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ABSTRACT 
Manufacturing work cell operations are typically complex, 

especially when considering machine tools or industrial robot 

systems. The execution of these manufacturing operations 

requires the integration of layers of hardware and software. The 

integration of monitoring, diagnostic, and prognostic 

technologies (collectively known as prognostics and health 

management (PHM)) can aid manufacturers in maintaining the 

performance of machine tools and robot systems by providing 

intelligence to enhance maintenance and control strategies. PHM 

can improve asset availability, product quality, and overall 

productivity. It is unlikely that a manufacturer has the capability 

to implement PHM in every element of their system. This 

limitation makes it imperative that the manufacturer understand 

the complexity of their system. For example, a typical robot 

system includes a robot, end-effector(s), and any equipment, 

devices, or sensors required for the robot to perform its task. 

Each of these elements is bound, both physically and 

functionally, to one another and thereby holds a measure of 

influence. This paper focuses on research to decompose a work 

cell into a hierarchical structure to understand the physical and 

functional relationships among the system’s critical elements. 

These relationships will be leveraged to identify areas of risk, 

which would drive a manufacturer to implement PHM within 

specific areas.  

 

INTRODUCTION 
 Advanced technology continues to emerge at a rapid pace as 

manufacturers, technology developers, and technology 

integrators further integrate operations technology with 

information technology to produce their own iterations of Smart 

Manufacturing. Smart Manufacturing is focused on bridging and 

connecting hardware, software, and data to increase operational 

efficiency, asset availability, and quality while decreasing 

unscheduled downtime and scrap [1-4]. The successful 

implementation of these paradigms will lead to greater efficiency 

within manufacturing operations enabling manufacturers to be 

more responsive to changing consumer demand and more 

resilient in the face of increased competition.  

 Robot systems play a role in many manufacturing 

environments including automotive [5-7], electronics [8, 9], 

consumer packaged goods [10], and aerospace [11-13] 

manufacturing. Smart Manufacturing is having a positive impact 

on robotic operations occurring on the factory floor. More 

diverse systems, sub-systems, and components are being 

connected together which is leading to an increase in robot work 

cell capabilities. The American National Standards Institute, Inc. 

(ANSI) defines an industrial robot system to include a robot, 

end-effector(s), and any equipment, devices, or sensors required 

for the robot to perform its task [14]. Examples of additional 

equipment, devices, and sensors include vision and proximity 

sensors (e.g., camera, laser), safety elements (e.g., light curtain), 

supervisory controller (e.g., Programmable Logic Controller 

(PLC)), and other supporting automation (e.g., conveyor belt). 

Figure 1 presents an example of a robot work cell including some 

of its key elements. 

 
The integration of these elements and the increase of ‘moving 

parts’ generate greater complexity, especially when considering 

robot-robot and human-robot operations. More complexity leads 

to more sources of error which can compromise the efficiency 

and quality of the process. Inclusion of condition monitoring, 

diagnostics, and/or prognostics (collectively known as 

prognostics and health management (PHM)) can provide greater 

intelligence of equipment and process health which can 

minimize unscheduled downtime, increase efficiency, and 

improve overall productivity.  
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Figure 1. Example Robot Work Cell (MicroOne/Fotolia) 

 The United States (U.S.) Federal Government has a research 

focus to advance the means of assessing, verifying, and 

validating PHM technologies operating within manufacturing 

environments [15, 16]. This effort is being conducted at the 

National Institute of Standards and Technology (NIST) and 

includes a focus on machine tool and robot work cell 

manufacturing operations. NIST researchers are actively 

developing use cases, performance metrics, test protocols, and 

reference data sets to enable the verification and validation 

(V&V) of PHM technologies. This paper focuses on 

decomposing an example robot work cell into an appropriate 

hierarchical structure through organizing the physical and 

functional elements such that manufacturers can determine 

appropriate boundaries with which to overlay condition 

monitoring, diagnostic, and prognostic technologies. The 

research is aimed at addressing the question – How can 

appropriate physical and functional boundaries be determined 

within a manufacturing work cell to effectively monitor, 

maintain, and control the work cell? To that end, this paper is 

organized as follows: the Manufacturing Robot Work Cell 

section discusses typical robot work cells within manufacturing 

environments and how their complexities, and faults and 

failures, are evolving with the emergence of new technologies; 

the PHM section presents background on PHM techniques and 

technologies that provide monitoring, diagnostic, and prognostic 

intelligence; the Research Approach section discusses how NIST 

is organizing its efforts to develop the necessary use cases, test 

methods, performance metrics, and reference data sets to 

promote V&V; the Robot Work Cell Hierarchy section presents 

a proposed method to structure, organize, and delineate physical 

and functional boundaries to identify areas for PHM inclusion; 

and the Conclusion section wraps up the paper and presents next 

steps in the research.  

MANUFACTURING ROBOT WORK CELLS 
Robot work cells, with industrial robot arms, have operated 

in manufacturing environments to perform numerous operations 

including welding, painting, drilling, and material handling [17, 

18]. Across the range of robot systems, industrial robotics 

continues to be a substantial investment by the manufacturing 

community to improve product quality, increase productivity, 

and lower costs. The evolution of various technologies, including 

more intelligent and affordable sensors, displays, end-effector 

technologies, and control systems has enabled industrial arm-

based robot work cells to become more viable options for a larger 

portion of the manufacturing community [19]. Many of these 

robot work cells operate for extended periods of time across 

multiple work shifts. Maintenance strategies for these work cells 

are either: 

 Reactive (fix it when it breaks), 

 Preventative (maintenance is performed at specified 

intervals), 

 Predictive (maintenance is performed based upon 

measured performance and/or health),  

…or a combination thereof [20, 21]. Even with regular 

maintenance, robot system operations will degrade, increasing 

the potential for faults or failures. Faults and failures can 

‘naturally’ occur through degradation from expected operations, 

yet the appearance of faults and failures can also be accelerated 

through a variety of errors. Faults and failures can be related to 

hazards; faults and failures can produce hazards and the presence 

of hazards can lead to faults and failures. The Occupational 

Safety and Health Administration (OSHA) has identified seven 

potential robotic work cell hazards [22]. A subset of these 

hazards are due to faults or failures: 

 Human Errors – Includes erroneous commands entered 

into the teach pendant by the operator, 

ignoring/misinterpreting data presented by the system, 

and failure to follow all safety protocols 

 Control Errors – Includes errant controller code and 

degradation of controller hardware  

 Mechanical Failures – Includes degradation of motors 

and gears of the robot arm and actuators, motors of the 

end-effector, and faulty sensors providing inaccurate 

data to the controller 

 Environmental Sources – Includes pronounced changes 

in temperature, humidity, and sunlight (which can 

impact certain sensor readings) 

 Power Systems – Includes power surges and power loss 

There is no single way that these faults and failures can be 

classified. Some faults and failures are the root causes (a sensor 

has a loose wire and is therefore reporting erroneous data to the 

controller) while other faults and failures emerge once the root 

cause has occurred (a robot arm is hitting a box because the 

controller is telling the arm that nothing is in front of it because 

the proximity sensor has a loose wire and is reporting that the 

area is clear of obstacles). Three principle categories have been 

developed to classify faults and failures [19] [23-25]. These 

categories are designated: 

 Faults – Typically design defects, inaccurate signals, or 

incorrect decisions that impact the system’s ability to 

function properly. Some faults may accelerate the 

degradation of a component or sub-system (e.g., a robot 

arm returns a fault when it is over-loaded. Excessive 

over-loading of the robot arm can result in increased 

wear and tear on gears and motors). 

Robot Arm

End Effectors

Supporting
Automation

Controller/
Interface

Operator
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 Soft Failures – Degradation or wear and tear that has 

resulted in decreased process efficiency, productivity, 

and/or product quality. Soft failures, if left unaddressed, 

can lead to hard failures. An example of a soft failure 

would be a degraded motor in a robot arm that is now 

limited in the speed at which it can move. The robot 

may still be capable of completing its required task, yet 

it may take more time than specified.  

 Hard Failures – Degradation or wear and tear that has 

resulted in breakage that has compromised the 

productivity and/or quality of the process. Hard failures 

are typically indicated with the system being in a 

frozen/shutdown state or in a state of performing 

egregious behaviors. Examples of hard failures include 

a complete motor failure where a joint has gone limp or 

a controller error where the robot no longer moves. 

The different types of faults and failures presented above 

highlight the complexity of robot work cells operating within 

manufacturing environments. Additional complexity is 

continually being added to work cells with the inclusion of more 

collaborative robotic systems – robots working with other robots 

and robots working in closer proximity to humans [26]. It 

becomes much more important to accurately monitor, diagnose, 

and predict faults and failures in work cells when humans are 

operating in relatively close proximities.  

Further complexity in a robot work cell stems from any 

reconfiguration(s) that occur throughout the life of the work cell 

and its key components. Different types of faults presented above 

highlight the complexity of robot work cells operating within 

manufacturing environments. Consider a robot work cell that is 

tasked with material handling operations (e.g., a robot that 

manipulates boxes off of a conveyor belt). Over time, 

components and sub-components will have to undergo a range 

of maintenance activities to maintain productivity and quality 

targets. At some point, it’s likely that it will be more cost 

effective to replace one of the key components or sub-

components with a new one as compared to repairing this 

component. Suppose that the 20-year-old robot is now replaced 

with a new robot. It’s likely that the new robot will have greater 

capabilities than the old robot (unless you find a new iteration of 

the same robot). After integrating the new robot into the work 

cell, it’s discovered that the work cell is operating at its expected 

performance as compared to when the old robot was in place and 

operating to specification. However, it is possible that the new 

robot is faster, more accurate, capable of lifting heavier loads, 

etc. With that being the case, the operator has the potential to 

increase the productivity of the work cell and/or quality of the 

work cell’s output. If/when the operator takes advantage of the 

new robot’s capabilities, the robot, which may have been the 

‘weak-link’ in the prior iteration of the work cell, may now be 

the strongest link in the work cell. In this situation where the 

robot work cell was reconfigured to accommodate a new robot 

arm, all of the relationships between the robot arm and other key 

components (e.g., end-effector, controller, sensors, safety 

systems) have changed [since the old arm was replaced with a 

new arm]. Not only does baseline performance of the robot work 

cell need to be reestablished with the new arm, the relationships 

between any component interfacing with the robot need to be 

understood so the degradation and wear and tear on these 

elements can be similarly understood. An analogous situation 

occurs when the work cell must be reconfigured to produce a 

different part. The work cell is likely to undergo some type of 

hardware and/or software reconfiguration which thereby alters 

the relationships among key physical and functional elements. 

Changing relationships will change how the various elements 

degrade over time.  

Given the robot work cell’s complexity, PHM can offer 

monitoring, diagnostic, and prognostic capabilities to track key 

performance metrics to examine the impact of the many 

relationships present in the work cell with respect to the 

relationship influence on overall system, process, and equipment 

health.  

PROGNOSTICS AND HEALTH MANAGEMENT 
Advancing PHM in the manufacturing environment can lead 

to substantial savings for an organization. PHM may ultimately 

enable a machine or system to self-diagnose and self-heal with 

enough intelligence to be both aware of its current health and 

make an appropriate decision given both its state and goals. This 

is known as the proactive/intelligent maintenance strategy and is 

the topic of substantial research [27-29]. Current PHM 

technologies are enabling the three afore-mentioned 

maintenance strategies (reactive, preventative, and predictive) 

within a range of manufacturing environments [30-34] . 

PHM research has led to studies and reviews that compare 

existing PHM methods along with highlighting their strengths 

and limitations [35-38]. More specifically, reviews of PHM-

based standards have also been conducted [39-41]. 

Collectively, PHM methods can be summarized below in 

Fig. 2. Each of these methods can be applied in vastly unique 

ways given the uniqueness of each manufacturing facility, 

subsequent work cells, etc.  

 
Figure 2. Description of general PHM methods [38] 
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 Literature reviews and direct discussions with the PHM 

community (e.g., PHM technology developers, PHM technology 

integrators, and manufacturers as the end-users of PHM) have 

highlighted a need to improve the existing maintenance 

strategies that are currently used within a factory. Most 

manufacturers employ a mix of reactive and preventative 

maintenance strategies to ensure sufficient operations. Relatively 

few manufacturers have implemented predictive maintenance 

strategies to enhance their monitoring, diagnostic, and 

prognostic capabilities. Minimizing reactive maintenance while 

enhancing (ideally, optimizing) preventative and predictive 

maintenance requires a greater understanding of where and how 

PHM can be implemented in the manufacturing environment. As 

PHM becomes more important to the manufacturing community, 

more people have recognized the importance of developing and 

improving various PHM implementations. One challenge is that 

the PHM community is largely void of methods to verify and 

validate the capabilities of these emerging PHM techniques.  

RESEARCH APPROACH 
The NIST research team is taking a methodical approach to 

develop the necessary use cases, performance metrics, test 

methods, reference datasets, and software tools to provide a 

means of verifying and validating PHM within manufacturing 

robot work cells [16, 39]. Given the complexity of a typical robot 

work cell, it is important to initiate the research in a basic manner 

where variables, especially those that influence system, process, 

and equipment health, are minimized. This breeds the 

development of a basic robot work cell. For NIST’s research 

efforts, this takes the form of a robot arm and its controller where 

the robot is hard-coded in its operations as opposed to being 

influenced by external sensing, safety, or human inputs. This 

basic work cell is being used by NIST as the foundation for the 

development of a quick health assessment methodology that will 

allow manufacturers to verify the health of their robot in terms 

of its positional accuracy [19]. Besides simplifying the robot 

work cell, it’s also important to limit the research focus to a 

specific area(s) of PHM to avoid too much complexity too soon. 

While the complexity of the work cell can be considered the first 

axis of influence, the second axis that influences complexity and 

difficulty of the problem is that of the specific PHM and 

decision-making focus (see Fig. 3). NIST’s research efforts will 

increase in complexity by adding additional, manufacturing-

relevant components to the work cell and employing diagnostic 

and prognostic techniques at different levels of the work cell. 

Further using the NIST research example, the quick health 

assessment methodology is aimed at monitoring the health of the 

robot arm (in terms of its positional accuracy), offering some 

diagnostic information (with respect to the health of specific 

joints), and providing intelligence to update the robot’s control 

strategy accordingly (i.e., compensating for performance errors 

due to health degradation).  

 
Figure 3. NIST Research Approach (Funway5400, MicroOne/Fotolia) 

As NIST’s research efforts expand, so too will the 

complexity of the robot work cell and the degree to which PHM 

and the decision space are included. This will lead to greater 

complexity and more challenging research. Embracing greater 

complexity and difficulty requires a thoughtful way of 

organizing and structuring the complexity of the robot work cell. 

A single robot arm and its controller, without any other elements, 

are still somewhat complex. Adding external sensors, end-

effectors, safety systems, supporting automation, etc. makes it 

more complex. A hierarchical model is proposed to promote the 

structuring and organization of the overall work cell, its 

constituent physical components, and sub-components. 

Likewise, this physical hierarchy has a mirror that maps the 

system’s overall capabilities and building-block functions. The 

development of this hierarchy will make it easier to identify 

boundaries within the work cell for the inclusion and 

advancement of PHM.  

ROBOT WORK CELL PHM ANALYSIS HIERARCHY 
A robot work cell can be viewed as a hierarchy of systems 

and components. This type of physical decomposition is both 

critical in the design of a new system and also understanding the 

relationships and interactions of an existing system as defined in 

the National Aeronautics and Space Administration’s (NASA’s) 

Systems Engineering Handbook [42]. Building upon this 

systems engineering approach, Multi-Relationship Evaluation 

Design (MRED) was developed as a means of decomposing a 

complex system into its key physical components and functional 

capabilities for the purpose of strategically evaluating the 

performance of specific sub-systems, components, and 

capabilities at differing levels of the system [43-47]. Although 

MRED is focused on performance evaluation, it can be leveraged 

to hierarchically decompose the physical components and sub-

components, in concert with the system’s capabilities to 

delineate boundaries for PHM. Figure 4 presents an abstract 

hierarchical decomposition of a physical system based upon the 

MRED effort. Note that the physical makeup of the system is 
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typically more complex than the three levels (System, 

Component, and Sub-Component) where there could be sub-

system levels before reaching the component level. Adapting the 

MRED definitions of the below key terms for this effort 

becomes: 

 Component – An essential part or feature of a System 

that contributes to the System’s ability to accomplish a 

goal(s). 

 Sub-Component – An element, part, or feature of a 

Component that can be isolated for the purpose of 

maintenance or replacement.  

 System – A group of cooperative or interdependent 

Components forming an integrated whole to 

accomplish a specific goal(s).  

 

 
Figure 4. Hierarchical Physical Decomposition 

Distinctions between what is a System, Component, and 

Sub-Component are based upon several key factors including: 1) 

what elements are physically separate allowing them to be 

independently maintainable or replaceable and 2) the 

logical/functional connections between multiple elements. The 

process of distinguishing elements from one another will be 

clarified later in this section through the discussion of the two-

arm robot work cell example.   

From the MRED effort, each of these physical levels are 

defined as Technology Test Levels. Considering the focus of this 

NIST-led effort, it would be more appropriate to define these 

levels as Monitoring, Maintenance, and Control Levels 

(MMCLs).  

Figure 5 leverages additional terms from MRED that are 

applied to this research effort and would be MMCLs. 

 

 
Figure 5. Hierarchical Functional Decomposition 

 Process – The overall activity that the System is 

configured to perform. 

 Task – A specific activity within the overall Process. A 

System performs a single Process that is made up of one 

or more Tasks. A Task is enabled by either a single 

Component or multiple Components working together.  

 Sub-Task – A building block function of a Task. 

 

Coupling in the functional concept of a Task, the relationship 

between physical and functional elements is presented in Figure 

6. Considering that Sub-Components and Sub-Tasks are building 

block elements of Components and Tasks, respectively, Fig. 6 

could be substantially expanded to include these Sub- level 

elements.  

 

 
Figure 6. Component and Capability Mapping Diagram 

MMCLs highlight user-defined areas that 1) designate 

specific physical elements (i.e., System, Component, Sub-

Component) and/or functions (i.e., Task, Sub-Task) that should 

be monitored to track current and predict future health states; 2) 

identify physical elements for maintenance to be performed 

pending the results of monitoring efforts; and functions whose 

control strategies need to be updated given current and predicted 

health. Each MMCL has one or more metrics that are monitored 

and reviewed for maintenance and control decisions. Likewise, 

metrics monitored at one level may be leveraged for maintenance 

or control decisions at another level. Given the uniqueness of 

every system, metrics are also user-defined.   

 The hierarchical decomposition is applied to a two-arm 

robot work cell. Figure 7 identifies the key Components within 

the System. This figure will also be referenced to highlight the 

key Tasks that produce the overall Process. The following steps 

are prescribed to decompose an existing System to determine the 

MMCLs. 

1. Identify the objective/goal of the System. 

2. Identify the Process that the System is to perform.  

3. Identify the physical boundaries of the System 

necessary for decomposition. The boundaries are based 

upon what is necessary to physically accomplish the 

objective/goal. This step may be performed 

simultaneously with Step 2. 

4. Break-down the System into Components. Physical 

boundaries of Components can be discretionary based 

upon what can reasonably be physically separated for 

the purposes of repair and replacement.  

5. Breakdown the Components into Sub-Components.   

6. Break-down the Process into constituent Tasks.  
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7. Break-down the constituent Tasks into Sub-Tasks. 

Process and Task decomposition is influenced by what 

can be functionally separated from a control 

perspective.  

8. Determine the performance metrics that are necessary 

to determine if the objective/goal is accomplished. 

These metrics would be similar to NASA’s Measures of 

Effectiveness [42]. “Measures of Effectiveness are the 

operational measures of success that are closely related 

to the achievement of mission or operational objectives 

in the intended operational environment” [42].  

9. Determine any performance metrics that are necessary 

to assess whether the Process is successfully completed 

as specified. It’s possible that some of the metrics 

identified in Step 4 also assess the overall Process 

which would present metrics that can assess both the 

objective and the Process. These metrics would be 

similar to NASA’s Measures of Performance which 

“characterize physical or functional attributes relating 

to the System” [42].   

10. Determine the metrics that are necessary to assess the 

success of Tasks and Sub-Tasks. Likewise, determine 

any additional metrics necessary to assess the health of 

Components and Sub-Components that make-up the 

overall System and influence the Process. These metrics 

would be most comparable to NASA’s Technical 

Performance Measures which are considered critical 

and measurable performance attributes that can be 

monitored [42]. 

 

 
Figure 7. Two-arm Robot Work Cell – Key Components (MicroOne, 

Motorama/Fotolia) 

Steps 1 through 9 present the hierarchical decomposition of a 

pre-existing System and Process. It is important to note that some 

of the steps may be done simultaneously given that the System is 

already known. Likewise, some of these steps are presented in 

brief due to space limitations. The importance of going through 

these steps is to capture and organize the structure of the System 

and the Process to identify the most ideal areas, within the 

structure, to incorporate PHM. The remainder of this section 

decomposes the example two-arm robot work cell according to 

these steps. The following section begins the discussion of how 

PHM can be integrated into a decomposed System.   

Step 1: The objective of the System presented in Fig. 7 is for 

parts to be marked in a specific location and sent to the next 

station in a specified amount of time. Since the example work 

cell is designed as an industrially-relevant use case, the marking 

of a part is representative of a robot moving to a precise location 

with respect to the part and altering the part to support the 

finished product. Specifically, having a robot perform this type 

of activity is similar to having a robot drill a hole or perform a 

spot weld.  

Step 2: The Process that the System performs is for two 

robots to work together to manipulate parts off of an incoming 

conveyor system, apply a mark to a precise location on the 

incoming parts, and return the parts to an outgoing conveyor 

system. 

Step 3: The physical boundaries of the System begin with the 

part entering the work cell and end with the part leaving the work 

cell. The physical boundaries do not include the room/building 

that the work cell resides. Specifically, the boundaries of the 

System are defined by its key Components.    

Step 4: The key Components of the work cell, presented in 

Fig. 7, are the two robot arms (A and B), their respective 

controllers (CA and CB), their respective end-effectors (EA and 

EB), the inbound conveyor (D), the outbound conveyor (F), and 

the supervisory PLC (G). Other key Components not shown in 

Fig. 7 include a vision sensor that detects the position and 

orientation of parts on the inbound conveyor, D, any safety 

elements as deemed necessary based upon the expected 

proximity of human operators/supervisors, and the fixtures that 

hold parts while they are being marked.  

Step 5: Each of the two robots can be broken down into their 

six constituent joints – the base, shoulder, elbow, wrist 1, wrist 

2, and wrist 3, and the robot controller. Each of the six joints 

could be further broken down into their constituent motors and 

encoders. The conveyor is decomposed into its physical 

structure, motor, and encoder. Depending upon the safety system 

configuration (e.g., safety mat(s), light curtain(s)), these can be 

decomposed further.  

Step 6: The key Tasks, shown in Fig. 9, underscore the 

Process flow of the System. The Process begins with Task 1 – 

parts move on the inbound conveyor, D, until they arrive at a pre-

determined location within the reach of robot arm A. Task 2 

involves robot arm A grasping the nearest part with its gripper, 

EA, and placing it on the fixture next to robot arm B. Task 3 calls 

for robot arm B to ‘mark’ the fixture part with its tool tip, EB. 

After the fixture part is marked, Task 4 calls for robot arm A to 

remove the part from the fixture and place it on the outbound 

conveyor, F. Task 5 calls for Conveyor F to move the ‘marked’ 

part to its next destination. It is important to note that this robot 

work cell (i.e., the System) is being designed to be inclusive of 

numerous Components and Tasks commonly found in 

manufacturing environments according to case studies and site 

visits [20, 21, 48]. 

Step 7: Each of the afore-mentioned Tasks presented in Step 

6 can be broken down into Sub-Tasks. For brevity, only Task 1 

will be broken down into Sub-Tasks. These Sub-Tasks are: 

 Task 1, Sub-Task 1 – A part on the incoming conveyor 

moves until it comes into the field of view of an 
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overhead vision sensor (which is above the end of the 

conveyor closest to Robot A) 

 Task 1, Sub-Task 2 – When a part is detected in the field 

of view of the overhead vision sensor, the sensor 

indicates to the Programmable Logic Controller (PLC) 

that a part is present [in the vision sensor’s field of 

view].  

 Task 1, Sub-Task 3 – The PLC sends a signal to the 

conveyor telling it to stop. 

 Task 1, Sub-Task 4 – The PLC sends the vision sensor 

data to Robot A’s controller that includes the position 

and orientation of the part in view.  

Step 8: The performance metrics that are defined to indicate 

whether the overall objective has been accomplished include: 

 Takt Time – This metric is measured in seconds and 

represents the frequency a completed part exits the 

work cell.  

 Mark Accuracy – This metric is measured in 

millimeters and represents how far from the part’s 

center the mark is made 

Step 9: The performance metrics that are defined to indicate 

the successful completion of the Process include: 

 Cycle Time – This metric is measured in seconds and 

represents the total amount of time a part spends in the 

work cell (i.e., the total time it takes a part to complete 

Tasks 1 through 5). 

 Quality Degradation – This metric represents the 

change in quality that a part experiences as it runs 

through the work cell. For example, parts could be 

accurately marked and run through the work cell rather 

quickly, yet Robot A could be damaging parts while it 

is manipulating them or Robot B is making erroneous 

marks in addition to accurately marking the top of parts. 

It is reasonable that Takt Time and Mark Accuracy could also 

be considered Process-level performance metrics. Overall 

Equipment Effectiveness (OEE) could also be another metric 

used at the objective level and/or the Process level [49]. 

However, the effectiveness and value of this metric has been a 

recent topic of debate [50]. The value of OEE for this specific 

work cell is being discussed in comparison to simply using its 

aggregate metrics: asset availability, productivity, and quality.   

Step 10: The performance metrics that are defined to assess 

the Tasks and Sub-Tasks are too numerous to be presented. They 

include a range of time measurements with respect to robot, part, 

and conveyor movements. Additional metrics include accuracy 

of the vision system and the robot movement.  

The robot work cell presented in Fig. 7 can be characterized 

in the hierarchical physical decomposition presented in Fig. 8. 

This decomposition presents key physical MMCLs that seem 

reasonable to monitor during the afore-mentioned manufacturing 

process based upon the critical contributions of each Component 

to the System. The organization of this figure could be 

challenged. For example, it would be plausible for the 

Supervisory PLC, G, to be placed at the top of the hierarchy 

(situated where ‘Robot Work Cell’ appears) given that the PLC 

will be the ‘brains’ of the manufacturing process and coordinate 

all activities. From a control perspective, this would be a 

reasonable structure. Given that this decomposition is purely 

physical, the PLC is placed on the same level as other key 

Components since, physically, none of the other Components is 

located inside of the boundaries of the PLC. To further extend 

the physical decomposition, it was noted earlier that each robot 

could be broken down further into individual joints. Each of 

these joints could be broken down further into their respective 

gears, motors, and wiring, and then down further into shafts, 

nuts, bolts, etc. Physically decomposing this robot work cell 

down to the nuts and bolts level is not practical from the 

perspective of monitoring, maintenance, and control. It may be 

useful to stop the physical decomposition at the level of the robot 

arm or it may be useful to go down to the next level that identifies 

specific joints; this decision is directly influenced by historical 

knowledge of what can practically be monitored, where 

problems occur, and how maintenance is performed. In this 

specific work cell, it is beneficial to decompose the work cell 

down to specific joints. Further, each joint would be further 

decomposed into its constituent motor, encoder, current sensor 

and gearing. Again, the full decomposition is not visualized in 

this paper.    

Performing a Component and Task mapping adds clarity 

with respect to the relationships of the MMCLs. Figure 9 presents 

this initial mapping. Only Task 1 and Task 4 are mapped out 

between the Component and Task levels. Tasks 2, 3, and 5 are not 

shown due to space limitations. Several key Sub-Components are 

added for each robot, yet a majority of Sub-Components and all 

of the Sub-Tasks are not shown for brevity. It is evident that there 

are many relationships between the physical and functional 

levels. Likewise, some physical elements contribute to multiple 

Tasks. Now that Steps 1 through 10 are complete for the robot 

work cell, System and Process have been sufficiently 

decomposed to more easily identify the MMCLs based upon fault 

and failure knowledge of the individual elements and historical 

data of the work cell, if the work cell has been in service and data 

has been captured prior to this decomposition.    

INFLUENCE OF RISK ON THE HIERARCHY 
As discussed in the earlier section, the hierarchies can be 

challenged. It is possible that the hierarchies will evolve as the 

risk of potential faults and failures is understood. These 

hierarchies could also impact the MMCLs. If a System, 

Component, Sub-Component, Task, or Sub-Task is considered 

low risk (i.e., very unlikely to fail, and if it does fail, the failure 

will have negligible impact and/or be very easy to remedy) in the 

overall manufacturing process, then it is unlikely that this MMCL 

will be independently bounded. Conversely, if a MMCL is 

considered high risk (i.e., very likely to fail or if it does fail, the 

failure would have a severe impact on the manufacturing 

process), then it is very likely that the MMCL will be clearly 

specified so it can be monitored, maintained, and/or controlled.
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Figure 8. Physical Hierarchical Decomposition of Robot Work Cell 

 
Figure 9. Component and Task Mapping

Figure 10 presents an example risk matrix. This matrix presents 

risk (low, low medium, medium, medium-high, and high) in 

  

 
Figure 10. Risk Matrix [51] 

terms of likelihood (very unlikely, unlikely, possible, likely, very 

likely) and impact (negligible, minor, moderate, significant, 

severe). Organizations use this matrix to evaluate levels of risk 

so they can clearly differentiate the various types of risk present. 

This type of risk matrix can be paired with the System and 

Process decompositions to indicate the varying levels of risk that 

a Component, Sub-Component, Task, and Sub-Task will fail 

during its designated manufacturing process. In practice, it 

would be expected that an organization would not tolerate any 

high risk, or even medium high risk, where the potential, for such 

faults and failures would be designed out of the system and 

therefore eliminated. Different organizations apply the risk 

matrix in terms of quantifying likelihood and impact values. The 

following guidelines are presented:  

 Likelihood – corresponds to a percentage or frequency 

that the MMCL will experience a fault or failure. Values 

can be quantified as percentages (e.g., Very Likely – 

greater than 50 % chance of fault/failure occurrence, 

Likely – between 25 % to 50 % chance of fault/failure, 

Possible – between 10 % to 25 % chance of 

fault/failure, Unlikely – between 1 % to 10 % chance of 

fault/failure, Very Unlikely – less than 1 % chance of 

failure) or as frequencies (e.g., Very Likely – 

fault/failure may occur once/day of operations, Likely 

– fault/failure may occur once/week, Possible – 

fault/failure may occur once/month, Unlikely – 

fault/failure may occur once/year, Very Unlikely – 

fault/failure may occur once/lifetime)  

 Impact – corresponds to the significance that a 

fault/failure of an MMCL will have on the operations. 

Impacts can be quantified in terms of loss of quality or 

IMPACT
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productivity, which can both be turned into loss of 

dollars. Example quantifications of impact could be 

Severe – Process is offline for greater than a week, 

Significant – Process is offline between one day to a 

week, Moderate – Process is offline between an hour to 

a day, Minor – Process is offline between 10 minutes to 

an hour, and Negligible – Process is offline for less than 

10 minutes. Some risk matrices that are actively used 

quantify impact in terms of personnel injury. This effort 

is focused on fault/failure impact to the manufacturing 

process and not impact on personnel.  

       

The hierarchical System and Process decompositions 

provide a technology developer, technology integrator, or 

manufacturer the means of delineating the boundaries of MMCLs 

of importance. Establishing these boundaries must be coupled 

with an understanding of how much risk each MMCL carries 

with them so that the appropriate PHM technique(s) can be 

applied. This paper lays the foundation for this research effort 

where future work has begun to add greater clarity to this 

process.  

FUTURE WORK 
 Building upon this effort, the next step in this research is to 

further link MMCLs across the physical and functional 

hierarchies. Further understanding these linkages will enable 

technology developers, technology integrators, and 

manufacturers to identify key relationships between MMCLs. 

This will enable additional guidelines to be provided to support 

strategic inclusion of PHM through the System and Process. 

 Next, common robot work cell faults and failures will be 

mapped back to the physical and functional hierarchies. This will 

include highlighting which faults and failures are the root cause 

vs. the faults and failures that result from a connected MMCL 

failing. In parallel with linking common faults and failures, 

metrics will also be identified and integrated that enable 

monitoring, diagnostics, and prognostics to occur.  

CONCLUSION 
Technology developers, technology integrators, and 

manufacturers must be strategic in their implementation of 

monitoring, diagnostic, and prognostic techniques within their 

manufacturing processes. Insufficient PHM can lead to costly 

faults and failures that compromise the manufacturing process, 

and, ultimately, the organization’s health. Too much PHM can be 

expensive in terms of the materials (e.g., sensors, computers) and 

labor (e.g., personnel to design the PHM system, develop new 

algorithms, monitor the PHM system). This builds the 

foundation for a process that will aid in the strategic placement 

of PHM throughout a manufacturing process by promoting the 

delineation of clear boundaries across MMCLs and defining 

PHM priorities through risk assessment. PHM techniques are 

implemented largely because there is a risk of a fault or a failure. 

If the risk cannot be eliminated, then the organization must 

weigh the value of PHM vs. the value of realizing the fault or 

failure. No PHM technique is 100 % accurate or perfect, yet 

PHM’s implementation within a range of manufacturing 

environments has been documented in terms of having positive 

impacts. The process presented in this paper would add greater 

rigor to the integration, and extent of, PHM across a 

manufacturing process.  

NIST DISCLAIMER 
The views and opinions expressed herein do not necessarily 

state or reflect those of NIST. Certain commercial entities, 

equipment, or materials may be identified in this document to 

illustrate a point or concept. Such identification is not intended 

to imply recommendation or endorsement by NIST, nor is it 

intended to imply that the entities, materials, or equipment are 

necessarily the best available for the purpose. 
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