
∑

u∈C,v∈C,{u,v}∈E

s(u, v) is the internal similarity of the commu-

nity C which is equal to two times of the sum of similarities between any two
adjacent vertices both inside the community C; SCout =

∑
u∈C,v∈N,{u,v}∈E

s(u, v)

is the external similarity of the community C which is equal to the sum of
similarities between vertices inside the community C and vertices out of it.
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The tightness measure is extended from the weak community definition
proposed in Ref. [20]. Similar to other community definitions, the tightness
value of a community C, denoted by T (C), will increase when sub-graph C
has high internal similarity and low external similarity. The whole network
without outward edges will achieve the maximal value 1, but the problem
here is to find the local optimization of the measurement for each community.
Suppose a community C is detected from a certain vertex s. We explore the
adjacent vertices in the neighbourhood set N of S as shown in Fig. 2. So
the variant tightness of the community C ∪ {A} becomes

T (C ∪ {A}) =
SCin + 2Sain(

SCin + Sain
)

+
(
Scout − Sain + Saout

)
=

SCin + 2Sain(
SCin + Sain + Scout + Saout

) , (A.4)

where Sain =
∑

{v,a}∈E∧v∈C

s(v, a); Saout =
∑

{a,u}∈E∧u6∈C

s(a, u). Then, the tight-

ness increment of a vertex a joining in C is

∆TC(A) = T (C ∪ {A})

=
SCin + 2Sain(

SCin + Sain + Scout + Saout
) − SCin

SCin + SCout

=
2Sain · SCout − SCin · Saout + SCin · Sain(

SCin + Sain + Scout + Saout
) (
SCin + SCout

) . (A.5)

If ∆TC(A) > 0, then 2Sain ·SCout−SCin ·Saout +SCin ·Sain > 0 which is equivalent
to SCout

SCout
− Saout−Sain

2Sain
. Then they define the tightness gain in the following [16].

Definition 4 (Tightness Gain) The tightness gain for the community C
adopting a neighbour vertex a can be denoted as

τC(A) =
SCout
SCin
− Saout − Sain

2Sain
. (A.6)

It means that the ratio of external similarity to internal similarity of commu-
nity C is greater than the ratio of external similarity increment to internal
similarity increment caused by adopting vertex a. Obviously, this case will
result in the increase of the tightness value of community C. Therefore,
τC(a) can be utilized as a criterion to determine whether the candidate ver-
tex a should be included in the community C or not. In the following, they
introduce an optional resolution parameter β to control the scale at which
we want to observe the communities in a network.
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Definition 5 (Tunable Tightness Gain) The tunable tightness gain for
the community C merging a neighbour vertex a can be denoted as

τC
α(A) =

SCout
SCin
− αSaout − Sain

2Sain
. (A.7)

A parameter β ∈ (0,∞) is introduced as the coefficient of Saout which
can increase or decrease the proportion of the external similarity of the
candidate vertex a. Here, the criterion for accepting a vertex a is changed
to τCα(A) > 0. For α = 1, the criteria is moderate and can be used in most
normal cases. In [16] the authors shows different scenarios for different values
of the free parameter β: setting β ∈ (0, 1), the value of Saout is reduced by this
coefficient which increases the chance of a candidate vertex a joining C and
bigger communities will be formed compared to the normal case with β = 1.
On the contrary, it will result in the formation of smaller communities in a
network when we set β > 1.
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