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Abstract—Worst Case Execution Time (WCET) computation
is crucial to the overall timing analysis of real-time embedded
systems. Facing the ever increasing complexity of such systems,
techniques dedicated to WCET analysis can take advantage of
Component Based Software Engineering (CBSE) by decomposing
a difficult problem into smaller pieces, easier to analyse. To
achieve this objective, the corresponding analysis results have to
be composed to provide timing guarantees on the whole system.
In this paper, we express the WCET of a component as a formula,
allowing to represent its different computational modes. We
then propose a Model Driven Engineering (MDE) approach that
derives parametric WCET for composite components from para-
metric WCET of their subcomponents. This approach gives more
accurate WCET estimates than naı̈ve additive compositional
analysis by taking into account usage context of components.
However, analysis scalability concerns lead us to consider a
trade-off between precision and scalability. This trade-off can
be specified in the model. The composition of WCET estimations
is automated and produces the parametric WCET expression of
the composite component under analysis. This approach has been
integrated in PRIDE1.

I. INTRODUCTION

Designed to control physical systems, functionalities pro-
vided by embedded systems have to be performed within pre-
defined deadlines. In order to ensure that such functionalities
meet their timing requirements, the well known schedulability
analysis theory relies on the notion of worst case execution
time (WCET). Existing WCET estimation techniques are
mainly based on static analysis and/or timing measurements.
Using static analysis, WCET is computed by analysing the
software and using the timing properties of the hardware
platform it is executed on. Using measurements techniques,
the software is executed on the target platform, and different
execution times are measured depending on its execution con-
text. Yet, both techniques present important limitations when it
comes to their usability [5]. On one hand, the static estimation
requires to consider all the different possible execution paths
of a system in order to produce an accurate upper bound on
its WCET. This analysis becomes all the more difficult since
embedded systems become more and more complex. Because
of this scalability issue, static WCET estimation produces a
safe but pessimistic estimation of the WCET: the analyser
uses pessimistic approximations, like for instance not rejecting
infeasible execution paths. On the other hand, the measurement

1PRIDE is the integrated development environment for the ProCom com-
ponent model: http://www.idt.mdh.se/pride

based techniques are unable to ensure that there is indeed no
execution path of the software that leads to a higher execution
time than the reported WCET.

In this paper, we present a model driven engineering (MDE)
approach that helps in managing the trade-off between pre-
cision and scalability. In order to improve the precision of
static WCET estimations, we rely on a parametric estimation
of WCET [9]. In this paper, the parametric WCET of a
functionality is the WCET associated to value ranges for the
input data of this functionality. This static estimation technique
combines both the data flow and control flow analysis in order
to focus on the WCET estimation of feasible execution paths.
We integrate this technique in a hierarchical component-based
model in order to improve the scalability of static WCET
estimations: assuming we know the parametric estimation of
primitive components (components that encapsulate code but
are not themselves composed of subcomponents) thanks to
techniques such as [2], we produce the parametric WCET esti-
mation of an enclosing composite component. From this result,
we also produce an executable binary file that implements
a test-case of the obtained parametric WCET. The software
designer can thus compare the formal analysis result with the
measured execution time in order to validate the parametric
WCET.

Besides this MDE approach, we present in this paper a use-
case from the automotive domain, as well as the results we
obtained when experimenting our approach on this use-case.

The paper is organised as follows: Section II describes the
problem we address. Section III gives an overview of our
approach, and section IV introduces the use case we used
to evaluate this approach. Our contribution is presented in
more detail in sections V, VI and VII. Finally, we give in
section VIII our experimental results and conclude this paper
in section IX.

II. MOTIVATIONS AND CHALLENGES

When it comes to timing analysis of embedded systems,
WCET analysis is the only safe method for ensuring that
functionalities of such a system will always be executed within
a given deadline [13]. In this section, we present existing
techniques dedicated to the estimation of the WCET of a
software application. Methods for estimating the WCET of
a software application are usually divided into two different
parts: timing measurement and static analysis.
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However, existing methods in both parts suffer important
limitations when it comes estimating the WCET of a com-
plex application [5]. Using measurement based techniques,
complexity of software applications impedes to guarantee that
the set of considered test cases will produce the longest
execution time of the software application. On the other hand,
static analysis suffers scalability problems, leading to over
estimated WCET [5], [13]. In order to tackle these issues,
parametric WCET evaluation techniques, as well as hybrid
methods, have been investigated. Parametric WCET enables
to limit the set of feasible execution paths by investigating
the dependencies between control flow and data flow [3], [9].
The computed WCET is thus expressed as a formula over the
input variables of software system. Hybrid methods consist
of combining static analysis and measurement to improve
the precision of the estimated WCET [1], [7]. Finally, it is
important to consider that timing measurement is a crucial
aspect of an industrial WCET estimation process, for which
test-case generation can be very helpful [7].

The observations presented above led us to address the
following problem: “Considering the increasing complexity of
embedded systems, how can we improve WCET estimation
techniques in terms of precision and scalability?”. To answer
this question, we propose a MDE approach that combines
parametric WCET techniques with a hierarchical component-
based approach. On one hand, compared to [11], parametric
evaluation improves the accuracy of the WCET. On the other
hand, using a hierarchical component-based model, we divide
the estimation problem into smaller and easier to manage
pieces. CBSE is traditionally used in software engineering to
ease the design of complex software applications by dividing
them into independently manageable pieces. Our approach
aims at benefiting from this decomposition not only for the
design purpose, but also for helping in the analysis. The main
problem, considering this approach, is to allow composition-
ality of the analysis results: considering we analysed all the
subcomponents of a composite component, is it possible to
deduce the parametric WCET of this composite?

In order to take advantage of both CBSE and parametric
WCET estimations, we have to answer the following ques-
tions:

A. What are the pre-requisites for the compositionality of
WCET estimations?

B. How to automate the composition of WCET estima-
tions?

C. How to parametrize the trade-off between precision and
scalability of the WCET analysis?

III. APPROACH

In this section, we present our approach that aims at
answering the questions stated above. Each of the following
subsections is dedicated to one of these questions.

A. Compositionality of Parametric WCET Estimations

The evaluation of WCET in a component-based approach
has already been studied, considering the problem of reusing

the analysis results in different usage contexts [4]. Our ap-
proach differs from the above by focusing on the hierarchical
compositionality of the WCET estimations. In our approach,
we consider that the parametric WCET of primitive compo-
nents have been obtained using one of the techniques presented
in the previous section. Considering the expected simplicity of
those primitive components, the scalability and accuracy issues
related to those methods should be mitigated.

Compositionality of WCET in a hierarchical development
process has been recently explored [10]. Contrasting to our ap-
proach, this work discusses compositionality using tasks as the
composition units, and without taking advantage of techniques
based on parametric WCET estimation. As a consequence, the
considered scope of compositionality is different.

In order to compose WCET analysis results, we need to
focus on the composition model, thus on the component
model. Although considering a different scope, [10] gives
prerequisites on the compositionality of WCET analysis:
• The timing of a task should not be affected by the other

tasks running in the system.
• The WCET of a composition of tasks should be the sum

of the WCETs of those tasks.
• Execution time of tasks should be invariable.
Our approach relies on other requirements, mainly due to

the usage of parametric WCET in a general purpose CBSE
approach. In the remainder of this subsection, we present in
more details the prerequisites of our MDE approach for the
evaluation of WCET.

1) Data Flow Pre- and Post-conditions: The resulting
output data values of the execution of a component can be
expressed as a value range function from ranges of its input
data values. The data pre-conditions expressions are logical
expressions containing value comparison between input port
values and constants. The data post-conditions expressions
are logical expressions containing value comparison between
output port values, input port values and constants. In addition,
when an output data port of a component A is connected to
an input data port of a component B, the parametric WCET
of the execution of A and B can be computed while taking
into account that the output data range of A become the input
data range of B.

2) Explicit modelling of Control and Data Flow: The
complete control and data flow corresponding to a composite
component can entirely be deduced from (i) the semantics
of the components interface, and (ii) the specification of the
connections between those interfaces.

3) Influence of input data: The different parametric WCETs
of a component can be expressed thanks to computational
modes (see Definition 1).

Definition 1: The computational modes of a component
are the abstract subsets of its execution paths, represented
by a set of input data values for which the considered
component exhibits identical properties. A parametric WCET
of a component is thus a computational mode in which the
component executes its functionalities in a time bounded by a
single WCET value.



4) Conservative Semantics in a Hierarchical Design: Fi-
nally, our approach is fully recursive if we add the requirement
that a composite component must have exactly the same se-
mantics as a primitive component. Considering this hypothesis,
if one can derive the parametric WCET of a composite from
the parametric WCET of its primitive subcomponents, then
this composite component can also be used to compute the
parametric WCET of the components it might be enclosed in.

B. Automated WCET Analysis

Figure 1 summarizes the general approach we propose
in order to improve the scalability of WCET estimation by
combining parametric WCET and CBSE. As illustrated in this
figure, composite component parametric WCET computation
is divided in three main phases.
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Fig. 1. Compositional WCET Estimation: Process Overview

The first phase (on the top of the figure) consists of
enriching an existing component-based specification with (i)
the parametric WCET estimation (see III-A3) and (ii) data flow
pre- and post-conditions (see III-A1) of subcomponents. In
the typical use of our approach, this information is associated
to primitive components, and then automatically deduced for
composite components by composition. However, it is possible
to bootstrap our approach at any abstraction level.

Once subcomponents are assembled in a composite com-
ponent, the parametric WCET of the composite component is
automatically computed thanks to an iterative static analysis.
The first step, described in more details in Section V, consists
of computing the WCET of the composite component using
a constraint solver. The result of this step (bottom left of the
figure) consists of (i) a WCET, (ii) an example of input data
values that can lead to this WCET, and (iii) the execution
flow of the subcomponents and their WCET. By iterating on
this step, we discover all the computational modes of the
composite component that lead to different values of WCET.
This iteration process is described in section VI.

The second step, described in more details in section VI,
consists of transforming those computational modes into para-
metric WCET of the composite component by (i) extracting
the input port conditions corresponding to each computational
mode, and (ii) computing the WCET corresponding to those
input conditions.

Finally, in the third phase (bottom right of the figure) of our
approach, a WCET based test-case of the composite compo-
nent is automatically generated by the component framework.
The way this generation process operates is described hereafter
(see section VII).

The approach we present in this paper helps in managing the
WCET estimation not only by composition means, but also by
giving to the software architect the possibility to parametrize
the trade-off between precision and scalability. We discuss this
aspect of our contribution in the next subsection.

C. Parametrization of the Precision/Scalability Trade-off

In our MDE approach, we offer the possibility to
parametrize the model of the system under design with respect
to the trade-off between feasibility and precision of the WCET
estimation. Our objective is thus to give the software designer
the possibility to reduce the number of considered compu-
tational modes in order to bound the WCET composition
process. This objective raises the following question: what is
the relevant metric in order to limit the analysis? We give
below some of the metrics we use or plan to use in our
approach. To be more precise, we focus here on the static
analysis part of our approach.

1) Computational Modes Bounds: As a first implemen-
tation of our approach, we propose to limit the number
of computed modes for each subcomponent, as well as the
number of expected results for a given composite. In order to
take advantage of our method, we propose to compute both
the most and least time consuming parametric WCETs. Thus,
when composing the results obtained on the composite with
other components parametric WCET, we offer the possibility
to lower the pessimism by computing the smallest parametric
WCETs.

2) Timing Bounds: Another possible metric is the time
required for computing the parametric WCET. In this case,
computations of parametric WCETs are launched (to discover
alternatively the most and least time consuming parametric
WCETs) until the time bound for analysis is past.

IV. USE CASE

In this section, we present our use-case, its design and
the corresponding analysis results. In order to evaluate the
feasibility of our approach, we evaluated it on a use-case
extracted from the automotive domain: an Advanced Cruise
Controller (ACC) system. This system extends the regular
cruise control functionality (i.e., keeping the speed of the
vehicle constant) in the following ways:
• Automatically adjusting the vehicle speed to keep a

constant distance to the car in front.



• Adjusting the speed to the current speed limit provided
by signposts.

• Providing emergency brake assistance to avoid collisions.

A. ProCom Component Model

We use the ProCom component model [12] which fits
requirements presented in section III-A. We enrich the compo-
nent definition with attributes to define parametric WCET and
data flow constraints thanks to the PRIDE attribute extension
mechanism. Figure 2 shows the architecture of the ACC
system. It is built as a composite which contains five subcom-
ponents. Data input- and output ports are denoted by small
rectangles, and triangles denote trigger ports. Connections
between data- and trigger ports define transfer of data and
control, respectively. Connectors, depicted as rectangles with
rounded corners, provide more detailed control over the syn-
chronization and communication between the subcomponents.
In particular, the selection connector dynamically decides to
which output port an incoming triggering should be forwarded,
depending of the values on its input data ports.
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Fig. 2. Advanced Cruise Control system

In order to illustrate the different modeling artefacts we use,
we consider the “Speed Limit” component used in “Advanced
Cruise Control” component. The main functionality of this
component is to compare the desired speed of the vehicule
with a the road’s speed limitation.

Figure 3 illustrates the specification of the interfaces of the
Speed Limit component, using the ProCom graphical notation.
This component has one input port group (composed of one
input trigger port “triggerIn” and three input data ports:
“roadSignEnabled”, “speedCommand”, and “roadSpeed”)
and one output port group (composed of one output trigger
port “triggerOut”, and one output data port “cmdSpeed”).

As a consequence of the semantic of a ProCom component,
the control and data flows of such a component are explicit:
once its intput trigger port has been solicited, the input data
values are made accessible to the internal structure of the
component. The corresponding input trigger port cannot be
activated again before all its output trigger ports have been
triggered. Besides, an output port must be triggered once and
only once each time the related input trigger port has been
activated. When an output trigger port is triggered, the data

represented by the output data ports of the same port group
become available for components that are connected to it.

Speed
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cmdSpeed
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Limit

cmdSpeedroadSignEnabled

speedCommand

roadSpeed

Fig. 3. Model of the Speed Limit Component

To summarize, the execution pattern is the following: trigger
input port → computation using input data → production of
output data → trigger each output port once and only once.
This semantic is the same for a composite component and a
primitive one.

V. WCET VALUE COMPUTATION

The approach we propose in this paper comes with a
complex method that strongly relies on constraint solving
techniques. As we described in section III, the first step
of this method aims at discovering (i) the WCET of the
composite component under analysis, (ii) the corresponding
control flow of subcomponents, and (iii) the corresponding
WCET of executed subcomponents. An overview of this step
is synthesized in figure 4. As one can see in this figure,
the inputs of this step are the different modelling artefacts
described earlier:
• the composite component design;
• the parametric WCET of subcomponents;
• the pre- and post- conditions on subcomponents data flow.

The information contained in these modelling artefacts is first
transformed, automatically, into different type of constraints.
Following the same order as in the previous enumeration, the
modelling artefacts are transformed into:
• control and data flow constraints;
• data flow and timing constraints;
• data flow constraints.
Those different constraints are then provided to a constraint

solver that returns the expected results: the overall WCET of
the composite and the corresponding control flow of subcom-
ponents with their WCET.

In the remainder of this section, we first present a formaliza-
tion of the problem the constraint solving has to solve, before
to explain in more detail how the different modelling inputs
are transformed into relevant constraints.

A. The constraint solving objective

From the theoretical basis described in [9], the objective
of our constraint solving is to find the path of components
in a component graph with the longest-combined execution
times of components C1..Cn. We formulate this problem as an
implicit-path enumeration technique (IPET) problem [8]. The
WCET of the considered composite is found by maximizing
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the sum given in formula (1), where each component Ci has
its WCET equal to wi and is executed xi times (according to
the control flow information).

wcet =

n∑
i=1

xi ∗ wi (1)

This paper describes the extension made on the original WCET
analysis method [9] to improve WCET estimate. The original
WCET analysis method assumes a flat component model,
and is applied to a task composed of components. In this
paper, we consider hierarchical component models. Therefore,
we extend the original approach to produce estimates for
composite components instead of tasks, and to compute the
parametric WCET of the composite component.

B. Mapping the Parametric WCET of Subcomponents

According to Definition 1, parametric WCET is expressed
in terms of the component input values. A simplified version
of the expression grammar is described in (2).

condExp → ci ⇒ wcet = constant
ci → logc logOp logc
logc → val compOp val
logOp → and | or
val → constant | dataPort
compOp → = | < | > | ≤ | ≥ | 6=

(2)

Listing 1 represents the different parametric WCET specified
for the Speed Limit component. For instance, when the boolean
input data “roadSignEnabled” is false (mode mode1), then
the WCET of the component equals 1. In mode mode2
(“roadSignEnabled” is true), the WCET of the component
equals 3.

mode mode1: not roadSignEnabled => wcet = 1
mode mode2: roadSignEnabled => wcet = 3

Listing 1. Speed Limit Component: Parametric WCET

In order to take advantage of parametric nature of subcom-
ponent WCET, we need to represent all input ports as variables
with corresponding type in the IPET formulas. The translation

to a constraint is straightforward. Assuming that parametric
WCET of component Ci is described as a set of mutually
exclusive conditions cicond1(I1, .., In) to cicondm(I1, .., In)
over input ports I1 to In and their respectively related WCET
values V1 to Vm, the constraint is described in Formula (3).∧

j∈1..m
cicondj(I1, .., In) ⇒ wi = Vj (3)

C. Mapping the Pre- and Post- Conditions

As described previously, data flow pre-conditions define
the domain range of each input port. Conversely, data flow
post conditions describe correlation between conditions on
inputs and conditions on outputs. We assume that conditions
are logical expressions based on comparison of port values
(hypothesis 1). A simplified version of the pre- and post-
conditions grammar is described in (4).

condExp → ci ⇒ co
ci → logc logOp logc
co → logc logOp logc
logc → val compOp val
logOp → and | or
val → constant | dataPort
compOp → = | < | > | ≤ | ≥ | 6=

(4)

Listing 2 represents the data flow pre- and post-conditions
specified for the Speed Limit component. In this listing, the
case m1 corresponds to the following behaviour: when the
road sign information is available (roadSignEnabled is true)
and the desired speed is superior to the road speed limitation
(speedCommand > roadSpeed), then the output command
speed is the road speed limitation (cmdSpeed=roadSpeed).

case m1: roadSignEnabled and speedCommand > roadSpeed
=> cmdSpeed = roadSpeed

case m2: roadSignEnabled and speedCommand =< roadSpeed
=> cmdSpeed = speedCommand

case m3: not roadSignEnabled => cmdSpeed = speedCommand

Listing 2. Speed Limit Component: Data Flow Pre- and Post-conditions

As input ports, all output ports become variables with
corresponding type in the IPET formulas. Assuming that
data flow post conditions of component Ci are described as
a set of conditions cicond1(I1, .., In) to cicondm(I1, .., In)
over input ports I1 to In and their respectively impacts
ciimpact1(01, .., Ok) to ciimpactm(O1, .., Ok) on output
ports O1 to Ok , the information is equivalent to Formula (5).∧

j∈1..m
cicondj(I1, .., In) ⇒ ciimpactj(O1, .., Ok) (5)

D. Mapping the Composite Design

Although the theoretical analysis can handle control loops,
we take the hypothesis that there are no control loops in the
component model (hypothesis 2). Many component models
specifically targeting real-time systems use a function block
architectural style (e.g., Rubus2 and ProCom [12]) where

2http://www.arcticus-systems.com



loops are allowed within the component code but not at the
architectural level except in the form of periodic or aperiodic
activation. Since the considered control flows exclude loops,
xi (the number of times subcomponent Ci is executed) is not
greater than 1.

In a similar way as for components, each control connection
is materialized as a variable cicj representing number of times
the connection between component Ci and component Cj is
executed. According to hypothesis 2, cicj cannot be greater
than 1. A component is executed when one of the input control
connections is executed and must execute one of its output
control connection. As an example, assuming that a component
Ci is connected to C1 and C2 through its input ports and to
C3 and C4 through output ports, this semantic is translated in
Formula (6).

(xi = c1ci + c2ci = cic3 + cic4) ∧
(c1ci + c2ci = 1) ∧ (cic3 + cic4 = 1)

(6)

We extended the original analysis to take into account con-
textual control flow. We assume that the control flow is
completely formally defined (hypothesis 3). In particular,
conditional execution path must define formally the conditions
of their execution. We assume that each connector which is
in charge of selection describes its output connection execu-
tion conditions as a logical expression over the input data
port values. Listing 3 represents the control flow definition
thanks to selection expression for the Selection connector. For
instance, when the boolean input data “BrakePedalUsed” is
true (mode brake), then the Brake Controller component is
executed. If “BrakePedalUsed” is false and “ACCEnabled”
is true and “emergencyBrake” is false (mode cruiseControl),
then the ACC Controller component is executed.

mode brake: BrakePedalUsed=true or ACCEnabled=false or
emergencyBrake=true => Brake;

mode cruiseControl: not (BrakePedalUsed=true or
ACCEnabled=false or emergencyBrake=true)
=> ACC Controller;

Listing 3. Selection Connector: Control Flow Expression

The fact that connection cicj is executed when condition
cijcond(p1, p2) is true will be translated by Formula (7).

cijcond(p1, p2) ⇒ cicj = 1 (7)

VI. PARAMETRIC WCET COMPUTATION

The previous section presented how to compute the WCET
of a composite component using satisfiability constraint solv-
ing techniques. One benefit of using such method is that we
also obtain the description of the corresponding control flow
of subcomponent, with their respective WCET. In this section,
we show how our method takes advantage of this information
to compute the parametric WCET expression of the composite
component under analysis.

Figure 5 synthesize the complete process of this approach.
On the top left part of the figure, the first step consists of
getting the overall WCET value of the composite component.

This step corresponds to the constraint solving problem de-
scribed in the previous section. The second step consists of
extracting potential WCET values for which we try to extract
a parametric expression in the third step. These two steps
are further described in the following subsections. Finally, by
merging the different results, we obtain the parametric WCET
of the composite component.
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Fig. 5. Parametric WCET Extraction: process

A. Potential WCET Value Computation

First, after finding the composite component WCET value
(overall WCET in figure 5), we discover other potential WCET
values which could correspond to a computational mode by
applying the WCET value computation while adding a con-
straint specifying that the computed WCET value (WCETnext
on figure 5) must be lower than the previous WCET value
(see bottom left part on figure 5). When the problem cannot
be solved, we have found all the potential WCET values. An
interesting alternative is to search only for potential WCET
values for which the gap between the two values (previous and
next) is greater than a percentage of the previously computed
value. Similar to our work, [6] identifies candidate WCET
paths for a program with a different purpose however. In the
case of [6], multiple longest paths are computed in an attempt
to improve the accuracy of the returned WCET whereas in our
case we do it because usually it is desired to have information
about the k most critical paths instead of just the one most
critical path. We use the same strategy as [6] i.e. in order
to identify a new potential WCET path, we inject a new
constraint in the constraint system, and solve again — this
is repeated until a predefined stopping criterion is met.

B. Input Condition Computation

From these results, the second step aims at identifying
conditions on input ports that lead to each WCET value
(see top right part of figure 5). Each computed WCET value
comes with the WCET value of the subcomponents and the
control flow of executed subcomponents. The input condition
extraction process can be summarized as following:



A. For each subcomponent, compute input conditions that
lead to WCET from considered WCET analysis sce-
nario.

B. Iterate from last executed subcomponent to first executed
subcomponent by following in reverse direction the con-
trol flow. For each subcomponent, perform the following
steps:

a) Propagate input conditions from step A to output
conditions on the connected data ports.

b) Consider computed output conditions CCo from
step B.a: from pre- and post conditions (Ci ⇒
Co), identify input conditions Ci that ensure these
output conditions CCo (Ci ⇒ CCo). This is done
by checking with a constraint solver that Co ⇒
CCo. If not verified, we ignore the rule Ci ⇒ Co.

c) Merge input conditions from step A and step B.b.
We ignore input conditions from step B.b which
are incompatible with ones from step A.
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Oa1 Ob

TIbTOa
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…
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WCET = 13 for A component,  WCET = 25 for B component and 

WCET = 10 for C component …

C

Ic
Oc

TIc

100 < Ic ⇒ WCET = 10 

Ic ≤ 100 ⇒ WCET = 23 …

Fig. 6. Example of input conditions extraction

This extraction computation is feasible due to the fact
that data flow constraints contain only comparison of port
values which allows easy and efficient constraint comparison.
To illustrate this algorithm, we introduce the example from
figure 6. According to WCET analysis result, that states that
WCET of component C is 10, we deduce that Ic must be
greater than 100 (step A).

Assuming that the input conditions have been computed
for component B and C, we transform these input conditions
((Ic > 100) and (0 < Ib < 10)) to an equivalent condition on
connected output ports ((Oa2 > 100) and (0 < Oa1 < 10))
(step B.b). These conditions are compared to possible ouput
conditions defined in post-conditions expressions (step B.a).
This comparison is performed by using a constraint solver
that allow us to define if a condition is always true, some-
times true or never true. In our example, the expression
((Oa1 = 20) and (Oa2 > 500)) always implies ((Oa2 > 100)
and (0 < Oa1 < 10)). That is why we consider ((Ia1 ≥ 0)
and (Ia2 ≥ 30)) as mandatory. Finally, we merge these in-
put conditions with ones coming from expected WCET for

this conponent ((10 < Ia1) and (Ia2 > 20)). So, we obtain
(((10 < Ia1) and (Ia2 > 20)) and ((Ia1 ≥ 0) and (Ia2 ≥ 30)))
which could be reduced in ((10 < Ia1) and (Ia2 ≥ 30)). The
algorithm stops when all executed subcomponents have been
evaluated.

C. WCET Value Computation

Unfortunately, this extraction may suffer of lack of precision
when a computational mode cannot be expressed as a condi-
tion over the inputs. As an example, assume that a component

A B
Ia

IbOa
Ob

TIbTOa

Ia > 0 ⇒ Oa > 5

Ia ≤ 0 ⇒ Oa ≤ 5 …

Ib ≤ 0 ⇒ WCET = 15

0 < Ib < 10 ⇒ WCET = 25 …

Results from WCET analysis:

A and B executed once

WCET = 25 for B component …WCET = 25 for B component …

Fig. 7. Example of impossible input conditions extraction

A and a Component B are connected through data ports Oa
and Ib and trigger ports TOa and TIb (see figure 7). Imagine
that results from WCET analysis defines A and B as executed
and that considered WCET of component B is 25 ms. Our
objective is to find the conditions on component A inputs
which lead to have 25 ms as component B WCET. From the
WCET expression of component B, we can deduce that Ib
value must be between 0 and 10 to lead to this WCET time.
Following data connection between Ib and Oa, we can deduce
that Oa value must be between 0 and 10. Unfortunately, there
is conditions on Ia that ensure that Oa value will be between
0 and 10. As the A component developper has not described
the complete functional behaviour, we are not able to deduce
the input conditions that ensure a specific value as output.

In this case of condition extraction failure, the remaining
conditions that cannot be expressed as condition on input are
ignored. It leads to possible underestimate of WCET value
as we do not have all constraints. To evaluate the impact of
constraint removal, the WCET value computation is launched
with computed input conditions (see bottom right part of
figure 5). Finally, the parametric expression is obtained by
merging all the results.

VII. TEST-CASE INTEGRATION

The motivation for generating test cases is twofold:
A. to ensure that the code wrapping the components (usu-

ally referenced as glue code) do not lead to bigger
WCET than the on produced by the static analysis;

B. to compare the execution time with the results from the
static analysis in order to evaluate the precision of the
static analysis.

We present hereafter how we instrument the generated code
to help in providing such results. Our assumption is that an



existing test-case generation technique provides us with a set
of data vectors that enable to cover significantly the range of
inputs of a parametric WCET. The idea is to limit the possible
number of input by selecting data ranges that correspond to
the parametric WCET under analysis and excludes data ranges
corresponding to lower WCET.

We then build the test-case of a computational mode of a
component. We generate the code enveloping subcomponents
the same way it would have been produced for a release of
the composite, and launch its initializing its input data ports
with the produced data vectors. The execution time of the
composite is measured, and stored in a result file formatted as
follows: Input values → Execution time → Output values.

The generated test-case (i) checks that the obtained execu-
tion time is not superior to the parametric WCET computed
by static analysis and (ii) produces the difference between the
computed parametric WCET and the measured WCET.

VIII. EVALUATION AND EXPERIMENTS

A. Parametric WCET Evaluation

Our example (see figure 2) is a composite component
composed of 5 subcomponents and 7 connectors, which is
representative of the complexity of a composite component.

The static analysis performed on the model of the ACC
system component (see Figure 2) produced 11 different com-
putational modes for which the WCETs go from 18ms to
63ms. In comparison, the method presented in [11] would
have given a unique WCET of 88ms. Due to a lack of
precision in the description of one component, only 6 of
those computational modes could be defined as parametric
WCETs. For those 6 parametric WCETs, we have extracted
the corresponding condition on the input data port of the
composite. On a dual core CPU with 2,79 GHz and a memory
space of 3,48 GB of RAM, the overall analysis took about 50
seconds. Listing 4 illustrates the input condition found for a
WCET of 22 ms.

( distance<10 and CurrentSpeed=<30 and roadSignEnabled=false
and (BrakePedalUsed=true or ACCEnabled=false or
( distance<20 and CurrentSpeed>30))) or
( distance>=10 and (distance>=20 or CurrentSpeed=<30)
and roadSignEnabled=false and (BrakePedalUsed=true or
ACCEnabled=false or (distance>=20 and CurrentSpeed=<30)))

=> wcet=22

Listing 4. ACC System parametric WCET

B. Test-case Generation

Besides this analytical result, we have generated the code
corresponding to the ACC System component. Using the
result of the analysis in order to initialize the input data
port of the composite, we have measured the corresponding
execution time for the six different parametric WCET. The
implementation code of primitive components was executed
with timing characteristics corresponding to those defined in
the model. Thus, in every test performed, the measured WCET
was very close to the analysis result. This experiment enabled
to test our approach from end-to-end.

IX. CONCLUDING REMARKS AND FUTURE WORK

We have presented a solution to compose parametric WCET
computation in a component-based approach. Taking into ac-
count component data flow constraints and formal definition of
execution path, we produce tight WCET estimates compared
to naive additive WCET analysis. We have demonstrated that
discovering all contextual WCET can be automated. Finally,
our input domain extraction technique allows to discover
conditions over composite component inputs of that leads to
a specific WCET.

In our future work, we plan to use source code analysis to
compute the parametric WCET of primitive component. We
also plan to evaluate the composability of WCET precision in
order to deduce the precision of the WCET of a composite
from the precision of its subcomponents WCET.
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