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ABSTRACT Due to the increase in penetration of renewable energy sources, the control technique plays a
vital role to determine the performance of Microgrid (MG). Recently, the Internet of Things (IoT) and cloud
computing has gained significance in solving various industrial problems. Robust and scalable Information
Communication Technology (ICT) infrastructure is critical for efficient control of MG. IoT Devices with
efficient measurement and control capability can play a key role in the MG environment. In this paper
three layers hierarchical control of inverter based MG was developed using cloud-based IoT infrastructure
and machine learning (ML) based islanding detection scheme. MG was operated in both island and grid
connected mode. In the Primary layer, a voltage frequency (V-F) droop control with virtual impedance
control was applied to avoid the disturbances in island mode. Moreover, Active Reactive (P-Q) power
control was used for grid connected mode. In the secondary layer voltage and frequency deviations were
removed by using the decentralized averaging based method. Voltage and frequency from each distributed
generator (DG) were communicated by using a lightweight IoT-based protocol through an edge device (ED).
Context-aware policy (CAP) was adopted in ED to optimize traffic flow over a communication network (CN)
by comparing the difference in the present and previous data values. In the tertiary layer, a cloud-based ML
model was developed using an artificial neural network (ANN) for islanding detection. ANN model was
trained by data produced by simulating islanding scenarios in Matlab. Phasor measurement unit (PMU)
data was communicated to the cloud for island prediction. The Proposed scheme was implemented on a
modified IEEE-13 bus system with four inverter-based distributed generators (DGs) in Matlab, and Microsoft
cloud services were used. The successful implementation of MG hierarchical control using an IoT feedback
network with less data traffic along with cloud-based islanding detection using machine learning are the main
contributions in this work. The whole system achieves stability within 2 seconds of islanding according to
IEEE 1547 standards.

INDEX TERMS Cloud computing, context aware policy, edge device, hierarchical control, IoT, machine
learning, microgrid, smartgrid.

NOMENCLATURE Va d-component Voltage
frequency Vb Distributed Generator Voltage
1 Current Viny Inverter Voltage
I;  d-component Current Vy g-component Voltage
I, g- compnent Current ZLINE Line Impedance
Kp  Active Power droop coefficient Z, Virtual Impedance
Kp Reactive Power droop coefficient ANFIS  Adaptive neuro-fuzzy interface
VvV Voltage ANN Artificial Neural Network
CAP Context-aware policy
The associate editor coordinating the review of this manuscript and CN Communication Network
approving it for publication was Zhouyang Ren . DG Distributed Generator
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FDZ False Detection Zone

HAN Home Area Network

HAN Neighborhood Area Network

ICT Information Communication Technology
IoT Internet of Things

LPWAN Low Power Wide Area Network

MG Microgird

ML Machine Learning

NAN Home Area Network

NDZ None Detection Zone

P-Q Active Power and Reactive Power

PLC Power Line Communication

PMU Phasor Measurement Unit

SCADA  Supervisory Control and Data Acquisition
V-F Voltage Frequency

VPS Virtual Power Source

WAN Wide Area Network

I. INTRODUCTION

Due to advancements in technologies of IoT devices, artificial
intelligence, data handling, and 5G communication, the con-
cept of industry 4.0 has become a center of attention. Smart
devices and ICT infrastructure capable of bidirectional data
flow has a huge impact on the performance of smart grids [1].
Smart grid requires real-time communication between dif-
ferent nodes containing smart devices for stable operation.
Artificial intelligence, cloud computing, and IoT devices
can play a major role in the efficient performance of the
ICT. In literature, various solutions have been presented for
smart grid problems using the IoT concept. Self-healing, fault
detection, load forecasting, and optimized performance of
power systems can be significantly improved with the imple-
mentation of IoT and artificial intelligence technologies [2].
Using IoT devices smart grid was divided into three types of
networks [3]: (i) Home Area Networks (HAN)), (ii) Neighbor-
hood Area Networks (NAN), and (iii) Wide Area networks
(WAN). HAN connects residential electrical appliances with
smart meters. NAN develops communication between the
substation and smart meters from multiple HAN. WAN sup-
ports communication between network gateways, transmis-
sion lines, power plants, and control centers. An IoT-based
model for a Smart grid using IPv6 protocol with scalability
for a large number of devices was implemented in [4]. Power
restoring time problem was addressed in the large distribution
system by fault localization using centralized cloud base IoT
structure [5]. The problem of high bandwidth and low latency
in cloud computing for smart grid has been addressed by
introducing edge computing in [5]. However, the use of IoT
in power systems can add major threats like cybersecurity and
privacy issues [6].

Due to the increase in load demand and stress in power
transmission lines MGs are considered the future of smart
grid [7]. The scalability of the smart grid evolves with the
concept of interconnected MGs and CNs. A strong and reli-
able communication network is needed for MG irrespective
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of complexity in topology and undesired events [8]. Gener-
ally, a three-layer hierarchical control structure is used for
the MG control layer i.e. primary, secondary, and tertiary
layer. Communication takes place at each layer with differ-
ent control objectives [9]. The stability and power quality
of MG depends on the primary and secondary layer which
require a fast time-critical communication system [10]. The
primary layer has main objective to regulate the local voltage
and frequency of DG with respect to active and reactive
power. V-F Droop control is widely used for the primary
layer. Matching control, virtual synchronous machine con-
trol, virtual oscillator control and droop control were dis-
cussed in [11] which can fulfill primary layer fast control
objectives. A dual control scheme i.e. current regulated P-Q
power control for grid connected mode and (V-F) droop
control for island mode was adopted in [12]. To mitigate
the effect of disturbances due to the inductive nature of the
power network and to match the impedance of the inverter an
additional virtual impedance control loop along with droop
control was introduced in [13]. The concept of droop control
on the virtual power source (VPS) was introduced in [14]
for impedance matching, VPS voltage was found by adding
voltage drop due to line and virtual impedance to actual DG
voltage which has better stability performance in low voltage
MGs as compared to high voltage MGs. The secondary layer
objective is to reduce the deviation of voltage and frequency
produced locally at the DGs by adjusting the reference value
of primary controllers. In centralized secondary control, all
errors are computed at a central point and then communicated
to DGs for correction [14]. A single communication failure
from the center can lead to whole system failure. In com-
parison, all deviation errors are computed and controlled
locally at DGs in distributed secondary control but require
high communication bandwidth as compared to centralized
secondary control [15]. An averaging based decentralized
control was proposed in [16], the error was computed locally
by comparing the required value with the average of each DG.
A consensus based distributive control technique to limit data
exchange was proposed in [17].

Islanding detection plays a vital role in the efficient uti-
lization of MG during undesired events. Islanding could
be intentional or unintentional. Intentional islanding is
mostly for repairing or economic purposes while uninten-
tional islanding is due to faulty events. According to IEEE
1547 standards, unintentional islanding should be detected
within 2 seconds [18]. Wrong and untimely island detec-
tion could lead to power disasters and equipment loss [19].
Islanding detection techniques are classified into three types
(i) passive islanding detection (ii) active islanding detection
and (iii) remote islanding detection. In the passive islanding
technique, deviation of MG parameters like voltage, fre-
quency, and phase angle are used to detect islanding [20].
The performance of passive islanding detection techniques
depends on threshold selection. A small threshold leads to
false detection of islanding as nonfaulty conditions may reach
threshold while large threshold settings create a nondetection
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zone (NDZ) for islanding scenarios [21]. In active island-
ing, a small disturbance signal is introduced between the
inverter and grid which becomes noticeable when MG is
operating in islanding mode [22]. Active islanding techniques
have a comparatively small NDZ but are suitable for sin-
gle DG based MG. In the case of multiple DGs, too much
insertion of external signals may lead to a drop in power
quality at PCC and may cause synchronization problems
with the main utility [23]. In [24], different active islanding
techniques were studied for multiple inverter based DGs.
Remote based islanding detection schemes are more effi-
cient in time and islanding detection without any power
quality issues but add an additional cost of proper Supervi-
sory Control and Data Acquisition (SCADA) system [25].
PMU provides accurate and reliable measurement of volt-
age, frequency, and phase with time-stamping at the rate
of 64 samples per second [26] and could be used to detect
islanding remotely [27]. With the advent of artificial intelli-
gence, many techniques were applied to detect islanding by
utilizing previously recorded data. ML methods have better
performance as compared to passive and active techniques,
the efficiency of this method mainly depends on data used
to train the model but it requires high physical computa-
tional power. In [28] decision tree classifier ML approach
was applied to detect islanding but it has low accuracy. The
Bayesian classifier was used in [29] which provides good
accuracy but requires more computational power. An adap-
tive neuro-fuzzy interference system (ANFIS) was intro-
duced to detect islanding cases by defining different stabil-
ity margins [30] that require a complex method for obtain-
ing input parameters. A support vector ML classifier was
developed based on PMU measurements to detect islanding
in MG [31].

CN inherent the time delay problem and affect the overall
performance of the system. Too much communication delay
in the secondary layer can affect the overall performance
of the system by adding oscillations, degrading the power
quality, and may lead to system instability [32]. In literature,
many studies were conducted for communication delays in
various techniques. In [33], a consensus based technique was
modified by considering the effect of time delay. In [34],
communication delay was studied in centralized secondary
control and it was suggested that with the increase in com-
munication delay, the gain of the controller can be adjusted
to damp the oscillations and transient effects. By considering
the effect of time delay control, stability was studied by devel-
oping a root locus [35]. To mitigate the effect of oscillations
due to delay, [36] suggests the addition of a high capacitance
filter which resulted in extra cost. In [37], a study was con-
ducted to minimize the effect of communication delay by
predicting the value using double ANN and previous data
during delay, the k-means algorithm was used for clustering
the input data of similar value to train the model and output
control signal was predicted by the weighted sum of historical
power and control signal data. In [38] effect of delay on
DC MG was studied, it was suggested that communication
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delay up to 300ms leads to system instability and inaccurate
current sharing. MG requires time-sensitive technologies to
perform efficiently in real-time. MG is a complex system with
many subsystems highly dependent on bidirectional CN [8].
A scaleable CN infrastructure is needed for the future con-
nectivity of new MGs and smart devices. A high bandwidth
CN capable of real-time feedback is critical for proper con-
trol and timely action in MG [39]. CN could be wired or
wireless. Wired technology includes optical fibers, copper
twisted pairs, power line communication (PLC). Wired CNs
have compatibility and economical issues because of extra
implementation and maintenance costs [40]. Wireless CNs
are more advanced and more feasible in terms of reliability
and scalability. Wi-Fi, Zig-Bee, Cellular networks (3G, 4G)
are some of the robust wireless technologies [41]. Low power
wide area network (LPWAN) such as IoT provides more cov-
erage as compared to cellular networks with more economical
benefits [42].

This paper proposes IoT based real-time CN for feedback
control applications in MG and utilizes a fast cloud based
structure for the centralized subsystem of MG. IoT based
control provides scalability to the MG power network by
allowing the addition of new DGs without interrupting the
functionality of the existing system. Mostly power system
contains a network of neighboring MGs connected in dif-
ferent distribution networks. For mutual optimal operation
and cost effectiveness, information needs to be exchanged
between MGs. Therefore, IoT based control infrastructure
is required to provide a suitable platform for exchanging
critical information in minimal real time. Cloud based com-
puting allows to store and monitor data centrally which opti-
mize power systems globally and can be useful to predict
future trends. In the proposed system, (V-F) droop con-
trol and P-Q control have been implemented in the island
and grid connected mode of MG, respectively. Averaging
based decentralized control has been implemented in the
secondary layer. Cloud based Machine learning technique
was used to detect islanding, which provides fast response
without any use of a physical processing device at the site.
Following are the main contributions of the paper in this
regard.

« A distributed Hierarchical controlled layer structure was
implemented for smart MGs.

o JoT-based real-time CN for feedback control was imple-
mented for distant placed DGs in large bus system MG.

« Role of Edge device was introduced by applying CAP
policy to send only effective data over IoT network,
which reduces the overall traffic of the network.

o A Centralized cloud based real-time islanding detection
scheme was applied using ANN by sending PMU data
through an IoT network.

In the rest of the paper, hierarchical control of MG is
discussed in section II, IoT framework for CN is discussed
in section III, while results and conclusions are discussed in
sections IV and V respectively.
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FIGURE 1. Hierarchical layer control structure of MG.

II. MG HIERARCHICAL CONTROL STRUCTURE

In the hierarchical control structure of MG, each layer has
its objectives and response rate. These layers can be imple-
mented using different techniques and technologies. This
control scheme is scalable and allows the integration of more
MGs. Fig. 1 illustrates the hierarchical control structure of
MG. Four inverter based renewable DGs were connected at
different busses of the IEEE 13 bus feeder system. The power
Circuit breaker has been used to isolate MG from a utility.
In the primary layer, droop control and P-Q control have
been implemented locally at each DG. The cloud-based IoT
network was developed for communication between DGs.
The local measurements from each DGs were communicated
using CAP policy to optimize traffic flow through the net-
work in the secondary layer. In the tertiary layer, a cloud
based machine learning model was developed for islanding
detection to switch the power circuit breaker between MG and
utility. Each layer has been discussed below as implemented
for this work.

A. PRIMARY CONTROL

In the primary layer, control was applied locally in DG
units to regulate the output. The stability of MG mainly
depends on the performance of the primary layer due to which
time-sensitive and communication less control techniques are
used. Different control strategies are used for grid connected
and island mode. For grid connected mode, P-Q current reg-
ulated control was applied. The control was applied on the
inverter to deliver output power according to the reference set
point. Output parameters like voltage, frequency, and phase
were imposed by the main grid. The control was applied in
d-q frame of reference. All alternating signals are converted
in the d-q frame of reference using (1) and (2).

Uy = Uy sin(wt)+Up sin(wt+2m /3)+ U, sin(wt+2m/3)
(H

U, = U, cos(wt)+Uyp cos(wt+2m /3)+U, cos(wt+2m /3)
2
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A d axis current is responsible for active power (P) control
and q axis current is responsible for reactive power (Q) con-
trol. Based on reference P and Q, reference current was
derived to compare with the grid current in d-q frame, and
fed into PI control loop. P and Q in d-q frame are given by
(3) and (4) respectively.

3
P= E(led+vqlq) 3)

3
Q = S(=Valg+Vgla) “

where V;, Vy, 1; and 1, are dq components of grid side voltage
and current. In steady state, V; is zero so reference current is
derived as (5) and (6).

2P ref
1 = 5
dref 3V, (5)
20
o = =5 ©)

In Island mode, (V-F) droop control technique was applied.
The main key objectives of droop control are to share the
load between DGs and to regulate system frequency and
voltage. Droop control loop, virtual impedance control loop,
current Proportional Integral (PI) control loop, and voltage
PI control loop were applied in sequence as shown in Fig. 2.
The response time of the current and voltage control loop is
very fast as compared to the outer droop control loop. The
controller was provided with voltage and frequency refer-
ences. Active power has a direct relation with frequency while
reactive power of DG is controlled by voltage magnitude.
Droop equations for active and reactive power are shown in
(7) and (8).

[ =f*—k,(P—P") @)
V = V*~ko(Q—0") (®)

where f*, P*, V* and Q* are reference values of frequency,
active power, voltage and reactive power respectively. k, and
kg are droop coefficients. In decentralized mechanism, where
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FIGURE 2. The local control structure of DG.

more than one DGs are connected, k, and kg of each DG
should be selected in such a way that it should satisfy (9) and
(10) respectively [43].

kp1(P1—P7) = kpo(P2—P5)

= p3(P3—P§) ........ = pn(Pn_P:) )
ko1(Q1—07) = kg2(02—03)
= kg3(Q3—03) ... ... = kon(Qn—0;;) (10)
kp and kg can be found using equations (11) and (12).
_
kp B Pmax (11)
1%
ko = T (12)

where 8f and 8V are deviations in frequency and voltage
respectively, whereas, Py, and Q. are maximum active
and reactive power for a particular DG.

Due to the complex physical power network and
non-uniform inductive balance, droop reactive power-sharing
is less effective. To match the output impedance of each
DG, the virtual impedance loop was used after the droop
control. The output voltage of DG is controlled due to
which it remains relatively unaffected by disturbances, how-
ever the current increases to an unacceptable limit because
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of impedance mismatch seen by each inverter. A virtual
impedance loop was added to limit the output current. The
output voltage of the DG can be written as (13).

Vo = Vinv—1Zpine (13)

where Vjyy is the inverter output voltage, Zpvg is line
impedance and I is an output current. If Vs is droop gen-
erated reference voltage and Zy virtual impedance then Vyyy
will become as (14).

Viny = Vg —1Zy (14)

Putting value of Vjyy in above Equation (14). Vpg will
become (15).

VoG = Vier—1(Zv+ZLINE) (15)

From (15) it can be seen that output impedance seen by DG
is equal to Zy+Zyg. Virtual resistance provides a damping
effect during transients and virtual inductance allows the
accurate sharing of reactive power. However, a large value
of virtual resistance causes too much voltage drop and a
large value of inductance causes oscillations in the system.
So the value of resistance and inductance must be chosen in
such a way that system remains stable. In [44], an unstable
margin of virtual impedance for the system was derived using
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eigenvalues. In [45], the values of resistance and inductance
were selected arbitrarily depending on the best performance
of the system.

B. SECONDARY CONTROL

The main objective of secondary layer control is to remove
steady-state errors in voltage and frequency caused by the
primary layer. Errors are removed after the sharing of power
between the DGs by the primary layer. Without the imple-
mentation of the secondary layer, voltage and frequency will
become load dependent and load deviation will cause stability
issues. In this paper, averaging based decentralized secondary
control technique was applied where each DG sends its local
value of frequency and voltage to all other DGs in the system
without central coordination. Each DG locally calculates the
average value of voltage V,,,, and frequency f,, by using the
received values as (16) and (17).

ot +f,
e = (fitf2 f3n fn) (16)
Virg = (V1+V2+VZ ...... +Vy) (17

These average values are compared with the reference
value and fed into the local PI controller for error generation,
as shown in Fig. 2. This error is further added to droop
output values for further compensation. The secondary layer
requires a CN between all interconnected DGs. The perfor-
mance of secondary control greatly depends on the speed
of CN.

C. ISLANDING DETECTION WITH MACHINE LEARNING
Islanding can occur due to many reasons like system, faults,
environmental conditions, equipment malfunctioning, under
loading, overloading, etc., and affects system voltage, fre-
quency, and phase, In this work ANN was used to train a
model for islanding detection based on PMU data. Three
different islanding scenarios were taken into account for the
training of the model.

1) When short circuit fault occurs. The fault could be a

single phase, two phase or three phase.

2) When the connected load is greater than the capacity

of DGs.

3) When the connected load is less than the capacity

of DGs.

These scenarios were simulated in Matlab/Simulink to get
data. Two PMUs were used one on the utility side and the
other on the MG side of PCC. Islanding scenarios were
intentionally introduced and data of both PMUs i.e. voltage,
frequency, phase was collected before and after the event.
To reduce the processing complexities instead of using data
from PMUs directly, the difference of both PMUs parameters
was used to train ANN. Training data was labeled with three
input parameters i.e. AV voltage difference, A6 phase dif-
ference, and Af frequency difference and one binary output
parameter i.e 1 for islanding scenarios and O for non-islanding
conditions. ANN model was designed with three layers as

103024

av

AB

Af

Input layer Output layer

Hidden layer

FIGURE 3. Layers of ANN model.

shown in Fig. 3. The hidden layer contains three neurons with
weights wi, wy and w3, the activation function was ‘relu’
while the output layer has one neuron and the activation
function was ‘sigmoid’. If the output of the model was less
than or equal to 0.5 then it was considered as non-islanding
and if the output is greater than 0.5 then it was considered as
islanding.

Ill. loT FRAME WORK

The IoT framework was made by interconnecting different
sensing devices through the internet. For secondary control
at each DG, the voltage and frequency were measured and
transmitted to ED. The ED filters the data and provides a
smooth connection to the cloud without any interference of
the sensing device. CAP was used to filter the data in ED.
CAP enables the ED to send only critical information which
helps in reducing traffic over the network and cloud. Similarly
in [30] vessel monitoring system (VSM) was used which
reduces traffic up to 70%—90%. Data was only transmitted
if the current value differs from the previous value by factor
d which is 0.01% as given in (18).

(P1—P2)
—_— >
Py

where P» is the current data value and P is the previous data
value. The secondary control requires a communication sys-
tem with fast transmissions rate and response time. According
to IEC 61850 standard for communication between devices in
power automation systems, the maximum latency for control
is 16-100 ms [29]. Generally, the internet networking system
is derived from the Open systems Interconnections (OSI)
model which divides computing functions into 7 layers to
support communication interoperability between different
devices as shown in Fig. 4. In this work, IoT-based real-time
Message Queuing Telemetry Transport (MQTT) protocol
was used with reduced data packet size for fast and real-time
communication. MQTT broker is a cloud entity and devices
connected to it act as a client to the broker. Each client
communicates with others through publish/subscribe method
under a specific topic i.e. sending device will publish a mes-
sage under the specific topic tag and receiving device must

d =0.01% (18)
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TABLE 1. DGs parameters in island Mode.

Serial Total Total Reference | Reference
No. Capacity | Capacity | Active Reactive
(KVA) (Per Power Power
Unit) (Per (Per
unit) Unit)

DG1 591 1 0.6 0.8

DG2 1183 1 0.6 0.8

DG3 1774 1 0.6 0.8

DG4 2366 1 0.6 0.8

be subscribed to that topic to receive the message. The ED of
each DG act as a client to the MQTT broker. For islanding
detection, a machine learning model was implemented in the
cloud. Both PMU transmits their data using MQTT protocol
under their respective topic to the cloud. The difference of
values was calculated in the cloud and used as input to the
ANN model for islanding detection. Along with two PMUs,
cloud-based ANN model also act as a client to MQTT which
reduces hardware computational cost.

IV. RESULTS AND DISCUSSION

The proposed idea was implemented on a modified IEEE
13-bus system with 4.16 KV L-L base voltage, 60Hz base
frequency, and 0.89 power factor in Matlab. Bus 650 is con-
sidered as PCC. One PMU is connected on the main grid
side of the circuit breaker and the other is connected on
the MG side. Four DGs are connected on different buses
and have made an IoT CN, as shown in Fig. 5. The IoT in
Matlab was implemented by using the MQTT library pack-
age. Matlab engine was used to execute IoT tasks using the
“coder extrinsic” property in Matlab, while the MG model
was simulated in Simulink. Fig. 6 shows the working of the
proposed scenario in Matlab/Simulink. DG capacities and
other parameters are shown in Table 1. In Grid connected
mode each DG follows the reference P and Q as shown
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FIGURE 7. Grid connected mode.

in Fig. 7, while voltage and frequency are imposed by the
main grid. In Island mode, the system sets its voltage and
frequency following the reference value.

In practical scenarios, primary layer and secondary layer
control start functioning at the same time but in this case, [oT
network-based secondary layer was turned on at t = 1 sec
to differentiate the results. The latency of the IoT channel
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FIGURE 9. P.U. voltage in island mode.

was 42 ms. Fig. 8 shows the system frequency in island mode.
Primary droop control stabilized the frequency at t = 0.5 sec
with some deviation from 60 Hz. When secondary control
was turned on at t = 1 sec, the frequency deviation was
minimized. Similarly, the voltage at each DG was also sta-
bilized by primary control with some deviations, when at
t = 1 sec secondary control turned on voltage reaches to
1 p.u. as shown in Fig. 9. Fig. 10 illustrates that droop control
also stabilizes the P and Q by satisfying the relation with
voltage and frequency as given in the above equations. It can
be seen that each DG has different peak behavior because
the impedance seen by each DG connected in the network
is different. This peak overshoot was stabilized by a virtual
impedance loop by limiting the current. After the activation of
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FIGURE 10. Power of each DG in island mode.

the secondary control layer, P and Q reach the reference value
because voltage and frequency deviation were minimized.
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FIGURE 12. Voltage with and without loT at PCC. Voltage with loT has
distortions at the start.

To analyze the effect of communication delay, frequency
and voltage with IoT CN were compared without CN as
shown in Fig. 11 and Fig. 12. It can be seen that comparatively
transient stability with IoT is slower. The frequency becomes
stable at a slightly higher value, while initially, voltage expe-
riences some distortion at the start. Fig. 13 and Fig. 14 show
harmonics response of voltage with IoT and without IoT at
PCC respectively. It can be seen that due to IoT communica-
tion delay, a small percentage of higher order harmonics were
added into the system. The total harmonics distortion (THD)
without and with IoT were 1.21% and 2.36% respectively.
Overall, the system remains in a stable condition according
to the IEEE 1159 standards [46]. A large communication
delay of 300ms was added manually to see the behavior
of voltage and frequency as shown in Fig. 15 and Fig. 16.
It can be seen that oscillations and voltage fluctuations were
produced which jeopardized the power quality and stability
of the system.

To get data for ANN training, the DGs have connected in
grid connected mode with all three scenarios. The inductive
load was used in all scenarios. At t = 1 sec, an islanding
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scenario was introduced to record the data for both modes of
operation. Fig. 17 and Fig. 18 show voltage and frequency
data trends at PCC. When DG capacity is less than con-
nected load, voltage decreases whereas frequency increases
as shown in Fig. 17. In contrast, Fig. 18 shows that the voltage
increases and frequency decrease when the DG capacity is
greater than the connected load. To compile ANN model,
loss function and optimizer were selected as binary cross
entropy and ‘adam’ respectively. Fig. 19 shows the training
accuracy and loss data of ANN trained model. Table 2 shows
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TABLE 2. Islanding detection techniques comparison.

Islanding | NDZ Detection Power Multiple DGs

Tech- Time Quality effect

nique

Passive Large 4ms- No effect | No effect

100ms

Active None 0.3s-2s Degrade Synchronization
issues

Machine | None <100ms No effect | No effect

learning

the comparison of the ML model with other techniques in [19]
in terms of NDZ, detection time, power quality, and effect in
the case of multiple DGs.

For testing islanding detection, the circuit breaker was
switched at t = 0.5 sec. PMUs edge device sends data to
cloud through IoT, ANN model predicts the islanding and
MQTT publishes the message 1 to each DG which means
that islanding has occurred and each DG shifts from grid
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FIGURE 20. Frequency from Grid to island mode.

operating mode to Island operating mode. Fig. 20 shows
the frequency behavior at PCC. It can be seen that during
islanding detection time frequency overshoots but then sta-
bilized near to normal reference value with secondary layer
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FIGURE 23. NI PCle output voltage of phase A at PCC.

activation at t = 1.5 seconds. Fig. 21 shows the behavior
of voltage magnitude before and after islanding detection,
during islanding detection time voltage dips from its actual
value and again achieves stable value in less than 2 seconds
after the implication of hierarchical MG control.

For further validation simulation was performed using
Simulink Desktop Real-time which executes models using
real time kernel. Only two DGs were considered for simpli-
fication. NI PCle 6351 DAQ card was used to collect data
from IoT nodes. IoT nodes were implemented by using two
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esp8266 which subscribe data published from Matlab through
IoT and give back to Simulink through NI DAQ card by using
digital to analog converter as setup shown in Fig. 22. The
focus of this setup is to showcase the effect of IoT communi-
cation channel on voltage signal from DG. For this purpose,
commercially available Microsoft cloud services were used.
MQTT broker was installed in the cloud. Fig. 23 shows the
scale down (45V to —5V) output voltage through NI DAQ
card of phase A at PCC. The other two phases will have
similar output but 120 degrees apart in phase. It can be seen
that initially there is distortion in the wave then it gets stable.

V. CONCLUSION

The selection of proper communication technology is one
of the main challenges in the design of smart MG. The real
time [oT based CN with low latency can provide an efficient
control system by keeping the MG in a stable range. In hier-
archical control of MG, the primary layer requires a very
fast response time so communication less control has been
implemented in each DG locally. The secondary layer relies
greatly on a communication network and requires real-time
communication to function properly. Too much communi-
cation delay in the secondary layer can cause voltage rise
and oscillation in the system which results in degradation
of power quality. The IoT based secondary control with a
time delay of less than 50ms improves the voltage and fre-
quency by keeping the system in a stable range. The cloud
based ML with the help of IoT provides an efficient method
for islanding detection without any NDZ and power quality
issues. The usage of cloud based computational resources
decreases the cost of maintaining physical devices at the site
and provides more reliability in terms of functioning. Due
to cloud based IoT and artificial intelligence, the data can
be stored and efficiently used for the overall optimization of
the system in terms of cost, scalability, future prediction, and
state estimation. Furthermore, applications like demand side
management, market Participation, load forecasting can also
be done effectively.
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