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ABSTRACT
Recent work motivates the design of Information-centric rou-
ters that make use of hierarchies of memory to jointly scale in
the size and speed of content stores. The present paper ad-
vances this understanding by (i) instantiating a general pur-
pose two-layer packet-level caching system, (ii) investigat-
ing the solution design space via emulation, and (iii) intro-
ducing a proof-of-concept prototype. The emulation-based
study reveals insights about the broad design space, the ex-
pected impact of workload, and gains due to multi-threaded
execution. The full-blown system prototype experimentally
confirms that, by exploiting both DRAM and SSD memory
technologies, ICN routers can sustain cache operations in
excess of 10Gbps running on off-the-shelf hardware.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
communications, Packet-switching networks

General Terms
System Design; Emulation; Prototype

Keywords
Information centric router; Hierarchical content store

1. INTRODUCTION
The success of the ICN paradigm heavily depends on the

ability of equipping routers with large caches [8] able to oper-
ate at line speed [3]. However, given the technological limits
of current off-the-shelf memory technologies, it is difficult to
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satisfy both requirements together. On one hand, memory
technologies that are suitable to meet line-speed constraints
of ICN routers are relatively costly and have limited size;
for example, DRAM technologies achieve access latencies of
O(10ns) with O(10GB) per bank and O(10 USD/GB) price.
On the other, technologies that are appealing due to their
large size and low price cannot achieve the speeds required
for line-rate operation; this is the case of SSD technolo-
gies, with O(1TB) size and O(1USD/GB) price, but un-
fortunately access latency of O(10µs). As a result, the max-
imum memory size that can sustain a data rate of 10 Gbps
is estimated to be around 10 GB [3, 15].

Yet, our previous work [18] proposes a novel scheme for
the management of a Hierarchical Content Store (HCS) that
bypasses the above limit by exploiting a peculiarity of the re-
quest arrival pattern in ICN. Specifically, there is an intrinsic
correlation among requests for chunks of the same content,
as the arrival of a request for a given chunk can be used
as a predictor of future requests for subsequent chunks of
the same content. In turn, this correlation can be exploited
by proactively moving batches of chunks (to be requested)
from a large but slow cache such as SSD to a fast but small
memory swap area such as DRAM. Batching memory trans-
fer operations is crucial to move the HCS system from an
operational point whose the bottleneck is the SSD memory
access time (as it would be accessing individual chunks) to
an operational point whose bottleneck is the SSD external
data rate – gaining over an order of magnitude in terms of
data-rate scalability [18].

In this paper we make a significant step forward with re-
spect to [18], providing an emulation-based study to assess
the practical feasibility of an HCS system and to guide its
design, as well as a prototype implementation and bench-
marking, both using off-the-shelf hardware. To summarize
our main contributions: (i) we perform an independent as-
sessment of the NDN Forwarding Daemon (NFD) perfor-
mance, paying special attention to its content store and for-
warder modules, and modify NFD to support hierarchical
operations (NFD-HCS); (ii) limitedly considering the con-
tent store operations, we use NFD-HCS to conduct a broad
investigation of the design space (including parallel vs se-
rial modes of operation, hyper-threading vs OS scheduler in
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Figure 1: Expected performance of the multi-
threaded HCS

multi-threading, etc.) and a sensitivity analysis of our re-
sults along multiple axes (including L1 size, L2 data rate
speed, input workload type, hardware setup, etc.) by em-
ulating NIC and SSD technologies; (iii) we implement a
high-speed prototype (DPDK-HCS) considering all neces-
sary aspects that were in part abstracted in the emulation-
based study (i.e., packet processing in DPDK, software load
balancing across cores, SSD management with specialized
drivers, and memory management for efficient lookups); (iv)
we benchmark the DPDK-HCS prototype, equipped with
O(10GB) DRAM and O(100GB) SSD, against a realistic
traffic pattern, achieving in excess of 10 Gbps throughput.

In the remainder of this paper, we first clarify our overall
goals and position our investigation in the context of related
work (Sec. 2). Next, we describe the emulation setup (Sec. 3)
and the results it provided (Sec. 4), followed by a descrip-
tion of the prototype design (Sec. 5) and its benchmarking
(Sec. 6). We conclude with a summary of key findings and
perspectives for future work (Sec. 7).

2. HCS OVERVIEW
In order to enable hierarchical caching in high-speed ICN

routers, we first introduce our main performance
goals (Sec. 2.1), then overview our design (Sec. 2.2) and
contrast it to related effort (Sec. 2.3).

2.1 Performance goal
According to the analysis in [18], expected system perfor-

mance can be sketched as in Fig. 1. Assuming the router
receives requests at full line rate, the picture shows the miss
stream (y-axis) as a function of the overall cache memory
size (x-axis). Clearly, the larger the portion of catalog that
fits the router memory, the lower the request miss stream ex-
iting the router. Fig. 1 highlights regions corresponding to
different memory technologies (i.e., DRAM, SSD), and the
slope of the curve depends on the workload (i.e., the cata-
log size |C| and Zipf skew α). L1 misses causes a stream
of request to L2 and, for any given aggregate memory size
(i.e., DRAM + SSD), the system works at the expected op-
erational point (i.e., follows the slope) until the miss stream
from L1 to L2 exceeds the aggregated data rate of the phys-
ical L2 units. Read throughput from L2 depends linearly
on the hit probability at L2, so increasing the storage space
in L2 also increases the throughput demand from L2: this
holds up to a point at which the system is bottlenecked by
L2 throughput, and where increasing further the SSD size
brings no benefits, as it is not possible to read content at the

requested speed. Thus, operating at points such as a or b
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Figure 2: Synoptic of HCS system design

is desirable, while situations such as c are to be avoided.
Yet, the transfer rate between L2 and L1 does not only de-
pend on the physical properties (e.g., L2 external data rate,
PCIx bus speed, use of multiple physical SSDs in parallel),
but also to software aspects (e.g., SSD driver and memory
management) for which is not straightforward to design an
HCS system that avoid operating at c .

2.2 System Design
A high level view of the system we propose is provided in

Fig. 2. When a packet arrives to the router, it is handled
by a pipeline of cores (or threads) performing respectively
packet I/O, packet processing and SSD I/O. For the sake of
simplicity, we neglect the NDN packet forwarding stage (e.g.,
PIT and FIB lookup operations) and focus on hierarchical
content store only.

Packet batches are dispatched from NICs to I/O cores,
whose main task is to distribute batches to processing cores
according to the hash value of a batch identifier – ensuring
that chunks of a specific batch are always handled by the
same processing core, and enabling therefore lock-free multi-
thread operations.

Afterwards, batches are handled by the corresponding pro-
cessing core that returns a data packet if it is stored in the L1
content store. Otherwise, if the requested data is cached in
L2, the request is handed over to an SSD I/O core. The ra-
tionale for the separation between DRAM (processing) and
SSD cores is to deal with different memory access latencies
and avoid starvation. Multiple SSD drives can be used to
perform parallel data read/write operations to improve SSD
throughput. Finally, if the data is not cached locally, the
request is further processed by the router (i.e., PIT and FIB
lookup) and forwarded to the next hop.

HCS performance is affected by many factors, including
physical hardware components or software bottlenecks, that
we investigate in two ways. First, we use emulation to
broadly explore the software design space of the processing
operations without being restricted by a specific hardware
choice. Then, we nail down all details including NIC and
SSD management, to a specific software prototype, running
on a specific off-the-shelf hardware setup.

2.3 State of the art
A number of custom NIC drivers have been recently pro-

posed to bypass standard OS bottlenecks and support
10Gbps operations. Examples include PF RING with
Threaded NAPI [7], Netmap [17], PacketShader [9], and
DPDK [1]. Keys to achieve such performance include lim-
iting IRQs overhead by avoiding per-packet operations (e.g.
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interrupt coalescence), exposing memory of packet buffers
to user-space for DMA access with zero-copy, load balanc-
ing flows among threads using different Receive Side Scaling
(RSS) queues and exploiting Non-Uniform Memory Access
(NUMA).

The kind of applications enabled by such drivers is rather
diverse and include IPv4 forwarding [9], on-the-fly traffic
classification [19], intrusion detection [11] and traffic moni-
toring [13]. With respect to the narrower domain of ICN, so
far only high-speed forwarding has been investigated, with
valuable work focusing on their design [3, 15] or prototype
implementation [21, 16, 10].

To the best of our knowledge, high-speed content store im-
plementations are yet to appear. The closest work to ours in-
cludes our own previous design, analysis and simulation of a
hierarchical content store [18], and the micro-benchmarking
of SSD technologies to assess their suitability for the pur-
pose [20]. The present paper goes beyond both [18, 20] by
(i) employing complementary methodologies to [18], namely
emulation and prototypes; (ii) carrying out an extensive em-
ulation of the design space using open-source software; (iii)
presenting a complete system implementation over DPDK,
as opposite to a benchmark of a specific component as in [20].

3. EMULATION DESIGN
This section presents the emulation-based methodology,

starting with an overview of the emulation design principles
(Sec. 3.1), followed by details of the scenario and workload
(Sec. 3.2).

3.1 NFD-HCS Design principles
Our emulation study is based on off-the-shelf hardware

and open-source software, namely NDN Forwarding Dae-
mon (NFD) [2], that we modify to support HCS operation.
For the sake of simplicity, NFD-HCS performs only the main
operations on L1 and L2 similarly to what described in [18].
To begin with, we avoid optimizations such as prefetching
immediately before a batch eviction, or keeping in L1 the
first chunk of all contents in L2 to avoid the first miss. Sec-
ond, the reading method of NFD-HCS is serial: it first at-
tempts to read a chunk from L1. On a hit, the correspond-
ing data is returned; otherwise, a batch is read from L2 and
each chunk of the batch is written on L1. After the L2→L1
transfer, the data corresponding to the immediate request is
returned (while a serial design may seem näıve at first, we
discuss parallel design in Sec. 4.3).

NFD-HCS implements the two memory layers and their
operations (i.e., L1.lookup, L1.insert, L2.read). The L1
of HCS is instantiated as an NFD Content Store (CS) and
employs a FIFO chunk eviction policy1. From the literature,
similarities of LRU vs random [6] and equivalence of FIFO
vs random [14] replacement are known: thus, we do not
expect this detail to have a dramatic importance and leave
implementation of other replacement policies for future.

Whereas all the required software operations are performed
as in a real hierarchical system, to avoid gathering results
that are representative of very specific NIC and memory
technologies we emulate the NIC as well as L2 hardware and
drivers. As several NIC drivers [17, 9, 1] offer line-speed op-
eration in user space, we assume the delay due to packet

1More precisely, CS employs a prioritized FIFO, composed
of multiple eviction queues; however, in this study we force
all chunks go through the same FIFO queue.

Table 1: Emulation settings

S
o
ft
w
a
r
e

Meaning Param Range
Batch Size B 10 chunks
L1 Size |L1| [100MB-10GB]
L2 Size |L2| 10 GB
L2 Throughput τL2 [1,32] Gbps
Chunk size |c| 8KB

H
a
r
d
w
a
r
e

Label Param Value

Local

CPU 1.90GHz Intel E52420
NUMA 1 node, 6 cores
RAM 32GB - 1333 MHz (0.8 ns)
Opts. CPU Gov., Hyper-threading

Cloud
CPU 2.00GHz Intel E52698B
NUMA 1 node, 8 cores

(Microsoft RAM 112GB (speed unknown)
Azure G3) Opts. None

R
e
a
l
w
o
r
k
lo

a
d Meaning Param Value

Catalog size |C| (up to) 103 objects
Request arrival rate λ 1 Hz
Zipf skew α 1
Streaming rate 512 Kbps (8 chunks/s)
Streaming duration 160 seconds
Stream size 10.25MB (1,280 chunks)

processing in the NIC to be negligible. We also assume
the NIC is capable of performing hash operations on non-
IP header fields, so that batches are consistently mapped to
cores to preserve catalog locality and enable lock-free multi-
threading.

L2 instead emulates a slower memory technology (e.g.
SSD) by waiting some time before returning the data. This
is performed through busy waiting2, which consumes CPU
cycles useful for other HCS operations but enables more pre-
cise emulation. We point out that, aside the waiting detail,
L2 in NFD-HCS is fully functional so that NFD-HCS could
be used for experiments and not only for emulation. This
implies that both L1 and L2 store actual data on the main
DRAM memory, which limits the size of L2 we can bench-
mark (implications and alternatives design will be discussed
later in Sec. 4 and Sec. 7 respectively).

3.2 Emulation scenario
We now describe the most relevant details of our software,

hardware and workload setup. For the sake of readability,
we summarize these settings in Tab. 1.

3.2.1 Software settings
NFD-HCS has four parameters: batch size, L1 and L2

size and L2 throughput. Batch size3 B defines the amount
of data transferred from L2 to L1 per L2.read operation,
whereas |L1| and |L2| refer to the memory space available at
layers 1 and 2, respectively. The L2 throughput τL2 is our L2
control knob, lumping together the speed of individual disks,
the number of multiple disks in parallel, the SSD drivers,
static delay components, etc. from which we gather the
duration of the active sleep dL2.read for a batch of B chunks
having fixed size |c| as dL2.read = Bc/τL2.

In this work, we explore aggregated rates in the range
τL2 ∈ [1,32] Gbps, modeling respectively a single slow SDD
to several faster SDDs in parallel4 and by default use τL2 =

2i.e., running an idle loop of a given size, which we have
carefully dimensioned.
3We interchangeably express size in terms of chunks, bytes,
or bits depending on the context.
4It can be expected that a linear scaling will hold up to a
point after which an expected (e.g., PCIx bus capacity, disk
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4 Gbps, close to the nominal one of the SSDs used in proto-
type. Notice that our L2 emulation model fails to capture
the impact of the batch size in the emulation, so that we
do not consider it as a free variable and perform a micro-
benchmark of its effect with the prototype (Sec. 6).

3.2.2 Hardware settings
We use two different hardware platforms in the emulation

study, as follows. One is a local host, which offers a fully con-
trolled environment and has the advantage of allowing op-
tions and parameters such as hyper-threading to be adjusted
and evaluated. On the other hand, its computing power and
memory are somewhat limited. The second platform is a
VM hosted at a powerful public cloud server. Because it
is a public cloud, experiments run on shared resources and
are subject to interference. However, statistically valid re-
sults can be extracted from multiple runs and reproduced by
other researchers with access to the same cloud. We use the
same software set in both machines: namely, Linux Ubuntu
12.04 LTS, NFD package v0.3.1, ndn-cxx library v0.3.1, and
Boost Libraries v1.54.

3.2.3 Workload settings
We consider sequential (seq), random uniform (unif), and

realistic (real) workloads. The seq and unif workloads are
included as best-case and worst-case references: in the for-
mer, each chunk of each content is requested sequentially
whereas in the latter, chunks are randomly chosen with a
uniform probability. In the real workload, which is instead
included to yield expected performance in the typical usage,
requests for the first chunk of a new object with Zipf pop-
ularity of shape α arrive according to a Poisson process of
rate λ, after which requests for subsequent chunks are sub-
ject to the streaming rate constraint and are periodically
spaced (i.e., no interest shaping nor congestion control). The
length of the generated sequence includes a warm-up period
to pre-fill the content store (hot start), and the catalog size
|C| varies across scenarios: purposely, to gather NFD perfor-
mance that only depends on content store data structures,
but not on other structures such as PIT and FIB (due to
miss-stream lookups), we cap the catalog size to L2 size, to
avoid raising miss events.

4. EMULATION RESULTS
This section is organized as follows. We start by pre-

senting a baseline evaluation of NFD (Sec. 4.1). We then
compare a single-core NFD-HCS emulation results with the
expected performance of simple analytical models to validate
our methodology and assess the performance of multi-core
NFD-HCS (Sec. 4.2). We finally present a sensitivity anal-
ysis of our results with respect to software design choices
and hardware characteristics (Sec. 4.3). All experimental
results are collected from five runs with different random
seeds and are shown with 95% confidence interval (Students
t-distribution with 4 degrees of freedom).

4.1 Baseline NFD performance
We gather baseline single-threaded NFD performance for

both (i) the forwarding engine (FWD) and (ii) the single-
layer content store (CS). Aiming at getting an upper-bound
of NFD performance, we engineer the scenarios such that

controller) or unexpected bottleneck (e.g., software CPU,
OS scheduler) will kick in yielding to sublinear gains.
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Content store Throughput

contents always fit entirely in the router memory. We eval-
uate different catalog sizes 10MB (that in principle fits the
CPU cache), 100MB (that no longer fits the CPU cache),
and 1GB, 2GB, 3GB. . . 32GB (all within DRAM memory
capacity). By capping the catalog size, we can focus on
performance of core NFD operations involving CS (such as
name lookup, CS access for data, etc.) avoiding to em-
ulate other operations that CS misses would forcibly imply
(such as generating interests packets, PIT management, FIB
lookup, etc.).

To separate FWD from CS operations, we develop micro-
benchmark NFD modules that include only the relevant
functionalities. The throughput of these modules, expressed
in terms of Gbps as well as the number of chunks operations
per second, is reported in Fig. 3. Two families of curves are
shown: the bottom ones correspond to FWD operations,
whereas the upper ones, to CS operations. Comparison be-
tween the families shows FWD operations to be the funda-
mental bottleneck in these scenarios: hence, as long as any
re-engineering of NFD does not slow down CS operations
below the FWD bottleneck (shaded region), then we can
expect these changes to be transparent to the current NFD
implementation.

Next, notice that for all curves performance is tri-modal
(particularly visible in the CS family): (i) when the catalog
fits the cache, CS throughput is especially high, then (ii)
throughput exhibits a large plateau in the range 1-20GB,
stabilizing to values that depend on the workload, after
which (iii) throughput drops, as a consequence of memory
management from the OS (part of the CS is then stored on
disks, increasing the number of page faults and decreasing
the CPU usage).

The throughput plateau demonstrates that single level
memory can scale well up to the intrinsic DRAM limit. At
the same time, it also shows that native OS memory man-
agement can move the bottleneck from CPU to IO even for
relatively small CS sizes, making the system potentially un-
stable and showing the interest of a hierarchical solution as
the one investigated here.

Finally, another important observation is that statistical
properties of request process have a significant impact on
throughput. The consistent difference between the three
curves in each family confirms our choice of sequential and
uniform access patterns as the best and the worst cases,
respectively. Due to space constraints, and as we expect
average system performance to be more important, we avoid
reporting a detailed explanation (tied, e.g., to the lookahead
policy of DRAM memories).
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4.2 NFD-HCS Performance
Turning our attention to the two-layer CS architecture,

we begin by contrasting NFD-HCS results with the expecta-
tion of simple analytical models: the purpose is to proceed
in steps, validating our emulation methodology before as-
sessing the performance of a more complex multi-threaded
system, were we will no longer be able to model software
and hardware dependencies.

4.2.1 Validating Emulation via Analytical Modeling
Intuitively, the hit ratio on L1 has a fundamental impact

on the hierarchical memory performance, as the L2 request
rate depends on the miss stream at L1. Hence, we start our
analysis by modeling the L1 hit probability for the different
workloads. For the uniform request model, the hit proba-
bility necessarily equals the fraction of the catalog that is
stored in the L1 cache, independently from the identity of
contents which are stored in the cache:

E[Puni] = |L1|/|C| (1)

where |L1| and |C| are the size of the L1 cache and catalog,
respectively. Under the sequential request model, the re-
quest associated to the first chunk within every batch yields
a cache miss while, due to prefetching, the remaining chunks
of the batch yield a hit. Denoting by B the batch-size we
have:

E[Pseq] = 1− 1/B (2)

Under a realistic request process with Poisson arrivals of
Zipf-popular content, the first chunk of batch i is found in
L1 from the arriving request with a probability P 1st

real,i while
all the other chunks within the batch are found in L1 w.h.p
as for the previous case, thus:

E[Preal,i] =
P 1st
real,i

B
+

(
1− 1

B

)
(3)

The value of P 1st
real,i can be estimated numerically using a re-

cently proposed extension of Che’s approximation for FIFO
caches [4, 14],

P 1st
real =

∑
k

λ2
ktc

1 + λktc
(4)

with tc the only solution of∑
k

λktc
1 + λktc

= |L1| (5)

where |L1| is the cache size expressed in chunks.

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9  10
 0

 25

 50

 75

 100

 125

 150

T
h
ro

u
g
h
p
u
t 

[G
b
p
s]

O
p
er

at
io

n
 r

at
e 

[K
ch

u
n
k
s/

se
c]

L1 Size [GB]

measured-seq
measured-real
measured-unif

fitted-seq
fitted-real
fitted-unif

Fitting real sequence Asymptotic error
dL1.lookup 7.4 ± 0.06 µs 0.9%
dL1.insert 42.1 ± 5.31 µs 12.6%

Figure 5: HCS throughput: emulation results and
fitted model

In the experiments, we configure the system with a fixed
batch size B=10 chunks, fix the L2 size to 10GB and L2
throughput to 4Gbps, vary L1 size in the 100MB-10GB
range, and generating requests for O(107) chunks (including
warmup). It is worth stressing that, for the sake of simplic-
ity, we consider that the whole catalog can fit the L2 size,
so that in the best case, all content can fit in the NFD-HCS
router memory. While clearly this would not make sense so
as to gather performance in a realistic scenario, it neverthe-
less allows us to validate the soundness of our experimental
methodology against expected results from well understood
and accurate models [6]. Specifically, in Fig. 4 the superpo-
sition between each of the three measurement-based curves
and their corresponding model-based ones indicates clearly
the accuracy of the prediction for L1 hit ratio.

4.2.2 Inferring software bottlenecks
While L2 delays are known (as we emulate them with ac-

tive sleep) and information concerning L1 memory read/write
times is available from data sheets, the software overhead of
managing L1 CS in NFD (i.e., the times dL1.lookup, dL1.insert

needed to perform lookup and insert operations in the
SkipList data structure) is harder to determine. Unfortu-
nately, instrumenting the NFD code to measure these de-
lays would provide biased results, since clock precisions do
not allow accurate timestamping of an individual operation
and would likely alter performance. A more promising di-
rection is to infer this temporal variables from a model of
HCS system performance:

E[Throughput] = |c|/E[d] (6)

where |c| is the chunk size and E[d] the average chunk service
time, that can be expressed as:

E[d] = Phitdhit + (1− Phit)dmiss (7)

where Phit is computed as either (1), (2), or (3), whereas the
hit/miss delays account for the different CS operations per-
formed by NFD-HCS. Specifically, for a L1 hit, the service
time equals the time needed to access a chunk in L1 (i.e.,
find a pointer to the content in L1 and access the memory
location):

dhit = dL1.lookup + dL1.read ≈ dL1.lookup (8)

Upon a L1 miss, the delay in accessing a chunk stored in L2
is given in our implementation by the sum of three terms: a
first term dL1.lookup modeling the time needed to recognize
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that the content is not in L1, a second term dL2.read to read
the content from L2, and a last component dL1.insert to insert
the whole batch in L1:

dmiss = dL1.lookup + dL2.read + dL1.insert (9)

By fitting our experimental results (i.e., hit probabilities
and throughput) we can infer estimates of dL1.lookup and
dL1.insert. Fitting results are shown in Fig. 5 and additionally
tabulated for the real sequence, from which we gather small
asymptotic errors (especially for dL1.lookup). Several remarks
are worth stressing. First, the L1 size slightly above 2GB
does not constitute a bottleneck for NFD operations, as the
throughput is higher than that of the forwarding module
(shaded region reported as a reference). Second, SkipList
per-chunk insert and lookup operation have both logarith-
mic cost: yet, the fitting suggests that inserting consecutives
chunks of a batch may bring some gain in terms of memory
management (as the memory lines prefetched for the inser-
tion of the first chunk are useful for subsequent chunks of the
batch). Finally, notice that the lookup duration L1.lookup
is O(10µs) and would not allow to sustain O(10Gbps) op-
eration: i.e., L1 memory management overhead is about 3
orders of magnitude larger than the DRAM access time of
O(10ns). This confirms that CS indexing on an off-the-shelf
architecture can become a software bottleneck as well [15]:
yet this is not a problem since, while a single-threaded en-
gine would not be able to sustain a 10Gbps throughput,
our system design (both emulation and prototype) involves
a multi-threading paradigm to avoid software performance
bottleneck, which we examine next.

4.2.3 Multi-threaded HCS Performance
We now carry on an emulation based study of multi-

threaded HCS throughput. In a nutshell, lock-free oper-
ations are achieved by partitioning the contents requests
among different threads each of which manages an isolated
CS: as CS are isolated, they can run in parallel without
requiring synchronized access. In the emulation study, for
the sake of simplicity we employ a modulo operation on the
content name (sub-optimal as all chunks of the same content
are directed to the same core, which yields to load imbalance
for the core handling the most popular requests; we instead
avoid such imbalance in the prototype by considering the
batch name).

We investigate if this simple strategy can scale up the
HCS performance: to this end, we setup the system with
|L1|=1GB, |L2|=10GB, τL2={4, 32}Gbps and observe the
system throughput for the realistic workload for a different
degree of parallelism. As we cannot emulate shared access to
a single L2 device in a non-blocking multi-threaded fashion,
notice that we are implicitly assuming here that (i) each
thread accesses a physically separate L2, (ii) the aggregate
throughput toward all L2 memories is lower than the PCIx-3
bus capacity of 64Gbps. We also vary the hyper-threading
(HT) option: basically, when HT is enabled the Operating
System (OS) is offered a number of logical cores which is
exactly the double of the number of physically available CPU
cores, each of which is running at half the frequency. Grossly,
we may say that HT lets either the CPU or the OS manage
the scheduling among threads.

Several interesting remarks can be gathered from Fig. 6.
First, multi-threading exhibits gains regardless of the phys-
ical properties of the system (i.e., L2 throughput), although
the effect of increasing the number of threads is more bene-
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Figure 6: Performance of a multi-threaded HCS
for varying number of threads, L2 throughput, and
Hyper-threading settings

ficial for systems with large L2 throughput. Second, hyper-
threading exhibits larger gains with respect to OS schedul-
ing, and should therefore be enabled by default. Finally,
note that multi-threading quickly exhibits diminishing re-
turns, with a logarithmic scaling in the number of threads
(the picture is also annotated with linear slopes, interpolat-
ing the point with 1 and 2 threads for reference). Further,
there is a knee in the curve, where the number of threads ex-
ceeds the number of cores, which is especially visible in the
most constrained system with HT=Off, and τL2=4Gbps.

Yet, it is interesting that the gains shown in Fig. 6 do not
completely flatten out even when the number of threads sig-
nificantly exceeds the number of logical cores. This can be
explained as follows: (i) increasing the number of threads
not only reduces the per-thread CPU operation workload,
but also increases the aggregated L2 bandwidth, remov-
ing hardware bottlenecks; (ii) by splitting workload into
smaller tasks, the difference between the most and the least
loaded threads becomes smaller, reducing software bottle-
necks. Additionally notice that, while the aggregated sys-
tem throughput does not exceed PCIx-3 bus speed (so that
our former assumption holds), the performance of the actual
system may exhibit additional correlation (e.g., among mul-
tiple SSD disks). This can lead to sub-linear performance,
below the expectation for the actual system.

Nevertheless, the emulation provides optimistic upper
bounds of the system performance, as follows. We ignore
the overhead associated to some operations, such as fetch-
ing incoming packets from the NIC, and forwarding outgo-
ing packets to the NIC. Further, we do not consider the
limits of L2 technologies, e.g. efficient driver access to SSD
or dependency among reads from parallel SSDs. Yet these
correlations are hard to model, so that they fall beyond the
scope of the emulation methodology and enter the prototype
realm, which we describe and benchmark in later sections
(Sec. 5-6).

4.3 Sensitivity analysis
Before turning our attention to the prototype, we finally

verify the results outlined in the previous sections to be ro-
bust against (i) software design choices (e.g., parallel vs se-
rial execution), as well as (ii) hardware properties (e.g., L2
throughput and PC hardware).

4.3.1 Software: Design space
We first consider a single thread case and assess whether

alternative designs to the serial algorithm are worth. All
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possible combination of implementations are comprised be-
tween a fully serial and a fully parallel implementation of
the key operations (L1.lookup, L1.insert, L2.read). In case
of L1 hit, the delay dhit is the same for the both serial and
parallel implementation. In case of L1 miss, the delay de-
pends on the design choices: in the fully sequential case, the
delay dsermiss is given by (9), wheres in a fully parallel design,
the delay is the maximum among:

dparmiss = Max(dL1.lookup, dL1.insert, dL2.read) (10)

Whereas the fully parallel design is likely not feasible in prac-
tice, it represents an upper-bound of the gains that can be
achieved by ameliorating our simple NFD-HCS implementa-
tion. Fig. 7 contrasts modeling results for the sequential vs
parallel designs: from the plot, it emerges that, given tech-
nological limits for which a single component dominates the
others, namely dparmiss ≈ d

ser
miss ≈ dL2.read, the actual gain of a

parallel implementation is marginal (the maximum theoretic
gain of 2/3 could be achieved when the three components are
equal, so that technology evolution may force to re-evaluate
this issue at a finer grain).

4.3.2 Hardware: L2 Throughput
We now discuss the impact of hardware limits, such as

L2 throughput, on the HCS performance. For the sake of
the example, we consider a single-threaded system and fix
|L1|=1GB, |L2|=10GB, B=10 chunks, and depict results in
Fig. 8, that reports the throughput of a single-layer CS with
|L1|=10GB for reference purposes. Two observations are in
order. First, given the x-axis logscale, a linear slope testifies
a logarithmic return for the system throughput as a function
of L2 throughput. Second, HCS approaches, without how-
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ever reaching, performance of a single-layer CS of equal size.
These trends are likely due to software bottlenecks tied to
the additional overhead of handling a second memory layer.

4.3.3 Hardware: Off-the-shelf PCs
We finally check scalability and consistency of our results

over different off-the-shelf PCs (recalling Tab. 1, both ma-
chines have close specs), considering both CS and NFD-HCS
performance. We consider a multi-threaded system with
6 threads and run the realistic workload over six threads
in parallel for both CS (|L1|=1GB) and HCS (|L1|+|L2|
=1GB+10GB, τL2=4Gbps and B=10 chunks) and since we
not fully control the cloud machine, we disable Hyper-thread-
ing in this experiment. In the local PC, we assess multi-
threading speed-up comparing with a single threaded sys-
tem. In the cloud server, we additionally test memory scal-
ability with |L1|+|L2|=5GB+50GB) where we expect only a
slight speedup due to larger L1 but no penalty due to larger
L2. Performance is reported in Fig. 9: notice that both
multi-threaded systems yield remarkably close performance,
thus highlighting (i) emulation results are not biased and
(ii) confirming memory and threading scalability of HCS.

5. PROTOTYPE IMPLEMENTATION
The emulation study presented above provides insights

for HCS design, but neglects some critical implementation
aspects related to fast packet I/O, memory management and
constraints of Flash technology. This section illustrates such
challenges, discussing the design principles that our DPDK-
HCS prototype implementation follows to effectively address
them.

NIC. First, it is widely recognized that Linux kernel’s packet
processing is not efficient and cannot achieve wire-speed
[5, 9, 17]. To overcome this issue, we build our prototype
leveraging the Intel DPDK packet processing framework [1].
DPDK enables zero-copy packet processing directly at the
userspace by efficiently transferring data from/to the NICs
bypassing the kernel and using Direct Memory Access (DMA)
to reduce CPU utilization.

Multi-threading. Under a traffic load of O(10Gbps), ef-
fective multi-thread (or multi-process) application design is
crucial to avoid software bottlenecks [19]. While the em-
ulation study considers lock-free multi-threaded design, it
however neglects Non Uniform Memory Access (NUMA) ca-
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Figure 10: Prototype benchmarking: SSD baseline performance

pabilities, that can have an important impact on system per-
formance, and that, as such, our prototype instead exploits.

Load balancing. In order to avoid lock contention, we
partition the memory space of both DRAM (L1) and SSD
(L2) in as many regions as the number of cores and assign
each region to a specific core. Emulation assumes these ca-
pabilities are available in hardware and are exported by the
NIC drivers, which is not the case: as such, we perform
this task in software. The hash function is based on batch
identifiers (by using a concatenation of object name and in-
teger part of chunk id/batch size). As a result, read and
write operations involving a particular chunk are always per-
formed by the same core, therefore eliminating the need for
locks on most operations. In turn, such memory partition-
ing technique also enables NUMA-aware memory allocation,
reducing DRAM access latency.

Batching. Performing per-chunk I/O operations, as nor-
mally done by Linux kernel, is expensive and inefficient. In
fact, both NIC-CPU and SSD-CPU communication pipelines
cannot be effectively saturated by transferring one packet at
a time, resulting in limited throughput. To overcome this
limitation, our prototype performs all I/O operations (to-
wards NICs or SSDs) over batches instead of single chunks.
A side effect of batched operations is the latency increase,
especially at low load: to alleviate this problem we use a
timeout to cap the maximum waiting time.

SSD I/O. SSD access mechanisms must be carefully de-
signed to achieve a suitable trade-off between latency and
throughput. This can be obtained by carefully tuning a
number of SSD I/O parameters such as, for example, queue
depth (i.e., the number of outstanding access operations ex-
ecuted in parallel by the SSD controller). To access the SSD
drives, we use a combination of Direct I/O, Vectored I/O
and Asynchronous I/O, which are all standard Linux I/O
techniques enabling zero-copy batched transfers between
DRAM and SSD. Our SSD interfacing mechanism is similar
in principle to the one proposed in [20], that is however just
a building block of our complete end-to-end system, unlike
in [20].

Lookup. The emulation is based on NFD that, as ex-
plained earlier, is designed for completeness rather than per-
formance. As such, a number of software bottlenecks arise
in both NFD and NFD-HCS concerning memory manage-

Table 2: Experimental settings

Label Param Value

Hardware

CPU (2 ×) Intel Xeon E5540, 2.53GHz
NUMA 2 nodes, 4 cores/node
RAM 32GB - 1.3GHz (0.8 ns)
SSD (2 ×) 200 GB HP enterprise SAS
NIC Dual-port 10GbE Intel 82599EB

Software OS Ubuntu 12.04 LTS

Workload

Catalog size 1.3M items
Item size 10 MB
Chunk size 8 KB
Zipf skew 1

ment, that are tied to the data structures in use. Specifically,
DPDK-HCS memory lookups are managed by a single hash
table kept in the main memory for indexing all the chunks
currently cached in both L1-DRAM as well as in L2-SSD:
every hash table entry indicates whether the chunk is stored
in L1 or L2 and the corresponding memory location, reduc-
ing the number of lookup operations to be performed. Also,
unlike in NFD-HCS, both layers are managed according to
the LRU replacement policy and chunks are demoted to L2
upon eviction from L1. As in [16], we manage collisions
using open addressing and optimize the memory layout to
retrieve a hash table entry within a single memory access.
To do so, we store different hash entries in a single cache-
line-sized bucket (64B in our architecture), which effectively
addresses collisions without the need for chaining in most of
the cases.

6. PROTOTYPE BENCHMARKING
We benchmark DPDK-HCS using two general purpose

servers (one server running a custom NDN traffic generator),
whose characteristics are reported in Tab. 2. We first eval-
uate and fine-tune SSD performance in isolation (Sec. 6.1)
and then measure the overall two-layer cache throughput
under realistic workload conditions (Sec. 6.2). Notice that
as our focus is on HCS performance, we therefore do not an-
alyze PIT and FIB lookup operations (which our prototype
is capable of) that are performed after a content store miss.

6.1 Baseline SSD performance
We investigate SSD throughput as a function of batch

size, SSD queue size and read/write mix, fixing as before
chunk size |c|=8KB. Fig.10(a) reports the cumulative SSD
throughput (read + write) as a function of batch size for dif-
ferent read/write mixes (i.e., percentage of SSD read/write
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throughput

operations for a random batch) setting SSD queue size to 64
batches. We remark that a batch of B=16 chunks (128KB)
is sufficient to reach a near-maximum SSD throughput for
all read/write mixes. Additionally, B>16 does not provide
any throughput benefit but yields a latency penalty (from
2.8ms for B=16 to 38ms for B=256 at 50% write). In addi-
tion, notice that while for 100% reads or 100% writes (which
are however not realistic for HCS), the measured throughput
approaches the external data rate declared by the manufac-
turer (4.8 Gbps, as per SSD datasheet), with more realistic
read-write mixes (e.g., 10-50% writes), the SSD throughput
decreases to about 3.5 Gbps.

Fig.10(b) reports the overall SSD throughput as a function
of the batch size at 50% write for different SSD queue sizes
Q. For small batches, a large SSD queue is beneficial as it
improves throughput by increasing the number of outstand-
ing (i.e., parallel) SSD operations. Again, if the batch size
is large enough (B=16), increasing the queue size beyond 16
batches does not provide significant throughput benefits but
only latency penalties (e.g., from 2.8ms for Q=16, to 146ms
for Q=1024).

6.2 DPDK-HCS Performance
Finally, we evaluate the overall DPDK-HCS throughput,

using a traffic trace representing a sample of the HTTP re-
quests received by the Wikipedia website, available at [22],
whose characteristics are reported in Tab. 2. As in the em-
ulation, interest packets for a content are issued at constant
bit rate (i.e., no congestion control). Results of DPDK-HCS
for |L1| ∈[5,20]GB and |L2|=100GB (with 1 or 2 SSDs)
using B=16 and Q=16 are reported in Fig.11, with the
throughput breakdown indicating the miss rate (requests
served by a remote server), DRAM-L1, and SSD-L2 hit
rates (notice that hit rates as only apparently low, as due
to prefetching L2 increases L1 hits). The most important
takeaway lesson is that our system sustains a line rate of
10 Gbps with 96 µs average latency when the L2 cache is
spread over two SSD drives, which validates the soundness
of our design. Differently, a single SSD cannot achieve a
sufficient read throughput to support line speed operations,
as sketched in Fig. 1.

7. CONCLUSIONS
This work shows, via emulation and experiments, that

line-rate O(10 Gbps) operation of hierarchical content
equipped with O(10GB) DRAM-L1 and O(100GB) L2-SSD
memory technologies can be achieved in practice. There are

a number of interesting points that remain open, though, for
both methodologies.

Concerning the emulation part, one possibility would be
to decouple L2 size from L1 size (by avoid storing L2 con-
tents and returning dummy data), and to further decou-
ple the catalog size from L2 size (by emulating misses as a
network delay). Yet this would make NFD-HCS unusable
beyond performance evaluation studies, which question the
very same relevance of the effort.

Hence, we believe open points concerning the prototype
to be more relevant. With this regard, we have identified a
number of directions that can further enhance system per-
formance, and especially SSD management, which is where
the performance bottleneck currently is. First, an interest-
ing option to reduce stress on SSD is to require multiple
name hits [12] before writing to SSD, which would spare
SSD throughput avoiding writes for unpopular content. Sec-
ond, it should be relatively easy to assess up to which level
of SSD parallelism returns a linear performance speedup, as
well as the number cores needed to manage parallel SSD
operations. Third, the SCHED_DEADLINE policy, recently in-
troduced in Linux kernel 3.14, could avoid polling mode of
NIC cores, freeing CPU cycles for SSD cores. Similarly, mov-
ing load balancing operations to the NIC HW would further
relieve the software load.
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