
Hierarchical computation in the canonical auditory
cortical circuit
Craig A. Atencioa,b,c, Tatyana O. Sharpeeb,1, and Christoph E. Schreinera,b,c,2

aUniversity of California, San Francisco/University of California, Berkeley Bioengineering Graduate Group, bW. M. Keck Foundation Center for Integrative
Neuroscience, and cColeman Memorial Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94143

Edited by Eric I. Knudsen, Stanford University School of Medicine, Stanford, CA, and approved October 8, 2009 (received for review July 24, 2009)

Sensory cortical anatomy has identified a canonical microcircuit
underlying computations between and within layers. This feed-
forward circuit processes information serially from granular to
supragranular and to infragranular layers. How this substrate
correlates with an auditory cortical processing hierarchy is unclear.
We recorded simultaneously from all layers in cat primary auditory
cortex (AI) and estimated spectrotemporal receptive fields (STRFs)
and associated nonlinearities. Spike-triggered averaged STRFs re-
vealed that temporal precision, spectrotemporal separability, and
feature selectivity varied with layer according to a hierarchical
processing model. STRFs from maximally informative dimension
(MID) analysis confirmed hierarchical processing. Of two cooper-
ative MIDs identified for each neuron, the first comprised the
majority of stimulus information in granular layers. Second MID
contributions and nonlinear cooperativity increased in supragranu-
lar and infragranular layers. The AI microcircuit provides a valid
template for three independent hierarchical computation princi-
ples. Increases in processing complexity, STRF cooperativity, and
nonlinearity correlate with the synaptic distance from granular
layers.

auditory cortex � cortical laminae � information �
spectrotemporal receptive field

Sensory cortical processing is achieved through a basic ana-
tomical and functional microcircuit that appears to be re-

peated across modalities with only minor modifications. It
represents a hierarchy of connection patterns, with information
proceeding to elements of the circuit in a largely sequential
manner. In the main excitatory feed-forward pathway, thalamus
sends projections to granular cortical layers. Information pro-
ceeds, largely serially, to supragranular and infragranular layers,
where it is distributed to cortical and subcortical targets (1, 2).
The basic structure of this microcircuit is present in auditory
cortex (3), although despite our anatomical knowledge, little is
known about whether and how processing principles differ
between layers (4).

In primary auditory cortex (AI), the organization of each layer
is complex, and much like a nucleus, has specific sources, targets,
and local projection patterns, in addition to intralaminar and
interlaminar connections (5). Further, the ascending and de-
scending outputs originating from each layer likely serve differ-
ent purposes, because each targets different regions of the
auditory system (6). Because of this complexity, general rules
that capture how stimulus representations change between layers
remain unclear. To date, only a few parameters have been
identified that remain relatively constant across cortical depth,
including preferred frequency (7) and aurality (8–11). However,
even for those parameters, deviations from uniformity have been
observed (12, 13).

The complexity of auditory cortical anatomy leads to two main
schemes. The first is that no general processing rules exist,
because it has been speculated that microcircuits are too diverse
to generate universal processing patterns (14). Alternatively,
how stimuli are processed, such as the degree to which responses
are nonlinear, may be stereotyped within and between layers.

This would align the design of the cortical microcircuit with
predictable algorithms and functional consequences.

Past work has produced ambiguous results when these
schemes were explored. Some aspects of cortical response
preferences are inherited from subcortical stations and typically
show no major changes across layers (7–11). Other stimulus-
related aspects undergo substantial transformations between
auditory thalamus and cortex, in particular the sensitivity and
selectivity for spectral and temporal envelope modulations (15).
The shaping of these modulation preferences is predominantly
accomplished through intracortical networks and can be cap-
tured by properties of spectrotemporal receptive fields (STRFs).
Further transformations of spectrotemporal processing may
occur in AI; thus, we need to examine how local circuits may
transform stimulus information and express processing princi-
ples across cortical layers.

Because the connection patterns in cortical circuits are precise
and relatively stereotyped, we can study the transformation of
receptive field properties at different positions in the auditory
microcircuit, paralleling approaches in the primary visual cortex
(16). Here, we tested the hypothesis that properties of spectro-
temporal receptive fields, and, in particular, how neurons pro-
cess acoustic stimuli, follow an ordinal functional progression
from granular to supragranular and then to infragranular layers,
respectively, in accordance with the standard model of the
dominant interlaminar circuit (1).

Results
We used multichannel electrode arrays to simultaneously record
from several single neurons across all laminae in cat AI. Dynamic
moving ripple noise stimuli were presented that contained
temporal and spectral modulations known to drive cortical cells
(15, 17). Modulation parameters were randomly varied, and
STRFs were calculated from the responses. Two methods were
used to obtain STRFs. In the first, we calculated the spike-
triggered average (STA) (18, 19), which represents the average
time-frequency stimulus envelope preceding a cortical action
potential. A second approach to determine STRFs is based on
maximizing the mutual information (MI) between the stimulus
and the evoked spike train of a neuron. In this case, two
parametrically independent but jointly operating STRFs are
iteratively adjusted until the MI is maximized, resulting in two
maximally informative dimensions (MIDs), and their associated
nonlinearities (20). Earlier, we demonstrated that the concurrent
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operation of these two MIDs can capture a substantially larger
proportion of the MI of cortical neurons than the STA or a single
MID alone (21). In a previous report (46), we focused on the
layer-specific temporal and spectral modulation content. How-
ever, neuronal stimulus preferences change widely across the
tonotopic array, e.g., stimulus binaurality, bandwidth, or inten-
sity, complicating a population analysis of general processing
aspects (9, 10, 34). Here, we focus on layer-dependent auditory
processing principles (‘‘how’’) that are largely independent from
the stimulus content (‘‘what’’) (22).

Laminar Differences for STAs. Across cortical depth, the main
excitatory and inhibitory subfields of STAs were quite congruent
for spectral position and shape (Fig. 1A). Usually, a main
excitatory subfield (Fig. 1 A, red) was followed by an inhibitory
one (Fig. 1 A, blue) at a consistent spectral position throughout
the cortical depth. In contrast, other spectrotemporal charac-
teristics clearly varied with layer. Excitatory latency was shortest
at intermediate depths (Fig. 1 A; 0.79 and 0.94 mm), and longest
in supragranular layers (0.34 mm). The duration of the inhibitory
subfields was often longest at more superficial locations (0.34
and 0.49 mm). At intermediate cortical depths, excitatory and
inhibitory subfields for higher or lower frequencies were often
temporally aligned (Fig. 1 A; 0.79 and 0.94 mm). The spectro-
temporal constellation of excitatory and inhibitory subfields
often took more complex shapes at greater depths (Fig. 1 A; 1.54
and 1.84 mm). Combined, many spectrotemporal features of
STAs were not constant across cortical laminae.

Several timing- and firing rate-related receptive field charac-
teristics, estimated from the STAs, showed significant layer
specificity. For population analysis, layers were differentiated
according to recording depth measurements of the linear mul-
tielectrode array: supragranular (0–0.6 mm), granular (0.7–1.1
mm), and infragranular (1.2–1.85 mm) (see Materials and Meth-
ods and SI Text). For population data, STA latency was shortest
in granular layers, which are known to receive early lemniscal
thalamic inputs (Fig. 1 B and C). Time-locked responses to the
ripple stimulus were most precise in granular layers, with
progressively decreasing precision in supragranular and infra-
granular layers (Fig. 1D), compatible with the standard model of
serial columnar information transfer.

Overall firing rate varied significantly with depth, with the
highest rates in infragranular layers, and the lowest in supra-
granular layers, perhaps reflecting differences in dominant cell
types and a greater diversity in converging inputs in lower layers
(Fig. 1E) (23). These layer-dependent changes in firing rate do
not correlate with the standard model of serial columnar infor-
mation transfer alone, because the change in rate does not vary
monotonically with position in the vertical cortical microcircuit.

Further layer-dependent differences emerged for the com-
plexity of STA structure and the neural selectivity for stimulus
features. One aspect of STRF/STA complexity is the indepen-
dence of spectral and temporal processing. A low degree of
separability indicates interdependence of temporal and spectral
STRF aspects. STAs were most separable in granular layers,
processing time and frequency more independently. Supra-
granular and infragranular layer STAs were significantly less
separable (Fig. 1F), reflecting an increased spectrotemporal
interdependence beyond that in lemniscal thalamic inputs.

Laminar differences were also evident in the degree of feature
selectivity, which expresses how similar a stimulus has to be to
the averaged preevent ensemble to produce an action potential
(17). Neurons were most feature selective in granular layers, i.e.,
deviations between stimulus and STA pattern are not well
tolerated (Fig. 1G). In infragranular layers, the feature selec-
tivity was the lowest, and neurons were responsive to a less strict
match between STA and stimulus. The STA analysis shows that
major processing aspects captured by the STRF change with

cortical layer. Neurons in granular layers appear to have a
shorter response latency, higher timing precision, more separa-
ble STRFs, and higher feature selectivity than those in supra-
granular and infragranular layers. Thus, compared with
thalamocortical input layers, the dominant cortical output layers
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Fig. 1. Laminar distribution of STRF response properties. (A) STAs at differ-
ent cortical depths. Red indicates increasing responsiveness, and blue indi-
cates decreasing responsiveness. Depth is indicated to the left of the STAs, and
layer is indicated to the right (II/IIIa: supragranular; IIIb/IV: granular; V/VI:
infragranular). Value ranges are the same for all STAs. (B) Latency depth
profile for all neurons (mean/SEM in nonoverlapping 0.25-mm bins). Dashed
vertical lines indicate laminar boundaries. (C) Latency in supragranular, gran-
ular, and infragranular layers. (D) Phase-locking precision. (E) firing rate. (F)
Spectrotemporal separability of STAs. (G) Feature selectivity. (t test with
Bonferroni correction, *, P � 0.05; **, P � 0.01).

Atencio et al. PNAS � December 22, 2009 � vol. 106 � no. 51 � 21895

N
EU

RO
SC

IE
N

CE
SE

E
CO

M
M

EN
TA

RY

http://www.pnas.org/cgi/data/0908383106/DCSupplemental/Supplemental_PDF#nameddest=STXT


have more complex STRF compositions, increased spectrotem-
poral interactions, and lower degrees of precision in response
timing and feature specificity.

Laminar Differences for MIDs. MIDs provide an expanded charac-
terization of neuronal processing by revealing contributions of
more than one STRF (or multicomponent stimulus dimension)
in shaping a neuron’s response properties (20, 21, 24). MIDs fall
under linear–nonlinear models (25, 26) that combine linear
spectrotemporal stimulus features with a static, but neuron-
specific, nonlinearity to compactly represent neural processing
(27). We estimated two MIDs, where the first (MID1) accounted
for the most information between the stimulus and the response,
and the second (MID2) further maximized the information (Fig.
2 A and B), and the nonlinearity associated with each MID (Fig.
2 C and D). Additionally, because both MIDs process stimuli
concurrently, we estimated a 2D joint nonlinearity for the
combined processing of the MIDs (Fig. 2E). The nonlinearities
describe the relationship between stimulus features and neural
response, representing a rule that quantifies the likelihood of a
response given a stimulus (28).

The two MIDs, and their nonlinearities, differed in shape (21)
and showed different properties with laminar position. The
spectrotemporal separability of MID1s mirrored that of STAs
(21). MID1s were most separable in granular layers (Fig. 3A).
Also, in granular layers, the MID1 nonlinearities were most
asymmetric, i.e., responses are greatest for stimuli that are highly
matched to the MID (Figs. 2C and 3C). On average, supra-
granular MID1 nonlinearities showed the same degree of asym-
metry as granular MID1s (Fig. 3C). Infragranular neurons,
however, had a clearly reduced asymmetry (Fig. 3C), suggestive
of a processing strategy less sensitive to the phase, or polarity, of
the spectrotemporal envelope. MID2s were relatively insepara-
ble and with little layer specificity. Their time and frequency
aspects may be less easily dissociated (Figs. 2B and 3B).

The shape of the MID2 nonlinearity was highly symmetric, and
this property was maintained across all depths (Fig. 2D), i.e.,
stimuli positively or negatively correlated with MID2 led to
increased firing probabilities. The least asymmetric MID1 non-
linearities in infragranular layers were still significantly more

asymmetric than the MID2 nonlinearities in any layer (Fig. 3C;
ANOVA, P � 0.01). The structure of the joint 2D nonlinearities
reflects the degree and nature of cooperativity between the two
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MIDs (see Fig. 2E). Absence of cooperativity would result in a
joint nonlinearity nearly equal to the product of the two 1D
nonlinearities, i.e., the 2D firing-probability distribution would
be fully separable into two independent components. All neu-
rons exhibited some degree of inseparability of their 2D non-
linearity, i.e., the two MIDs cooperated (Fig. 3D). The most
separable nonlinearities were in granular layers, with signifi-
cantly lower separability and increased cooperativity in supra-
granular and infragranular layers (Fig. 3D). Thus, the rule that
governs the joint, two-MID processing is not a simple product of
two 1D nonlinearities and implies that information processing
becomes more nonlinear and complex as the synaptic distance
from granular layers increases.

The degree of cooperativity of the two STRFs can be quan-
tified by the synergy of the MIDs. Synergy is the MI captured by
the jointly applied STRFs divided by the sum of the MI of each
individual STRF. Synergy thus compares the joint processing to
the independent processing of the MIDs. The average synergy in
granular layers was significantly �100%, i.e., the cooperating
STRFs captured more information than when considered in
isolation (Fig. 3E). Furthermore, the synergy in supragranular
and infragranular layers exceeded that in granular layers, sug-
gesting an increasing impact of cooperativity within the hierar-
chy of the columnar microcircuit.

The laminar-dependent changes in synergy covaried with the
relative contribution of the first and second MID. The informa-
tion for a reduced model, consisting of only the first MID and its
nonlinearity, relative to the information for both MIDs, the first
MID contribution, clearly differed across the three laminar
regions (Fig. 3F). In granular layers the first MID provides the
greatest contribution. The second MID attains increasing im-
portance at supragranular and infragranular locations, closely
following the laminar-dependent changes in synergy. It implies
that an increasing contribution of MID2 enhances the synergy.

Previously, we have shown that parameters that describe the
stimulus-based content of receptive fields (e.g., characteristic
frequency, excitatory bandwidth, envelope modulation prefer-
ences) are relatively independent of parameters that describe
how the processing is accomplished (e.g., receptive field sepa-
rability, feature selectivity, nonlinearity structure) (22). A factor
analysis revealed potential interdependences among variables
that characterize how spectrotemporal stimuli are processed. We
recovered four factors from the 11 variables (eigenvalues: 3.35,
2.33, 1.42, and 1.07; accounting for 74.3% of the data variance;
Table S1). Factor 1 had major contributions from firing rate,
phase locking, and MID1 separability and feature selectivity;
factor 2 comprised MID1 contribution, MID synergy, MID2
separability, and, less specifically, the inseparability of the 2D
MID nonlinearity; factor 3 reflected covariations in the asym-
metry of the two nonlinearities; and factor 4 captured response
latency, which was the weakest factor and describes the time to
response. Thus, in addition to a timing sequence, the parameters
express three main independent principles of auditory cortical
processing. The first connects spectrotemporal structure of the
STA/MID1 to response strength and timing precision. The
second determines how multiple features cooperate to influence
neural sensitivity. The third factor reveals an interaction be-
tween the shape of the two nonlinearities. All four aspects vary
with cortical layer.

The various processing changes between the three layer
groups appear compatible with a sequential process that follows
the connection patterns in the canonical columnar circuit (Fig.
4). Across-layer comparisons (ANOVA, P � 0.05) of the recep-
tive field parameters revealed that all of them showed layer
differences, and 7 of the 11 parameters changed monotonically
from granular, to supragranular, and then to infragranular
regions (Fig. 4). Some of the processing characteristics showed
nonmonotonic changes from granular to infragranular laminae,

which points to contributions of nonsequential, perhaps lamina-
specific, aspects. In general, however, the principal processing
sequence in AI is consistent with a progressive laminar hierarchy
of auditory cortical computations.

Discussion
Three main results point to substantial differences in how
auditory stimuli are processed in different cortical layers. First,
by focusing on the strategy of processing, we uncovered three
independent factors that describe how stimulus information is
processed. A fourth factor, dominated by response latency,
illuminated the columnar processing sequence. The receptive
field characteristics from the first three factors dealt less with
stimulus preferences (such as temporal or spectral modulations)
and more with how STRFs and their nonlinearities are struc-
tured and interact. Second, different positions in the AI micro-
circuit correlate with differences in the main neural response
factors and with changes in the interactions between the two
STRFs of a neuron. Finally, the laminar processing progression
is largely compatible with a sequential receptive field modifica-
tion from granular to supragranular to infragranular layers.
Overall, how stimuli are processed along the columnar micro-
circuit becomes more complex in structure, less linear in inter-
action and response generation, and potentially more abstract
and variation tolerant (29).

Key in this study was the simultaneous recording from neurons
across all layers and the analysis of multiple information-bearing
STRFs and their nonlinearities. The first aspect substantially
reduced variability introduced by the large parametric range of
cortical neurons in the thalamocortical input layers and by
changes in physiological state in sequential recordings along
electrode tracks (4, 22). The second aspect used a new window
on neuronal processing, the MIDs, uncovering hitherto hidden
properties of auditory cortical processing (21). Specifically, the
MID analysis revealed a second STRF that influences the
neuron’s responsiveness, in conjunction with the first STRF.
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Past research tried to find single stimulus-based parameters
that remain constant across laminae (30) but had limited success
and identified only a few parameters that changed little across
cortical depth (7–11). By contrast, systematic laminar changes of
receptive field parameters exist and are related to the coding of
stimulus parameters, including spectral bandwidth, sound inten-
sity, frequency sweeps, spectral and temporal modulations, and
vocalizations (11, 31–34, 46). Despite some inconsistencies
among studies (4), they confirm the observations from other
modalities, that processing in layers is specific to their different
tasks and their different projection targets. In addition, no
consistent functional or task-specific interpretations or sequen-
tial/hierarchical schemes for intracolumnar processing have
emerged from these studies (4).

Here, we found that the majority of receptive field parameters
that capture general processing strategies, as opposed to specific
processing content, changed with laminar position, and these
changes correlated with the synaptic distance from granular
layers. Seven of 11 parameters monotonically changed across the
three levels of the canonical columnar circuit. Two main excep-
tions were response latency and firing rate. That latencies of
infragranular neurons were shorter than those in supragranular
layers is likely caused by additional direct thalamic inputs (32, 33,
35). The nonordinal changes in firing rate from granular to
nongranular layers likely reflect laminar differences in the
composition of cell types with different membrane and synaptic
properties and in the differing nature of the input sources.
Overall, however, laminar changes in how auditory information
is processed support a sequential scheme in general agreement
with the canonical columnar circuit. This congruence of func-
tional and connectional aspects is remarkable, given that each
layer receives numerous and diverse feed-forward and feedback
inputs that impinge on the determination of the functional
properties of auditory cortical neurons. Noncolumnar inputs
appear to take a stronger role in shaping the content of the
processing as opposed to the columnar circuit that dominates
processing strategy. Thus, granular, supragranular, and infra-
granular layers may be thought of as separate nuclei, with
significantly differing processing in each, although still main-
taining interdependence (36).

How does the columnar processing in auditory cortex differ
from other primary sensory cortices? Unlike visual cortex,
distinct functional cell classes are not created. Instead, there is
a gradient for processing complexity in AI; nonlinearity struc-
ture and STRF interactions change within the local circuit. This
represents a significant difference from visual cortex, where
spiking responses, but not subthreshold responses, can be nearly
bimodally distributed into simple and complex cells (37, 38, 39).
In AI, by contrast, a similar bimodality does not appear, indi-
cating that modality analogies must be considered with caution.
AI cells combine aspects of simple and complex cells, because
they appear to contain STRFs with both an asymmetric (like
simple cells) and a symmetric (like complex cells) nonlinearity.
A direct analog of an envelope-phase invariant complex cell,
which has no STA, has yet to be found in auditory cortex (21).

Our findings resemble recent receptive field modeling in
primate primary visual cortex that revealed multiple STRFs for
simple cells (40, 41). Additionally, in both the visual and auditory
systems, the structure of the nonlinearities varies with depth. The
first MID nonlinearity in AI is most asymmetric in granular
layers whereas the structure of the 2D nonlinearity, character-
izing joint STRF processing, becomes more inseparable and
complex outside of granular layers.

The processing by auditory cortical STRFs evolves within the
columnar circuit. Processing in all layers is more completely
captured with a two-STRF characterization. In granular layers,
the first STRF is more dominant and possesses a high degree of
separability and feature selectivity. Its nonlinearity is highly

asymmetric reflecting the high feature selectivity of the STRF
(22). In supragranular layers, the MID1 contribution is reduced,
MID2 strengthens, synergy increases, and the 2D nonlinearity is
less separable. In the infragranular layers, this trend toward
more cooperative processing and higher receptive field com-
plexity is continued. Thus, the sequential information processing
in AI is progressive and becomes more complex and synergistic,
as the auditory information moves from thalamic input to
cortical output layers.

The processing strategy in AI follows a continuum of empha-
sis, with one major mode representing the response of a neuron,
another representing interactions between the STRFs that com-
prise the receptive field of a neuron, and a third relating the
nature of the nonlinearities, reflecting neuronal stimulus pref-
erences and intrinsic membrane properties. These three pro-
cessing aspects of auditory information undergo modifications in
the AI microcircuit. The laminar progression of stimulus pro-
cessing complexity, achieved by an increasing influence of a
second STRF, represents a departure from traditional models of
auditory cortical stimulus feature extraction and representation.
The interactions between the first and second STRFs are
reminiscent of combination sensitivity prevalent in biosonar
signal processing (42), because the joint processing of the two
STRFs leads to greater responsiveness and is not predictable
from the independent processing of the STRFs. However, a
symmetric nonlinearity introduces a processing strategy beyond
the combination of highly defined stimulus features and may
provide a key step in our understanding of cortical transitions
toward increasingly more complex, nonlinear, robust, categori-
cal, and/or abstract processing principles.

Materials and Methods
Neural recordings were made in the right AI of adult, anesthetized female
cats. Multichannel silicon recording arrays were used to record neural re-
sponses. Each array (kindly provided by the University of Michigan Center for
Neural Communication, Ann Arbor) consisted of 16 linearly spaced recording
contacts, with each contact separated by 0.15 mm. Arrays were positioned
orthogonally to the cortical surface and then inserted (see SI Text and Fig. S1).
Recordings were obtained by using a Neuralynx Cheetah A/D system, with
sampling rates between 18 and 27 kHz, and a passband filter setting of 0.6–6
kHz. Single neurons were obtained by using a Bayesian spike-sorting proce-
dure. Neuron locations were estimated from depth readings and latency
profiles. Stimuli consisted of a 15- or 20-min dynamic moving ripple stimulus
that had randomly varying temporal modulations from �40 to 40 Hz and
randomly varying spectral modulations from 0 to 4 cycles per octave (17). All
experimental details were as reported and were in strict accordance with the
policies of the University of California, San Francisco Committee for Animal
Research. The STA and the MIDs were calculated as reported (see SI Text).
Briefly, to compute the STA and the MIDs, we separated the data into training
(3/4 of the data) and test (1/4 of the data) subsets, which resulted in four
different estimates for each type of STRF. Information values were calculated
from the 1/4 of the data that was not used to calculate the STRFs. Information
values were adjusted for sampling bias by extrapolating to infinite dataset
size, where information values were plotted versus the inverse of the data
fraction used to calculate them (80%, 85%, 90%, 92.5%, 95%, 97.5%, and
100%), and the ordinate intersection of the line to the values was taken as the
estimated information value (43, 44). Neurons were assigned to layers accord-
ing to cortical depth by using standard boundaries: supragranular, 0–0.6 mm;
granular, 0.6–1.1 mm; and infragranular, 1.1–1.85 mm. To minimize depth-
measure variance, when data were grouped into layers and analyzed for
statistical significance, layers were defined as: supragranular, 0–0.6 mm;
granular, 0.7–1.1 mm; and infragranular, 1.2–1.85 mm (5). Statistical tests
were consistent whether the original or analysis layer definitions were used.
We used Statview (SAS Institute) to apply factor analysis using the varimax
technique (45). Only factors with corresponding eigenvalues more than one
were considered to explain the variability in the dataset.
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