
Hierarchical Constraint Satisfaction in Spatial Databases

Dimitris Papadias, Panos Kalnis, Nikos Mamoulis
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

http://www.cs.ust.hk/{~dimitris, ~kalnis, ~mamoulis}

Abstract
Several content-based queries in spatial databases and
geographic information systems (GISs) can be modelled
and processed as constraint satisfaction problems (CSPs).
Regular CSP algorithms, however, work for main memory
retrieval without utilizing indices to prune the search
space. This paper shows how systematic and local search
techniques can take advantage of the hierarchical decom-
position of space, preserved by spatial data structures, to
efficiently guide search. We study the conditions under
which hierarchical constraint satisfaction outperforms tra-
ditional methods with extensive experimentation.

Introduction   

Consider that a user is searching for a triplet (v1,v2,v3) of a
residential area, a commercial center and a park, such that v1

covers v2 and v2 meets v3. The query can be modeled as a CSP
where: i) each query object corresponds to a CSP variable ii)
a pair of variables is related by the respective query con-
straints (e.g., covers(v1,v2)) iii) the domain of each variable
consists of the corresponding objects in the database (e.g., the
domain of v1 is the set of all stored residential areas). As op-
posed to other CSP applications, here the number of variables
is relatively small (usually less than ten), while the domains
are very large (geographic maps may contain more than
100,000 objects).

Because of the large amount of data involved, spatial data-
bases and GIS employ indexing for efficient retrieval. The R-
tree (Guttman 1984) and its variations is the most popular
multi-dimensional access method, currently used in many
commercial GISs and DBMS (e.g., Informix, Illustra, Map-
Info). R-trees have been applied for a variety of queries in-
cluding spatial selections, nearest neighbors, and spatial
joins. This paper illustrates how the hierarchical decomposi-
tion of space, preserved by R-trees, can be utilized by CSP
algorithms to accelerate search.

In order to provide a general framework of retrieval we use
the 9-intersection model (Egenhofer 1991) as the basis for
defining spatial constraints. This model, which is becoming a
standard in commercial systems (e.g., Intergraph and Oracle
spatial products), describes eight mutually exclusive topo-
logical relations between planar regions (Figure 1) using in-
tersections of object interiors and boundaries. The same set of
relations, called RCC-8 (region connection calculus) in AI
literature, was defined independently in (Randell, Cui, and

                                               
Proceedings of AAAI, Orlando, Florida, July 18-22, 1999.

Cohn 1992). Alternatively, depending on the application
needs, the proposed techniques could be used with other
types of spatial constraints such as directions (e.g., north) and
distances.

x x1
2 x x

1 2
x

x

1
2 x

x
2

1

disjoint(x1,x2) meet(x1,x2) overlap(x1,x2) cover(x1,x2)

x x1 2 xx
21 x

x
1

2 xx
12

equal(x1,x2) contain(x1,x2) covered-by(x1,x2) inside(x1,x2)
Figure 1 Topological relations

The rest of the paper is organized as follows: Section 2 de-
scribes R-trees and spatial query processing techniques. Sec-
tion 3 defines hierarchical constraint satisfaction based on
indexing and outlines pre-processing techniques. Section 4
experimentally evaluates the performance gain of hierarchical
constraint satisfaction for systematic search and local search
techniques. Finally, Section 5 concludes the paper.

Background

The R-tree data structure is a height-balanced tree that con-
sists of intermediate and leaf nodes corresponding to disk
pages in secondary memory (R-trees are extensions of B+-
trees to many dimensions). The root is at level h-1, where h is
the height of the tree, and the leaf nodes at level 0. The mini-
mum bounding rectangles (MBR) of the actual data objects
are stored in the leaf nodes, and intermediate nodes are built
by grouping rectangles at the lower level. Notice, that each
object has a distinct identity and location in space. Further-
more, in most applications there is a separate R-tree for every
type of object (e.g., residential areas, parks).

Figure 2 illustrates R-trees that index three sets of objects
covering the same area. For this example we assume that the
maximum node capacity C is 3 rectangles (in real 2D appli-
cations C is normally 50-400 depending on the page size).
MBRs a1, a2 and a3 of the first R-tree are grouped together in
an intermediate node A1, which is contained in the root. In the
rest of the paper, we make the distinction between an R-tree
node Xi and its entries Xi,1,.., Xi,Ci

, (where Ci≤C is the capacity
of Xi) which correspond to MBRs included in Xi. Xi,k.ref points
to the corresponding node Xk at the next (lower) level. For
instance, at level 1 of the first tree, the entries of the root are
A1 and A2, which point to nodes at level 0. An entry of a leaf
node Xi is an object MBR xi,k.



c
3

c4 c5

C2

c1 c2 c3 c4

C1 C2

c5

R3

c
1

c2 C
1

b1 b2 b3 b4

B1 B2R2

b5

b
1

b
2

b 3

b
4

B 2

B1b5

a
1

a2

a3

a
4 a

5

A 1

A 2

q

a1 a2 a3 a4 a5

A1 A2
R1 1

0

Figure 2 A set of objects and the corresponding R-tree

Traditionally, R-trees have been used for window queries
which ask for a set of objects that intersect1 a window q. The
processing of a window query in R-trees involves the fol-
lowing procedures: Starting from the top node, exclude the
entries that are disjoint with q, and recursively search the
remaining ones. Among the entries of the leaf nodes re-
trieved, select the ones that are non-disjoint with q. For in-
stance when searching for objects sharing common points
with the dotted window in the first tree, we need not access
A2 since it cannot contain qualifying objects.

When two MBRs are disjoint, the objects that they ap-
proximate are also disjoint. If the MBRs however share
common points, no conclusion can be drawn about the rela-
tion between the actual objects. For this reason, spatial que-
ries involve the following two step strategy: (i) a filter step, in
which the tree is used to retrieve a set of candidates that in-
cludes all the results and possibly some false hits, and (ii) a
refinement step where each candidate is examined and false
hits are eliminated. Here, as in most related literature, we will
only consider MBRs, avoiding the refinement step (which is
based on computational geometry techniques and is outside
the scope of this paper).

The above method can be extended for the retrieval of the
topological relations of Figure 1. In contrast to window que-
ries where the retrieval condition is non-disjoint for all levels
of the tree, in order to retrieve topological relations using R-
trees one needs to define conditions for the intermediate
nodes. For instance, A1 encloses a3 which is covered-by q, but
the relation between A1 and q is overlap. Table 1 presents, for
each relation, the condition between an intermediate node X
and q, so that X may contain qualifying objects x.

Relation (x,q) Condition for intermediate nodes (X,q)
equal equal ∨ cover ∨ contain
contain contain
inside overlap∨covered-by∨inside∨equal∨cover∨contain
cover cover ∨ contain
covered-by overlap∨ covered-by ∨ equal ∨ cover ∨ contain
disjoint disjoint∨ meet∨ overlap∨ cover∨ contain
meet meet∨ overlap ∨ cover ∨contain
overlap overlap ∨ cover ∨ contain

Table 1 Conditions for intermediate nodes (window queries)

R-trees can also effectively support intersection joins, i.e.,
queries that  select from two object sets, the pairs that satisfy
some spatial predicate, usually intersect (e.g., “find all land
parcels intersecting some forest area”). The most influential

                                               
1 Intersect (or non-disjoint) is the complementary relation of
disjoint.

algorithm for processing intersection joins using R-trees, is R-
tree join (RTJ) proposed in (Brinkhoff, Kriegel, and Seeger
1993). It is based on the enclosure property of R-trees: if two
intermediate nodes Xi and Yj (possibly belonging to different
trees) are disjoint, then all pairs (Xi,k,Yi,l) of their entries are
also disjoint. RTJ starts from the roots of the two trees to be
joined (e.g., R1 and R2) and finds all pairs of non-disjoint en-
tries inside them (e.g., (A1,B1) and (A1,B2)). These are the only
pairs that may lead to solutions; for instance, there can be no
pair (ai,bj) ai ∈ A2 and bj ∈ B1 such that (ai,bj) is a solution,
since A2 is disjoint with B1. For each non-disjoint pair of en-
tries, the algorithm is recursively called until the leaf levels
where intersecting pairs constitute solutions.

Like window queries, in order to process arbitrary topo-
logical relations using RTJ, we need to define the conditions
between intermediate nodes Xi and Yj that could enclose (at
any level below) objects xk and yl satisfying the join predicate.
Table 2 contains the allowed relations between Xi and Yj, so
that they could contain qualifying pairs (xk,yl).

Relation (xk,yl) Condition for intermediate nodes (Xi,Yj)
equal, contain, inside,
overlap, cover, covered-by

overlap ∨ covered-by ∨ inside ∨ equal
∨ cover ∨ contain

disjoint disjoint ∨ meet ∨ overlap ∨ covered-
by ∨ inside∨ equal∨ cover ∨ contain

meet meet ∨ overlap∨ covered-by ∨ inside∨
equal ∨ cover ∨ contain

Table 2 Conditions for intermediate nodes (spatial joins)

Consider again the query given in the introduction: "find a
triplet of objects (v1,v2,v3) such that v1 covers v2 and v2 meets
v3". This can be viewed as a multi-way spatial join and proc-
essed by computing the result of one pairwise join (e.g., v1

covers v2) using RTJ; then joining the results with v3 by some
spatial hash algorithm applicable when only one R-tree is
available  (since the results of the first join are not indexed).
This approach is described in detail in (Mamoulis and Pa-
padias 1999a). Alternatively, as shown in (Papadias,
Mamoulis, and Delis 1998), the query could be processed as
a CSP, where the query objects (variables) can take values
from the corresponding domains.

The hierarchical structure of R-trees can be used to de-
compose the initial problem (with size n.

 log2(m), where m is
the cardinality of the datasets) to smaller sub-problems (with
size n.

 log2(C), where C is the node capacity) at each tree
level. A solution of a sub-problem at an intermediate level is
an instantiation of variables to entries that may contain ob-
jects satisfying the query constraints. Similarly to RTJ, the
nodes pointed by these entries constitute the domains of the
variables at the next (lower) level. In the sequel we describe
hierarchical constraint satisfaction using R-trees, and evaluate
its performance with systematic and local search.

Hierarchical CSPs using R-trees

Content-based queries like the previous one are transformed
to two types of CSPs: one for the intermediate levels and one
for the leafs. Formally, a hierarchical CSP using R-trees can
be defined by:



• A set of n variables, v1,v2,..,vn.
• For each variable vi a domain Di which i] for level 0,

consists of the entries {xi,1,.., xi,Ci
} of a leaf node Xi, and

ii] for levels 1 to h-1, of the entries {Xi,1,.., Xi,Ci
} of an in-

termediate node Xi.
• For each pair of variables (vi,vj) a binary constraint: i] for

level 0, cij is a disjunction of topological relations re-
stricting the relative positions of vi and vj as specified by
the query ii] for levels 1 to h-1, Cij is derived by replac-
ing each relation in cij by the corresponding condition for
intermediate nodes in Table 2.

Consider again the example query: the CSP for the top level
of the tree in Figure 2 has three variables which can be in-
stantiated to entries of the roots (D1={A1,A2}, D2={B1,B2},
D3={C1,C2}). C12 is the entry of Table 2 that corresponds to
relation cover (i.e., overlap ∨ covered-by ∨ inside ∨ equal ∨
cover ∨ contain), while C23 is the entry that corresponds to
meet. Out of the 8 possible combinations of root entries (e.g.,
(A1,B1,C1), (A1,B1,C2), .., (A2,B2,C2)), only (A1,B1,C2) and
(A1,B2,C1) may lead to actual solutions. The triplet (A1,B1,C2)
constitutes a solution at the root since overlap(A1,B1) and
overlap(B1,C2) satisfy the intermediate level constraints. Then
the algorithm will proceed to level 0 with D1={a1,a2,a3},
D2={b1,b2,b5} and D3={c3,c4,c5}. The constraints now become
c12= cover and c23= meet. The only leaf level (i.e., actual)
solution (a2,b2,c4) is found. On the other hand, the root solu-
tion (A1,B2,C1) does not lead to an actual one, i.e., it is a false
hit. Figure 3 illustrates the above example, giving the do-
mains, constraints and solutions at each level.

level 1

level 0

overlap∨ covered-by∨ inside∨ equal∨ cover∨ containsC12=

C23=meet∨ overlap∨ covered-by∨ inside∨ equal∨ cover∨ contains
solutions

 coverc12 = c23 =meet

D1={A1,A2}, D2={B1,B2}, D3={C1,C2}

(A1,B2 ),C1(A1,B1 ),C2

D1={a1,a2 },a3
D2={b1,b2 },b5
D3={c3,c4 },c5

D1={a1,a2 },a3
D2={b3,b4}
D3={c1,c2}

(a2,b2 ),c4
solutions ∅

Figure 3 Path to solution (a2,b2,c4)

Space-restriction (Brinkhoff, Kriegel, and Seeger 1993) is a
pre-processing heuristic (employed before the application of
the CSP algorithm at each level) that scans the domains of all
variables, removing the entries that cannot satisfy the query
constraints given their positions with respect to the other
nodes. If an entry Xi,k ∈ Xi is disjoint with Yj, then it is disjoint
with all entries contained in Yj. In order to apply space-
restriction for topological relations, Table 1 is used for en-
tries at level 0, and Table 2 for the rest. In the example query,
when the solution (A1,B1,C2) is found at the top, entry a1 can
be safely pruned from D1 at the next level since it is disjoint
with node B1, therefore it cannot cover any entry inside B1.

Another type of pre-preprocessing is path consistency,
which can be employed as a form of semantic query optimi-
zation to discard inconsistent queries. For instance, the query
c12= cover, c23= cover and c13= disjoint cannot have any solu-
tions. For the detection of such inconsistencies prior to
search, we use the composition table for topological relations
in (Egenhofer 1991) and the algorithm in (Allen 1983), which
does not check value consistency, but constraint graph con-

sistency, and its complexity is, therefore, independent from
the domain sizes. Note that the algorithm is not complete, i.e.,
depending on the query, it may not detect all inconsistencies.

Hierarchical constraint satisfaction can be applied with a
variety of heuristics. In the next section we measure its per-
formance using representative systematic and local search
algorithms for the following three cases:
i] Hierarchical systematic search - Systematic search is

applied at every level. This results in an exhaustive
depth-first search of the trees.

ii] Hierarchical local search - Local search is used at every
level. Once a solution is found at level l the algorithm
locally searches the references to l-1.

iii] Hierarchical local/systematic search -  Local search is
applied for the intermediate levels where there exist nu-
merous solutions due to the non-restrictive constraints
and the large areas of intermediate nodes. Systematic
search is employed at the leafs.

Experiments

The problems were randomly generated by modifying the
parameters <n,m,p1,p2> (Dechter and Meiri 1994), where p1 is
the probability that a random pair of variables is constrained
(network density), and p2 the probability that a random as-
signment for a constrained pair is inconsistent (constraint
tightness). The usual methodology for generating random
CSPs is to specify each binary constraint as a subset of the
domains' Cartesian product. In this case the same tightness
for all constraints is achieved by filtering out p2

.m2 value pairs
for every constraint. In the current problem, where constraints
are disjunctions of relations, this method cannot be applied.

In order to generate various values of tightness we created
uniform datasets with different density values. The density D
of a set of rectangles is the average number of rectangles that
contain a given point in the workspace. Equivalently, D can
be expressed as the ratio of the sum of the areas of all rectan-
gles over the area of the workspace. Figure 4 shows one data-
set with m=104 uniformly distributed rectangles where the
average rectangle side in each dimension is |x| = 0.0045, re-
sulting in D≈0.2 (assuming a [0,1)×[0,1) (unit) workspace,
the density is defined as D = m⋅|x|2). It also illustrates the
probability with which a random pair satisfies each topologi-
cal relation. For uniform datasets, D is the single factor de-
termining relation probabilities, which can be calculated by
analytical models (Theodoridis and Sellis, 1996). Sampling
and statistical information can be used for real data. Like
Figure 4, in most real-life situations disjoint is satisfied by the
vast majority of object pairs (D=0.2 is a typical value for real
datasets). The tightness of a constraint, i.e. the probability
that a random pair of variable assignments will violate it, can
be calculated from the probabilities of the relations it consists
of. For instance, the tightness of a constraint {meet ∨ con-
tain} is 1-(Prob(meet) + Prob(contain)). Since in most prob-
lems, each constraint has a different tightness, we use the
average tightness of all constraints to define p2.



Relation probability
disjoint 9.999182⋅10-1

meets 3.760376⋅10-6

equal 2.000200⋅10-8

inside 2.280228⋅10-6

covered by2.500250⋅10-7

contains 2.280228⋅10-6

covers 2.500250⋅10-7

overlap 7.298730⋅10-5

Figure 4 A sample dataset used in the experiments

The datasets were organized in R*-trees (Beckmann et al.
1990) with height h=3 and node capacity C=50-200
(depending on cardinality). Performance is measured in terms
of consistency checks, i.e., number of object pairs checked
for the satisfaction of a topological constraint. In case of hier-
archical CSPs, comparisons involving intermediate nodes are
also counted as consistency checks.

Hierarchical Systematic Search

We first compare hierarchical and flat versions of systematic
search through the whole solution space. In the following
experiments we use forward checking (FC) with the fail first
dynamic variable ordering heuristic (Haralick and Elliott
1980), because of its efficiency and relatively simple imple-
mentation.

For the first experiment, a series of problem ensembles
was generated. An ensemble contains 50 random problems
with complete constraint graphs (cliques), i.e., p1=1, and the
same average constraint tightness. The number of variables in
all problems is n=5, m=104 and D≈0.2. Figure 5a shows the
performance of FC and hierarchical FC (with space-
restriction) for problems where none of the constraints con-
tain disjoint (since disjoint is very loose, its existence in a
binary constraint is almost equivalent to the absence of the
corresponding constraint edge from the graph). The x-axis
corresponds to the value of p2 for each ensemble, and the y-
axis shows the mean consistency checks of the algorithms.
The number over each ensemble presents the percentage of
problems that were soluble.

As a general observation, in the current experimental set-
tings, H-FC outperforms FC by two orders of magnitude.

Observe that in the first ensemble all problems are easy and
soluble. This is due to the fact that all constraints contain the
relation overlap, which is also relaxed compared to the oth-
ers. The rest of the ensembles were harder and only the sec-
ond contained soluble problems. This is because the third,
and subsequent ensembles involve two or more constraints
with contain, inside, cover, covered-by or equal (but without
disjoint or overlap). The low probability of these relations
renders the existence of object pairs (in the same neighbor-
hood) satisfying the two constraints highly unlikely.

The performance of FC and H-FC was also tested for
graphs containing constraints with disjoint. Figure 5b illus-
trates the consistency checks of the two algorithms for a se-
ries of problem ensembles in this category. As expected, en-
sembles with smaller constraint tightness (i.e., many disjoint
constraints) contain more soluble problems than “dense”
ones. For dense graphs the difference is again about two or-
ders of magnitude, but as the tightness decreases the per-
formance of the algorithms converges. This happens because
the large number of disjoint constraints results in numerous
solutions at the intermediate levels, many of which do not
lead to actual solutions.

Observe that, due to the special nature of disjoint, the
problem does not have the easy-hard-easy behaviour with
respect to the value of p2, usually observed in other CSPs
(Prosser 1996). Rather, both hierarchical and plain systematic
search appear to have two distinct behaviors depending on
the existence of disjoint.

The next experiment tests the effect of the number of vari-
ables, when the number of solutions remains constant. We
use datasets of 104 objects and clique graphs where all con-
straints are non-disjoint. In order to keep the number of solu-
tions stable, the density of the datasets has to be modified for
each value of n. According to the analysis in (Papadias,
Mamoulis, and Theodoridis 1999), the expected number of
solutions for a 2-dimensional problem with a clique con-
straint graph where all constraints are non-disjoint, is given
by the following formula:

Sol = 

2

1 1 ,1

||∏ ∑ ∏
= = ≠=













⋅⋅

n

i

n

i

n

ijj
ii xm (1)

where |xi| is the average MBR extent in each dimension for
dataset i. Assuming that all datasets have the same cardinality
m and extent |x|, eq. 1 can be re-written as:

Sol = )1(22 || −⋅⋅⋅ nn xnm (2)

FC H-FC

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0.999927 0.999934 0.999941 0.999949 0.99996 0.999963 0.999971 0.999977

100% 46% 0% 0% 0% 0% 0% 0%

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0.4 0.5 0.6 0.7 0.8 0.9

96% 78% 44% 38% 24% 12%

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

5 10 15 20 25

0.0447 0.2154 0.3518 0.4493 0.5210

(a) checks/p2 for graphs without disjoint (b) checks/p2 for graphs with disjoint (c) checks/n for problems with 1 solution
Figure 5 Comparison of hierarchical and flat FC



Finally, after replacing |x| by the density using D = m⋅|x|2,
eq.2 becomes:

Sol = 12 −⋅⋅ nDnm (3)
Solving eq. 3 with respect to D, one can create synthetic vari-
able domains such that the number of solutions can be con-
trolled. Figure 5c illustrates the consistency checks for FC
and H-FC, as a function of the number of variables for prob-
lems that have one solution (such problems usually belong to
the hard region). Density is set according to:

D = 1 21 − ⋅n nm (4)

and its value for each experiment appears on top of n. The
performance of the algorithms converges as the number of
variables increases. For n>25, FC outperforms H-FC.

As the number of variables increases, the performance of
FC does not deteriorate significantly because most inconsis-
tent instantiations are detected during the early check-
forwards. On the other hand, as shown in Table 3, the number
of intermediate level solutions explodes with n. In general,
the percentage of combinations that constitute solutions in-
creases as we go up the levels of the trees because of the
large node extents. Since a part of node area corresponds to
"dead space" (space not covered by object MBRs) most high
level solutions (in this case all but one) are false hits.

#solutions at l=2 159 1559 13567 27331 128781
#solutions at l=1 6430 49670 340480 2314492 15166017
#solutions at l=0 1 1 1 1 1
#variables n 5 10 15 20 25

Table 3 Number of solutions as a function of n

Similar behaviour is expected for other CSP algorithms in-
cluding backtracking-based and hybrid algorithms. As a con-
clusion, hierarchical systematic search significantly outper-
forms flat search when the domains are large and the number
of variables is small (as in most spatial database applica-
tions). Some preliminary experiments indicate that H-FC also
outperforms methods based on pairwise join algorithms
(Mamoulis and Papadias 1999a) for finding all solutions of
multi-way intersection joins involving dense queries and da-
tasets. The performance gain is higher when only a small
subset of the solutions is required. In the next section we ap-
ply hierarchical constraint satisfaction with local search.

Hierarchical Local Search
For local search we used hill-climbing with the min-conflicts
(MC) heuristic (Minton et al. 1992; Sosic and Gu 1994). MC
starts with a random initial assignment for all variables. At
each step, it chooses a variable that is currently in conflict
and reassigns its value so that the number of conflicts is
minimized. This step is repeated until a solution is found or
until a deadlock is met, i.e. a local minimum where the num-
ber of conflicts can not be further minimized. In this case, the
algorithm is restarted.

The hierarchical version of MC applies this procedure for
each level of the tree. Since a deadlock in the current level
may occur because of a false hit at a previous level, the algo-

rithm will backtrack to a higher lever after a number of re-
starts. In our experiments, this number was proportional to
the depth and the size of the problem, i.e., the number of re-
starts at level l was set to: (h-l).n.log2(C) (in other words, the
number of restarts decreases for the upper levels in order to
avoid searching false hits). We experimented with the fol-
lowing variations of local search:
a] Flat MC: MC is applied directly at the leaf level without

using the trees.
b] Hierarchical uninformed MC (HU-MC): MC is used at

every level. Once a solution is found at level l the algo-
rithm follows the references to l-1. If no solution can be
found at l-1, it will backtrack to l, attempting to find an-
other solution and repeat the same process.

c] Hierarchical informed MC (HI-MC): this is similar to b]
but the algorithm keeps a memory of already visited so-
lutions, so when it backtracks from l-1, it will avoid re-
trieving a solution already found at l.

d] Hierarchical root MC (HR-MC): MC is used for every
level but when a solution cannot be found at l-1, the al-
gorithm re-starts again directly from the root.

e] Hierarchical root MC/FC (HR-MC/FC): this is similar to
d] but FC is used for systematic search at the leaf level.

We experimented with three domain sizes of 103, 104 and 105

objects. In all experiments, the clique query graph contains
five variables (n=5) related by non-disjoint constraints. The
expected number of solutions for each domain size ranges
from 1 to 105. In order to generate problems with a desired
number of solutions we used eq. 3, varying the value of D.
All algorithms were executed 10 times for every setting; their
execution was terminated if a solution could not be found
after 109 checks.

Figure 6 shows the mean consistency checks as a function
of the number of solutions. Among the pure hierarchical local
search techniques (b], c] and d]), HR-MC performs best in
most cases. Recall that HR-MC restarts directly from the root
when a deadlock occurs, so it can explore the whole domain
more extensively. On the other hand, HU-MC has the worst
behavior because it consumes a considerable amount of time
at the lower levels, misled by false hits. In some cases HU-
MC is at least one order of magnitude slower that HR-MC.
HI-MC's performance lies between the previous mentioned
algorithms. HI-MC searches the domain in the same way as
HU-MC but, since it keeps a history of the already visited
nodes at each level, it avoids entering the same combination
of sub-trees more than once.

The comparison of hierarchical local search versus flat
search indicates that for small domains (m=103), MC per-
forms almost one order of magnitude better that the hierarchi-
cal algorithms. This happens because flat MC avoids the
overhead of searching false hits; in addition, it can easily
escape from a local minimum since it focuses on the whole
domain. This situation changes when dealing with larger do-
mains. For m=104, MC's performance is very similar to HR-
MC. For m=105, MC is outperformed by HR-MC by one order
of magnitude because the overhead imposed by the hierarchi-
cal structure is less than the effort required for searching in a
large unstructured domain.



Due to the large number of solutions at the upper tree levels,
hierarchical local search succeeds fast, but spends more time
trying to find a solution at the leaf level. This motivated the
replacement of MC at leaf levels with FC. For a small do-
main, HR-MC/FC achieves only a marginal performance gain
with respect to HR-MC, while for larger domains it is almost
an order of magnitude faster.

Conclusion

This paper describes a methodology for hierarchical con-
straint satisfaction in spatial databases using R-trees. Instead
of processing content-based queries as flat CSPs, computa-
tion can be decomposed in smaller problems at each tree
level. The experimental evaluation suggests that systematic
search is significantly faster in the case of hierarchical CSPs
for typical conditions (m≥104 and n≤10). On the other hand,
hierarchical local search pays-off only for very large domains
(m≈105).

Although we experimented with two representative algo-
rithms (FC, MC), hierarchical constraint satisfaction can be
used with a variety of systematic and local search techniques.
Several heuristics, like plain sweep, can take advantage of the
inherent order of domains to restrict search. Furthermore,
these methods can be applied with other spatial access meth-
ods based on the hierarchical decomposition of space.

An alternative approach for solving spatial CSPs, is to ex-
ploit the data structure in order to avoid exhaustive search of
domains while assigning or pruning values. Going back to the
example query, once v1 is instantiated to some MBR x1, x1

becomes the query window for retrieval of all objects satis-
fying cover(x1,v2). In this way linear scan of domains at each
instantiation is replaced by window queries which are very
cheap operations in R-trees. An application of this technique
with forward checking and backtracking in the context of
temporal CSPs can be found in (Mamoulis and Papadias
1999b). Furthermore, this method can be combined with hier-
archical constraint satisfaction, e.g., for the example query we
could use hierarchical search to retrieve qualifying pairs of
values for (v1,v2), and for each such pair apply window que-
ries to retrieve consistent values for v3. The optimal combina-
tion can be based on cost models and appropriate analytical
formulae (Papadias, Mamoulis, and Theodoridis 1999) for the
expected number of solutions.

Acknowledgements
This work was supported by grant HKUST 6151/98E from
Hong Kong RGC and grant DAG97/ 98.EG02. We would
like to thank Kostas Stergiou and Marios Mantzourogiannis
for their comments.

References
Allen, J.F. Maintaining Knowledge about Temporal Intervals.
CACM 26 (11), 832-843, 1983.
Beckmann, N., Kriegel, H.P. Schneider, R., Seeger, B. “The R*-
tree: an Efficient and Robust Access Method for Points and
Rectangles”. ACM SIGMOD, 1990.
Brinkhoff, T., Kriegel, H. Seeger, B. Efficient Processing of
Spatial Joins Using R-trees. ACM SIGMOD, 1993.
Dechter, R., Meiri, I. Experimental Evaluation of preprocessing
algorithms for constraint satisfaction problems. Artificial Intelli-
gence 68(2): 211-241, 1994.
Egenhofer, M. Reasoning about Binary Topological Relations. In
Günther, O. and Schek, H.J. (eds.) Advances in Spatial Data-
bases. Springer Verlag LNCS, 1991.
Guttman, A.  R-trees: A Dynamic Index Structure for Spatial
Searching. ACM SIGMOD, 1984.
Haralick, R., Elliott, G. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence 14(3):
263-313, 1980.
Minton, S., Johnston, M., Philips, A., Laird, P. Minimizing Con-
flicts: A Heuristic Method for Constraint-Satisfaction and
Scheduling Problems. Artificial Intelligence 58, 161-205, 1992.
Mamoulis, N., Papadias, D. Integration of Spatial Join Algo-
rithms for Processing Multiple Inputs. ACM SIGMOD, 1999a.
Mamoulis, N., Papadias, D. Improving Search Using Indexing: a
Study with Temporal CSPs. IJCAI, 1999b.
Papadias, D., Mamoulis, N., Delis, V. Querying by Spatial
Structure. VLDB, 1998.
Papadias, D., Mamoulis, N., Theodoridis, Y., Processing and
Optimization of Multi-way Spatial Joins Using R-trees. ACM
PODS, 1999.
Prosser, P. An Empirical Study of Phase Transitions in Binary
Constraint Satisfaction Problems. Artificial Intelligence, 81 (1-
2), 1996.
Randell, D., Cui, Z., Cohn., A. A Spatial Logic Based on Re-
gions and Connection. Knowledge Representation and Reason-
ing, 1992.
Sosic, R., Gu, J. Efficient Local Search with Conflict minimiza-
tion: A Case Study of the n-Queens Problem. IEEE Transactions
on Knowledge and Data Engineering, 6(5): 661-668, 1994.
Theodoridis, Y., Sellis, T. A Model for the Prediction of R-tree
Performance. ACM PODS, 1996.

MC HU-MC HR-MC HI-MC HR-MC/FC

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1000 10000 100000

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1000 10000 100000

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1000 10000 100000

(a) m=103 (b) m=104 (c) m=105

Figure 6 Performance of local search algorithms (consistency checks/number of solutions)


