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Abstract. The current work addresses the problem of redesigning brain-
inspired artificial cognitive systems in order to gradually enrich them
with advanced cognitive skills. In the proposed approach, properly for-
mulated neural agents are employed to represent brain areas. A cooper-
ative coevolutionary method, with the inherent ability to co-adapt sub-
structures, supports the design of agents. Interestingly enough, the same
method provides a consistent mechanism to reconfigure (if necessary) the
structure of agents, facilitating follow-up modelling efforts. In the present
work we demonstrate partial redesign of a brain-inspired cognitive sys-
tem, in order to furnish it with learning abilities. The implemented model
is successfully embedded in a simulated robotic platform which supports
environmental interaction, exhibiting the ability of the improved cogni-
tive system to adopt, in real-time, two different operating strategies.

1 Introduction

Brain-inspired computational systems are recently employed to facilitate cognitive
abilities of artificial organisms. The brain of mammals consists of interconnected
modules with different functionalities, implying that models with distributed ar-
chitecture should be designed. In this context, a modular design approach is fol-
lowed by [1,2], to develop distributed brain-like computational models.

The construction of large scale models is difficult to be accomplished by de-
veloping from scratch complicated structures. An alternative approach could be
based on implementing partial models of brain areas which are gradually re-
fined to more efficient ones. Along this line, existing approaches suffer in terms
of scalability, because they lack a systematic procedure to support the progres-
sively more complex design procedure. In contrast, they follow a manual design
approach and thus they can not be used as a long-term modelling framework.

We have recently proposed a new computational framework to design dis-
tributed brain-inspired structures [3]. Specifically, the model consists of a col-
lection of self-organized neural agents, each one representing a brain area. The
performance of agents is specified in real-time according to the interaction of the
composite model with the external world, simulating epigenetic learning. The
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self-organization dynamics of epigenetic learning are designed by an evolution-
ary process which simulates phylogenesis. Following the phylogenetic/epigenetic
approach, the objective adopted during the evolution of agents, is to enforce
the development of brain area like performance, after a certain amount of en-
vironmental interaction. Instead of using a unimodal evolutionary process, we
employ a Hierarchical Cooperative CoEvolutionary (HCCE) approach which is
able to highlight the specialties of brain areas, represented by distinct agents.
The agent-based coevolutionary framework has been utilized to develop mod-
els that reproduce computationally biological findings [4], and additionally to
integrate partial models formulating gradually more complex ones [5].

The present study investigates the ability of the agent-based coevolutionary
framework to facilitate redesign steps, enriching existing models with gradually
more advanced features. The ability of partial redesign is an important char-
acteristic for an effective and successful computational framework that aims to
support long-term design processes. This is because initial design steps impose
constraints to the computational structure that may harm forthcoming mod-
elling efforts. Hence, it is necessary to have a consistent design method that
reformulates systematically partial structures, and additionally guarantees the
cooperation of the refined components (and potentially some completely new)
with the unchanged preexisting ones.

The proposed computational framework is particularly appropriate to support
redesign steps because of the distributed architecture it follows. Specifically,
due to the combination of agent-based modelling with the distributed HCCE
design methodology, we are able to address and specify explicitly the special
features of each component in the model. As a result, when partial redesign
steps are necessary, we are provided with a systematic mechanism to reconfigure
subcomponents according to an enhanced set of design objectives.

The rest of the paper is organized as follows. In the next section, we present
the neural agent structures used to represent brain areas, and the hierarchical
cooperative coevolutionary scheme which supports the design of agents. Then,
we present the results of the proposed approach on redesigning partly an artifi-
cial cognitive system in order to furnish it with reinforcement learning abilities.
Finally, conclusions and suggestions for future work are drawn in the last section.

2 Method

The design of brain-inspired structures is based on the argument that the behav-
ior of animals is a result of phylogenetic evolution, and epigenetic environmental
experience [6]. Phylogenetic evolution is facilitated by the HCCE design ap-
proach, while epigenetic learning is facilitated by the self-organization dynamics
of the computational model. Both of them are described below.

2.1 Computational Model

Two different neural agents provide a computational framework which supports
modelling: (i) a cortical agent to represent brain areas, and (ii) a link agent to
support information flow across cortical modules.
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Fig. 1. Schematic representation of the computational model. Part (a) illustrates a link
agent which supports information flow from cortical agent A to B. Part (b) illustrates
synapse definition in cortical agent B.

Link Agent. The structure of the link agent is properly designed to support
connectivity among cortical modules. Using link agents, any two cortical modules
can be connected, simulating the connectivity of brain areas.

Each link agent is specified by the projecting axons between two cortical
agents (Fig 1(a)). Its formation is based on the representation of cortical modules
by planes with excitatory and inhibitory neurons (see below). Only excitatory
neurons are used as outputs of the efferent cortical agent. The axons of projecting
neurons are defined by their (x, y) coordinates on the receiving plane. Cortical
planes have a predefined dimension and thus projecting axons are deactivated if
they exceed the borders of the plane. This is illustrated graphically in Fig 1(a),
where only the active projections are represented with an × on their termination.
As a result, the proposed link structure facilitates the connectivity of sending
and receiving cortical agents supporting their combined performance.

Cortical Agent. Each cortical agent is represented by a rectangular plane. A
cortical agent consists of a predefined population of excitatory and inhibitory
neurons, which all follow the Wilson-Cowan model with sigmoid activation. Both
sets of neurons, are uniformly distributed, defining an excitatory and an in-
hibitory grid on the cortical plane. On the same plane there are also located the
axon terminals from the projected cortical agents.

All neurons receive input information either from i) projecting axons, or ii)
excitatory neighbouring neurons, or iii) inhibitory neighbouring neurons. The
connectivity of neurons follows the general rule of locality. Synapse formation
is based on circular neighbourhood measures. A separate radius for each of the
three synapse types, defines the connectivity of neurons. This is illustrated graph-
ically in Fig 1(b), which further explains the example of Fig 1(a). Neighbourhood
radius for i) axons is illustrated by a solid line, for ii) excitatory neurons by a
dashed line, and for iii) inhibitory neurons by a dotted line. Sample neighbour-
hoods for excitatory neurons are illustrated with grey, while neighbourhoods for
inhibitory neurons are illustrated with black.

The performance of cortical agents is adjusted by environmental interaction,
similar to epigenetic1 learning ([7]). To enforce experience-based subjective learn-

1 Epigenesis here, includes all learning processes during lifetime.
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ing, each set of synapses is assigned a Hebbian-like learning rule defining the
self-organization dynamics of the agent. This is in contrast to the most common
alternative of genetically-encoded synaptic strengths which prevents experience
based learning. We have implemented a pool of 10 Hebbian-like rules that can
be appropriately combined to produce a wide range of functionalities [3].

Reinforcement Learning. Reinforcement learning models are very popular
in robotic applications in recent years. Computational models similar to the
one described above have been demonstrated to exhibit reinforcement learning
abilities (e.g. [8]). The idea is based on treating the reward as an ordinary signal
which can be properly given as input in pre- and post- synaptic neurons to
coordinate their activations. In other words, the external reinforcement signal
takes advantage of the internal plasticity dynamics of the agent, in order to
modulate its performance accordingly.

2.2 Hierarchical Cooperative CoEvolution

Similar to a phylogenetic process, the structure of agents can be specified by
means of an evolutionary method. However, using a unimodal evolutionary ap-
proach, it is not possible to explore effectively partial components, which repre-
sent brain substructures. To alleviate that, coevolutionary algorithms have been
recently proposed that facilitate exploration, in problems consisting of many
decomposable components [9]. Specifically, coevolutionary approaches involve
many interactive populations to design separately each component of the so-
lution. These populations are evolved simultaneously, but in isolation to one
another. Partial populations are usually referred as species in the coevolutionary
literature, and thus this term will be employed henceforth.

The design of brain-inspired structures fits adequately to coevolutionary ap-
proaches, because separate coevolved species can be used to perform design de-
cisions for each substructure representing a brain area. As a result, coevolution
is able to highlight the special features of each brain area, and additionally the
cooperation within computational modules.

We have presented a new evolutionary scheme to improve the performance of co-
operative coevolutionary algorithms, employed in the context of designing brain-
inspired structures [3,4].We employ twodifferent kinds of species to support the co-
evolutionary process encoding the configurations of either a Primitive agent Struc-
ture (PS) or a Coevolved agent Group (CG). PS species specify partial elements of
the model, encoding the exact structure of either cortical or link agents. A CG con-
sists of groups of PSs with common objectives. Thus, CGs specify configurations
of partial solutions by encoding individual assemblies of cortical and link agents.
The evolution of CG modulates partly the evolutionary process of its lower level
PS species to enforce their cooperative performance. A CG can also be a member
of another CG. Consequently several CGs can be organizedhierarchically,with the
higher levels enforcing the cooperation of the lower ones.

The HCCE-based design method for brain modelling is demonstrated by
means of an example (Fig 2). We assume the existence of two cortical agents con-
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Fig. 2. An overview of the hierarchical coevolutionary scheme, with CG species tuning
the evolutionary processes of PS species

nected by three link agents representing their afferent and efferent projections
(Fig 2(a)). One hypothetical HCCE process employed to specify agent structure
is illustrated in (Fig 2(b)). CGs are illustrated with oval boxes, while PSs are
represented by ovals.

All individuals in all species are assigned an identification number which is
preserved during the coevolutionary process. The identification number is em-
ployed to form individual assemblies within different species. Each variable in
the genome of a CG is joined with one lower level CG or PS species. The value of
that variable can be any identification number of the individuals from the species
it is joined with. PSs encode the structure of either cortical or link agents. The
details of the encoding have been presented in [3], and thus they are omitted here
due to space limitations. A snapshot of the exemplar HCCE process described
above is illustrated in (Fig 2(c)). Identification numbers are represented with
an oval. CGs enforce cooperation of PS structures by selecting the appropriate
cooperable individuals among species.

In order to test the performance of a complete problem solution, populations
are sequentially accessed starting by the higher level. The values of CG individ-
uals at various levels are used as guides to select cooperators among PS species.
Then, PS individuals are decoded to specify the structure of cortical and link
agents, and the performance of the proposed overall solution is tested on the
desired task.

Furthermore, the proposed HCCE scheme allows the employment of separate
fitness measures for different species. This matches adequately to the distributed
agent-based modelling of brain areas, because different objectives can be defined
for different components of the system, preserving their autonomy. As a result,
the hierarchical coevolutionary scheme addresses explicitly the special roles of
agents, facilitating any potential redesign of their structure.
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For each species s, a fitness function fs is designed to drive its evolution. All
PS species under a CG share a common fs. Specifically a partial fitness function
fs,t evaluates the ability of an individual to serve task t, while the overall fitness
function is estimated by:

fs =
∏

t

fs,t (1)

Furthermore, the cooperator selection process at the higher levels of hier-
archical coevolution will probably select an individual to participate in many
assemblies. (e.g. the case of individual 28 of PS species L1, of Fig 2(c)). Let
us assume that an individual participates in K assemblies which means that it
will get K fitness values fs,t. Then, the ability of the individual to support the
accomplishment of the t-th task is estimated by:

fs,t = maxk{fk
s,t} (2)

where fk
s,t is the fitness value of the k-th solution formed with the membership

of the individual under discussion.
The above equations describe fitness assignment in each species of the hier-

archical coevolutionary process. Just after testing the assemblies of cooperators
and the assignment of their fitness values, an evolutionary step is performed in-
dependently on each species, to formulate the new generation of its individuals.
This process is repeated for a predefined number of evolutionary epochs, driv-
ing each species to the accomplishment of each own objectives and additionally
enforcing their composite cooperative performance.

3 Results

The present experiment demonstrates the effectiveness of the agent-based coevo-
lutionary framework to redesign computational structures, furnishing them with
gradually more advanced cognitive skills. In order to prove the validity of the
result, a mobile robot is utilized to support environmental interaction. Specif-
ically, we employ a two wheeled robotic platform equipped with 8 uniformly
distributed distance, light and positive reward sensors.

In our previous work [4], we have described the utilization of the HCCE scheme
to model working memory (WM) development and how it is employed to accom-
plish delayed response tasks. In short, a light cue is presented to the robot and
the latter has to memorize the side of light cue appearance in order to make a
future choice, related to 90o turning, left or right (similar tasks have been also
discussed in other studies e.g. [10]). Two different response strategies can be
defined. According to the Same-Side (SS) response strategy, the robot should
turn left if the light cue appeared at its left side, and it should turn right if the
light source appeared at its right side. Evidently, the complementary response
strategy can be also defined, named Opposite-Side (OS), which implies that the
robot should turn left if the light cue appeared at its right side, and it should
turn right if the light source appeared at its left side.
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Fig. 3. A schematic demonstration of the computational model

The HCCE design mechanism has been employed to implement computational
models exhibiting either the SS or the OS response strategy [4]. In both cases,
the models are developed with the inborn ability to develop the correct response
strategy. The question that now arises, is if we can design a single computational
system that is able to adopt either the SS or the OS response strategy during
life-time. The current study investigates the redesign of existing models that
exhibit predefined behaviors, in order to enrich them with the ability to adapt
their response strategy, as it is indicated by properly located reward signals.

3.1 Experimental Setup

The present experiment aims at extending the computational structure described
in [4], thus developing an improved system with learning abilities. The compos-
ite model is illustrated in Fig 3. In order to facilitate the design procedure, we
avoid designing the composite model from scratch. Particularly, the current ex-
perimental process keeps in their original formulation the components which are
less involved in the learning procedure (namely, Posterior Parietal cortex (PPC),
Primary Motor cortex (M1), and Spinal Cord (SC)). The biological structures
mostly involved in the learning process are Prefrontal and Premotor cortices
(PFC, PM) [11]. The module representing PFC was also present in our previous
experiment, and it needs to be redesigned in order to be furnished with learning
facilities. PM is a new module that needs to be designed from scratch. Both
PFC and PM modules receive information related to the reward stimuli, adapt-
ing accordingly the motion orders to the lower levels of the motor hierarchy.
Furthermore, an additional module to strengthen reward information is added,
modulating effectively PFC, PM operation. This module could represent Ventral
Tegmental Area (VTA) that guides learning in neocortex [12].

Learning the Opposite-Side Strategy. The training process of the robot is
separated to several trials. Each trial includes two sample-response pairs, testing
the memorization of two different sample cues by the robot (left or right side of
light source appearance), and the selection of the appropriate delayed response
in each case. Particularly, during the response phase, the light source disappears,
and the robot drives freely to the end of the corridor where it has to make a
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turn choice. In the OS training process, the response is considered correct, if
the robot turns to opposite side of light cue appearance. In the case that the
robot makes the correct choice, it drives to the reward area receiving a positive
reinforcement that modulates its belief regarding the correct response strategy.

The learning of the OS response strategy is tested for T trials, each one
consisting of M simulation steps. The success of the training process is evaluated
by:

Etr =

⎛

⎝
∑

T,left

∑

M

r

⎞

⎠

⎛

⎝
∑

T,right

∑

M

r

⎞

⎠
(
1 −

√
B

2 · T · M

)3

(3)

The first term seeks for maximum reward stimuli when the correct response of
the robot is considered the left side, while the second seeks for maximum reward
when the correct response is the right side. The higher the reward the robot has
received, the more successful was the reinforcement training process. The last
term minimizes the number of robot bumps on the walls.

Additionally, HCCE facilitates the employment of partial criteria highlighting
the special roles of cortical agents in the composite model. Specifically, we use a
partial criterion that addresses the development of WM-like activation patterns
on PFC. Two different states a, b are defined, associated with the two possible
sides of light source appearance. For each state, separate activation averages, pl,
are computed, with l identifying PFC excitatory neurons. The formation of WM
patterns is evaluated by:

Ewm=
(

va

ma
+

vb

mb

)
· min

⎧
⎨

⎩

l∑

pa
l >pb

l

(
pa

l − pb
l

)
,

l∑

pb
l >pa

l

(
pb

l − pa
l

)
⎫
⎬

⎭ (4)

ma, va, mb, vb are the means and variances of average activation at states a, b.
The first term enforces consistent activation, while the second supports the de-
velopment of separate activation patterns for each state a, b.

Another criterion addresses the development of different activation patterns in
PM structure. They are related to the different higher level motion commands
that should be passed to M1. Two different states r, l are defined, associated
with the commands of right or left turning. For each state, separate activation
averages, pk, are computed, with k identifying PM excitatory neurons. The suc-
cessful development of distinct activation patterns for the right and left turning
is measured by:

Ec=
(

vr

mr
+

vl

ml

)
· min

⎧
⎨

⎩

k∑

pr
k>pl

k

(
pr

k − pl
k

)
,

k∑

pl
k>pr

k

(
pl

k − pr
k

)
⎫
⎬

⎭ (5)

The explanation of the measure is similar to eq (4).
Finally, an additional criterion highlights the development of different patterns

on the VTA structure, related to the two possible locations of the reward signal.
Two different states x, y are defined, associated with the right or left reward
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Fig. 4. An overview of the extended Hierarchical Cooperative CoEvolutionary process
employed to design the composite computational model

location. For each state, separate activation averages, pt, are computed, with t
identifying VTA neurons. This is described by:

Er=
(

vx

mx
+

vy

my

)
· min

⎧
⎨

⎩

t∑

px
t >py

t

(px
t − py

t ) ,
t∑

py
t >px

t

(py
t − px

t )

⎫
⎬

⎭ (6)

The explanation of the measure is similar to eq (4).

Learning the Same-Side Strategy. Just after testing the performance of the
robot on learning the OS strategy, the computational structure is re-initialized,
and we test if it is able to adopt the SS response strategy, by means of a different
set of reward stimuli. The process is again separated to T trials, and it is very
similar to the one described for OS training. Specifically, each trial includes two
sample-response pairs, but this time, due to the SS strategy the reward stimulus
is located to the same side that the light cue appeared.

The measure evaluating the adoption of the SS strategy by the robot is the
same with the one described in eq. (3). Furthermore, additional evaluation mea-
sures similar to those described in eqs (4), (5), (6) highlight the roles of PFC,
PM, AmpR structures in the composite model. Overall, we employ two different
sets of measures, namely Ewm,os, Ec,os, Er,os, Etr,os and Ewm,ss, Ec,ss, Er,ss,
Etr,ss evaluating the ability of the robot to adopt either the OS or the SS strategy
during the reward-based training process, and the distinct role of substructures
in the composite model.

3.2 Computational Modelling

We turn now to the design of the model by means of the HCCE scheme. The hi-
erarchical coevolutionary process that re-designs and extends the computational
model is illustrated in Fig 4. The species below CG1 and CG3 are depicted with
a dotted line, in order to demonstrate that we keep their original structure (for-
mulated in our previous experiment [4]) and they are not evolved in the current
coevolutionary design procedure. According to the experimental scenario fol-
lowed in the present study, two behavioral tasks t1, t2, are employed to validate
respectively the adoption of either the OS or SS response strategies.

Specifically, the fitness function employed for the evolution of CG2 and its
lower level species, evaluates the success of OS and SS learning procedures, and
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the development of WM activity in PFC. Following the formulation introduced
in eqs. (1), (2), this is described mathematically by:

fCG2 =fCG2,t1·fCG2,t2 with fk
CG2,t1=Ewm,os·Etr,os, fk

CG2,t2=Ewm,ss·Etr,ss (7)

where k represents each membership of an individual in a proposed solution.
The agent structures grouped under CG4 serve the success on OS, SS learning,

and the development of the appropriate higher level motion commands on PM.
Thus, the fitness function employed for the evolution of CG4 is:

fCG4=fCG4,t1 ·fCG4,t2 with fk
CG4,t1=Ec,os ·Etr,os, fk

CG4,t2=Ec,ss ·Etr,ss (8)

where k is as above.
The agent structures grouped under CG5 support OS, SS learning and the

development of different reward patterns on VTA. Thus, the fitness function
employed for the evolution of CG5 is:

fCG5 =fCG5,t1 ·fCG5,t2 with fk
CG5,t1 =Er,os ·Etr,os, fk

CG5,t2=Er,ss ·Etr,ss (9)

where k is as above.
Finally, the top level CG enforces the integration of partial configurations in a

composite model, aiming at the cooperation of substructures in order to facilitate
the accomplishment of both learning processes, and additionally highlighting the
role of each cortical agent in the composite model. The fitness function employed
for the evolution of CG6 is defined accordingly, by:

fCG6=fCG6,t1 ·fCG6,t2 with fk
CG6,t1=Etr,os ·

√
Ewm,os ·Ec,os ·Er,os,

fk
CG6,t2=Etr,ss ·

√
Ewm,ss ·Ec,ss ·Er,ss

(10)

where k is as above.
The hierarchical coevolutionary process described above, employed popula-

tions of 200 individuals for all PS species, 300 individuals for CG2, CG4, CG5,
and 400 individuals for CG6. After 70 evolutionary epochs the process converged
successfully. Sample results of robot learning to adopt the OS and SS strategies
are illustrated in Figs 5, 6. In both cases, the response of the robot in the first
two trials (columns 2,3) are incorrect. However, in the third trial (column 4),
the robot tries another strategy which is successful, and it is continued for all
the remaining trials. As a result, HCCE successfully redesigns the computational
structure, formulating an improved model with reinforcement learning abilities.

Overall, the present experimental procedure demonstrates the power of the
HCCE-based design mechanism to refine an existing computational structure
in order to enhance its functionality. The same results demonstrate also that
the distributed design mechanism is particularly appropriate to enforce the
cooperation among new and preexisting components. As a result, HCCE can
be consistently employed to facilitate the success of complex, long-term design
procedures.
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R R R R R R

R R R R R R

Fig. 5. A sample result of robot performance in the Same-Side response task. The
first column illustrates sample cues. The rest columns (2-7) demonstrate the response
of the robot in consecutive trials. The “R” depicts the side of the reward. Snapshots
in the first line illustrate robot responses when light sample cue appears to the right,
while the second line illustrates robot responses when light sample appears to the left.

R R R R R R

R R R R R R

Fig. 6. A sample result of robot performance in the Opposite-Side response task. The
first column illustrates sample cues. The rest columns (2-7) demonstrate the response
of the robot in consecutive trials. The “R” depicts the side of the reward. Snapshots
in the first line illustrate robot responses when light sample cue appears to the right,
while the second line illustrates robot responses when light sample appears to the left.

4 Conclusions

The work described in this paper, addresses the development of cognitive abil-
ities in artificial organisms by means of implementing brain-inspired models.
Specifically, we introduce a systematic computational framework for the design
and implementation of brain-like structures. This is based on the employment
of neural agent modules to represent brain areas, and an HCCE-based design
methodology to facilitate both the design of partial models and their further
advancement in gradually more complex ones.

Due to the distributed architecture followed by both the agent-based model
and the HCCE design methodology, the proposed computational framework is
able to address explicitly the structure of system components. Hence it is able to
add new components in the model, and re-design some of the pre-existing ones
in order to advance gradually the capabilities of the model.

We believe that by exploiting the proposed approach, a powerful method to
design brain-inspired structures can emerge. Further work is currently underway
to investigate the suitability of our approach in large scale modelling tasks.
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