
Under review as a conference paper at ICLR 2019

Hierarchical Deep Reinforcement Learning
Agent with Counter Self-play on Competi-
tive Games

Anonymous authors
Paper under double-blind review

Abstract

Deep Reinforcement Learning algorithms lead to agents that can solve
difficult decision making problems in complex environments. However, many
difficult multi-agent competitive games, especially real-time strategy games
are still considered beyond the capability of current deep reinforcement
learning algorithms, although there has been a recent effort to change this
(OpenAI, 2017; Vinyals et al., 2017). Moreover, when the opponents in a
competitive game are suboptimal, the current Nash Equilibrium seeking, self-
play algorithms are often unable to generalize their strategies to opponents
that play strategies vastly different from their own. This suggests that a
learning algorithm that is beyond conventional self-play is necessary. We
develop Hierarchical Agent with Self-Play , a learning approach for obtaining
hierarchically structured policies that can achieve higher performance than
conventional self-play on competitive games through the use of a diverse
pool of sub-policies we get from Counter Self-Play (CSP). We demonstrate
that the ensemble policy generated by Hierarchical Agent with Self-Play
can achieve better performance while facing unseen opponents that use
sub-optimal policies. On a motivating iterated Rock-Paper-Scissor game
and a partially observable real-time strategic game (http://generals.io/), we
are led to the conclusion that Hierarchical Agent with Self-Play can perform
better than conventional self-play as well as achieve 77% win rate against
FloBot, an open-source agent which has ranked at position number 2 on
the online leaderboards.

1 Introduction

Deep reinforcement learning (RL) has achieved significant success on many complex sequen-
tial decision-making problems. (Silver et al., 2017) Most of the problems are in robotics
domain (Levine et al., 2016) or video games (Mnih et al., 2015). However, complex real-time
strategic competitive games still pose a strong challenge to the current deep reinforcement
learning method due to the requirement of the ability to handle long-term scheduling, partial
observability and multi-agent collaboration/competition. (Vinyals et al., 2017; OpenAI,
2017). Competitive games such as Go, in which each player optimize their own interests
by finding the best response to opponents’ strategies, are usually studied mainly on finding
the Nash Equilibrium solutions (Silver et al., 2016; 2017), namely a combination of players’
strategies upon which neither player can obtain higher rewards by modifying their strategy
unilaterally (Shoham & Leyton-Brown, 2008). However, in the real-world, opponents can
have a variety of strengths and play styles and do not always adopt the equilibrium solutions.
In fact, human players are often remarkably good at analyzing strategies, tendencies, and
flaws in opponents’ behavior and then exploiting the opponents even if the resulting exploit-
ing strategies themselves are subject to exploitation. Exploitation is a central component
of sports and competitive games. This is also applicable in other real-world competitive
domains, including airport and network security, financial and energy trading, traffic control,
routing, etc. Therefore, exploring game-playing strategies that intentionally avoid the equi-
librium solution and instead “learn to exploit” is a promising research direction toward more

1



Under review as a conference paper at ICLR 2019

capable, adaptable, and ultimately more human-like artificial agents. Hence, we develop a
new algorithm Hierarchical Agent with Self-Play that learns to exploit the suboptimality
of opponents in order to learn a wider variety of behaviors more in line with what humans
might choose to display.

In this work, we focus on two-player, symmetric, extensive form games of imperfect informa-
tion, though generalization to more players and asymmetric games is feasible and relatively
straightforward. First, we adopt recent Proximal Policy Gradient (PPO)(?) methods in
deep reinforcement learning (RL), which has been successful at handling complex games
(Mnih et al., 2015; Silver et al., 2016; Mnih et al., 2016) and many other fields (Schulman
et al., 2016; OpenAI, 2017) Second, we aim to automatically acquire a strong strategy that
generalizes against opponents that we have not seen in training. Here we use self-play to
gradually acquire more and more complex behaviors. This technique has proven successful
at solving backgammon (Tesauro, 1995), the game of Go (Silver et al., 2017), imperfect
information games such as Poker (Heinrich & Silver, 2016; Lanctot et al., 2017), continuous
control (Bansal et al., 2018), and modern video games (OpenAI, 2017).

In this paper, we investigate a new method for learning strong policies on multi-player
games. We introduce Hierarchical Agent with Self-Play , our hierarchical learning algorithm
that automatically learns several diverse, exploitable polices and combines them into an
ensemble model that draws on the experience of the sub-policies to respond appropriately
to different opponents. Then, we show the results of some experiments on two multiplayer
games: iterated Rock-Paper-Scissors and a partially observable real-time strategy game
based on a popular online game generals.io (http://generals.io/). We show that compared
to conventional self-play, our algorithm learns a more diverse set of strategies and obtains
higher rewards against test opponents of different skill levels. Remarkably, it can achieve
77% win rate against the FloBot, the strongest open-sourced scripted bot on the generals.io
online leaderboard.

2 Background and Related Work

2.1 Markov Games and Multi-agent Reinforcement Learning

Many real world multi-agent problems can be described by Markov games (Littman, 1994).
A Markov game of N players at time step t has a full state st and assigns each player
i (1 ≤ i ≤ N) an observation ot,i. Then player i samples an action at,i from its policy
πi : Oi × Ai → [0, 1], where Oi and Ai are the observation and action spaces. Given
all players’ actions, the environment transits to a new state st+1 and sends a reward rt,i
to player i. The goal for each player i is to maximize expected total discounted rewards
Ji(π) = Eπ

[∑T
t=0 γ

trt,i

]
, where γ ∈ (0, 1].

A typical characterization of optimal strategies / policies is a Nash equilibrium, namely π =
(π1, . . . , πN ) satisfying Ji(π) ≥ Ji(π1, . . . , π′

i, . . . , πN ) for any other π′
i. Finding equilibrium

strategies can be very challenging, even for single-step (a.k.a. normal form) games (Shoham
& Leyton-Brown, 2008). Most studies focus on either fully cooperative (rt,i = rt,j ∀i, j)
or two-player, zero-sum (N = 2, rt,1 = −rt,2) competitive cases. Methods for cooperative
games include optimistic and hysteretic Q learning (Lauer & Riedmiller, 2000; Matignon
et al., 2007; Omidshafiei et al., 2017), and recently centralized critic with decentralized
actors (Foerster et al., 2017; Lowe et al., 2017).He et al. (2016) also shows the ability to find
exploiting strategies; however it is in under relatively simple games and can be potentially
combined with our method to have better performance. Panait & Luke (2005) and Busoniu
et al. (2008) have comprehensive surveys on this topic. For two-player, zero-sum games,
though small problems can be solved by linear programming, more complex (and symmetric)
ones usually require self-play and some form of learning.

2.2 Self-Play

Self-play, namely training the agent against itself, is a powerful technique to bootstrap from
an initially random agent. Classic game-theoretic techniques often offer provable convergence

2

http://generals.io/


Under review as a conference paper at ICLR 2019

to Nash equilibrium, and some also achieve success while combined with deep reinforcement
learning. Such methods include fictitious play (Brown, 1951; Heinrich & Silver, 2016),
counterfactual regret minimization (Zinkevich et al., 2008; Neller & Lanctot, 2013; Brown &
Sandholm, 2017), replicator dynamics (Taylor & Jonker, 1978), double oracle (McMahan
et al., 2003; Lanctot et al., 2017), and so on. The combination of deep learning, planning, and
self-play led to the famous Go-playing agents AlphaGo (Silver et al., 2016) and AlphaZero
(Silver et al., 2017). Most recently, self-play achieved success on full five versus five Dota 2,
beating a team of 99.95th percentile Dota players (OpenAI, 2017).

2.3 Generals.io

Games are often popular environments for reinforcement learning research, and recently
there has been a heavy interest (OpenAI, 2017; Vinyals et al., 2017) in real-time strategy
(RTS) games. These games prove difficult for current methods due to the importance of
long-term decisions as well as large action spaces. We propose generals.io (Generals) as
an interesting and economical research environment that has many of the same challenges
as Dota 2 and Starcraft II (SC2) while being very fast to simulate and having a sizable
community of players online to evaluate against.

Figure 1: A full map of generals.io game. The grid with two mountains are the mountain
grid that can not be go through. The grids with a building are the city grids. The grids
with a crown are the generals grids. All the friendly grid are mark blue and opponent’s grid
are marked red. Neutral grids are marked with grey. The number is the amount of army
staying in this grid.

(a) One action in the generals game. An agent
needs to select which grid to execute and then
perform an action to a one of the 4 adjacent
grid. After each action, one of the arm will
be left in the original grid and all the army
will be moved to the new grid.

(b) The army aggregation scheme in the game. For
each turn, the taken city and generals grids will gen-
erate one more army on the grid. After 50 turns, all
the plain grid will increase 1 army.

Generals games in Fig. 1 take place on a rectangular grid. There can be anywhere from two
to eight players at a time, although in this work we only consider the case of two players.
Each player gets their own color, as well as a "General", and they cannot see any tile that
is not adjacent to a tile they own. Moves happen every 0.5 seconds, and consist of each

3



Under review as a conference paper at ICLR 2019

player moving some army from one tile to an adjacent tile. Players can choose the grid to
move and then move their army freely between tiles that they own, and if a player decides
to move its army into a tile that is not their own color, the amount of army they are moving
is subtracted from that tile and if the total is now negative, the player takes ownership.
Fig. 2a demonstrates an example of how to move the army. There are also cities scattered
throughout the map, which have a high cost to conquer. The army aggregation mechanism
is described in Fig. 2b Every other turn, each player gets one army on their general as well
as on every city they own. Every 50 turns, each player also gets an additional army on each
tile they own. The goal of the game is to take ownership of the opponent’s general.

The fog-of-war in Generals means that agents have to actively learn to seek out information.
Agents also need to learn how to prevent themselves from being revealed, as well as learn to
defend against incoming attacks, know when to strike, manage its own resources by expanding
its own territory and investing in cities. Players online show a variety of strategies, including
rushing to their opponent in the early game, staying small and hiding while investing in
cities, or expanding and slowly suffocating their opponents by gaining slightly more resources
than they have.

Using Generals also has several benefits compared to SC2. In Starcraft II game, a bot can
easily have access to additional information that a human player cannot know and thus hard
to evaluate the quality of a game agent. Another issue with SC2 is that in many games the
bot can cheat by having extremely short reaction time which is impossible to achieve by a
professional human players. Moreover, usually strategic games are very slow to simulate due
to the large amount of information. However, Generals has a simple game board that is
provided as a raw image (12x12) to both the agent and human players, as well as a small
delay between turns that should lessen the effect of reaction time on the games. With our
python version of generals that interfaces with OpenAI Gym (Brockman et al., 2016), we
can achieve over 1000 frame per second with an average game time with a single GPU. This
platform is considered more fexible and more transparent for evaluation. There are also
resources available on the developer’s website (http://dev.generals.io/), including an API to
let an agent play online versus other bots or humans. They also have a collection of over
200,000 replays available as well as a Github repository full of parsing utilities as well as
open-source bots online.

3 Method

In this work, we will have a high-level policy and a set of sub-policies to form a hierarchically
structured agent. We will learn a series of sub-policies that can exploit one certain style in
the game by self-play. The sub-policies must be strong because they are to be used by a
High-level policy as a component. Moreover, the sub-policies must be diverse enough so that
no one sub-policy dominates the rest. Then we train the high-level policy to choose from the
sub-policies conditioned on observations. For both the sub-polices and the high-level policy
in Generals, the observation includes a 12 by 12 map. In Section 3.1, we show the detailed
architecture as well as PPO algorithm we use. In Section 3.2, we show how can we achieve
the diverse and robust strategies that can exploit other strategies by using counter self play.
And in Section 3.3, we show how to train the high-level policy.

3.1 Proximal Policy Optimization and Network Architecture

We adopt the Proximal Policy Optimization () algorithm in our training framework. PPO
uses a surrogate objective which is maximized while penalizing large changes to the policy.
The algorithm alternates between sampling trajectories from the policy and performing SGD
on the sampled dataset to optimize this surrogate objective. Although the algorithm is not
new, we need to come up with specific network architecture to learn the policy and the value
function. The policy network is a fully convolutional network. The rationale behind this
selection of network architecture is that for real-time strategic games, there are multiple
similar events will happen in different spatial location. The fully convolutional architecture
has the capability of maintaining translation invariance and of generalizing similar events

4



Under review as a conference paper at ICLR 2019

to different locations. We also share the initial 3 layers of parameters between the value
network and the policy network.

Value
CNN

Policy
CNN

Feature
CNN

features observation + memory 

action logits 
(width * height * direction) 

valuemean

Figure 3: The architecture of the policy and value network. The policy network is a fully
convolutional network. Different from regular games, generals has large action space. A
policy need to first choose what grid to move and then what direction to move. Therefore, a
fully convolutional network is necessary.

3.2 Counter Self Play

In this section, we describe how to achieve diverse and robust sub-policies by applying
self-play. To learn a robust sub-policy by vanilla self-play requires occasional success by
performing a series of random actions. But due to the large state space and action space, it is
too challenging to win a game of Generals by chance on a large map. To alleviate this sparse
signal problem in Generals, there are several methods such as engineering a dense reward for
each step the agent take, imitating from demonstration replays as warm start or doing an
exploration curriculum by adjusting the size of the map. We adopt the second method by
imitating from demonstrations as a warm start. This method helps the sub-policy overcome
the exploration problem, but it is still only rarely able to win against decent agents. A
second problem is that if we start training a self-play agent, it will converge quickly to a local
optima and stop generating diverse sub-policies which make this unusable for our high-level
policy. In order to get a larger amount of diverse strategies we run conventional self-play
with added an additional “achievement reward” as bonus for the initialization. However, we
only use this to seed our method; after we get the initial policy, we only give all the agents
the true rewards provided by the game and make the agent only want to win and win fast.

During Counter Self-Play, we only train against the most recent self to exploit it instead of
training against a set of previous selves as in (Bansal et al., 2018). We also reinitialize the
agent’s policy each time we save our current sub-policy and start a new one. This way, each
agent has a fixed number of training iterations and the main difference between the sub-
policies will be "style" not "strength". The current agent will become the counter strategy
to the previous agent. After we have enough sub-policies, we can stop training and start
the learning of high-level policy. In previous work (Eysenbach et al., 2018), there is another
way to generate diverse policies by maximizing an information theoretic objective. However,
the sub-policies generated with our method have meaning in that they are best-responses
to different opponents rather than just being diverse in the sense that they reach different
states in state-space.

3.3 Hierarchical Agent with Self-Play

In this section, we describe how can we train a high-level policy based on the sub-policies we
have. We initialize a parameterized high-level policy with random parameters. Then we train
this agent with self-play as well. At each step in the game, the high-level policy will take the
observation from the map as input and decide which sub-policy to choose. Different from
prior work (), we fix the sub-policies during training the high-level policy. After choosing,
the sub-policy is fed with the same observation and execute the action based on it for a
single step. On simple games such as iterated Rock-Paper-Scissor, the high-level policy can

5



Under review as a conference paper at ICLR 2019

be computed once by first finding the pairwise expected payoffs of the sub-policies, and then
solving a matrix game with Linear Programming as is the standard method in game theory.

Algorithm 1: Hierarchical Agent with Self-Play (HASP )
1 Initialize parameters of the sub-policies πiθ with the achievement rewards and imitation

warm start described in 3.2, high-level policy πφ, and value function vξ.
2 Initialize the training pool of policies Πtrain = {πiθ}
3 Sample initial policy πiθ from the training pool Πtrain

4 for each epoch e ≥ 1 do
5 for each step k ≤ K do
6 Player 1 and Player2 play the game with πiθ and collect Player 1’s egocentric

trajectories τk
7 Update θ to θ′ of Player 1 with PPO
8 Synchronize both player’s parameters θ = θ′

9 Save current πθ to the training pool.
10 The following can be replaced by Linear Programming
11 for each meta step n ≤ N do
12 Player 1 and Player 2 play the game with πφ whose actions are chosen from Πtrain

13 Player 1’s egocentric trajectories τn
14 Update φ to φ′ of both Player 1 and Player 2 with PPO

4 Experiments

We test HASP and baseline methods on two discrete two-player competitive games: iterated
Rock-Paper-Scissor (RPS) and Generals. 1 We want to answer the following questions with
our experiments.

1. What types of sub-policies does our algorithm find?
2. Are the sub-policies from Counter Self-Play meaningfully diverse to be used by the

high-level policy?
3. Can HASP lead to a stronger and more robust agent against opponents that are not

seen in the training time compared with conventional self-play?

4.1 Baseline methods

For one baseline, we use conventional self-play, which is very similar to the way of how we
get our sub-policies. To have a fair comparison with our method, we also incorporate the
self-play agent with the imitation warm start stage described in section 3.2.

We also compare with the baseline that randomly chooses from the time-averaged past
sub-policies from counter self-play (CSP) as a baseline to see how much improvement we get
by training a high-level policy instead of just choosing a sub-policy randomly.

4.2 Iterated Rock-Paper-Scissor: A Motivating Example

Iterated RPS is formulated simply as Rock-Paper-Scissor repeated over multiple turns. We
consider two turns for illustration purposes. An agent gets a reward +1 for winning more
turns than the opponent, -1 for less, and 0 for equal turns. Though the game has an
obvious equilibrium strategy – uniformly random at any turn, sub-optimal players may
incline towards specific patterns. For example, some players take the counter action in turn
2 against the opponent’s action in turn 1 (the “counter” strategy), under the assumption that
the opponent does not change his action (“repeat”). Some may reason further and assume the

1Videos, codes and more information will be available at
https://sites.google.com/view/hasp/home.

6



Under review as a conference paper at ICLR 2019

Table 1: The probabilities found after solving the empirical payoff matrix with sub-policies
as strategies

sub-policies 1 2 3 4 5 6 7 8 9 10
0.32 0.26 0.35 0.0 0.07 0.0 0.0 0.0 0.0 0.0

Table 2: Performance on iterated RPS. R = rock_ only, P = paper_only, S = scissors_only,
c = “counter”, ci = “counter i”, min denotes the minimum performance along a row

winrate (%) R P S repeat c c2 c3 c4 min
HASP 49 47 50 49 52 54 48 48 47
Random 42 50 45 45 51 56 48 49 42
Self-Play 92 20 100 70 43 20 66 60 20
Self-Play 75 100 10 62 39 41 77 47 10
Self-Play 89 13 59 53 78 45 28 51 13

opponent using “counter”, so chooses the counter to that (“counter2”) instead. The reasoning
continues until it loops back to “counter6” = “repeat”. If our algorithm is successful and
the initial policy is (“repeat”), it should autonomously discover all these sub-policies in the
strategy space.

Running phase 1 of HASP here results in ten different policies. We provide a t-SNE projection
of the learned policies onto the 2D plane below.

Since the action space of rock-paper-scissors is only three dimensional, we use the Linear
Programming (LP) method to find a Nash-equilibrium mixed strategy where the moves
consist of the ten learned sub-policies. The resulting policy samples a sub-policy with
probabilities shown in Table 1.

In addition, we trained a baseline agent using conventional self-play. We found that using
PPO to learn stochastic policies is quite hard, since most best-responses are pure strategies
and when our agent reached low entropy, it would stop exploring, even if that policy was no
longer good. In general, policies learned under self-play resulted were close to deterministic
and reasonable at exploiting a large number of different policies. However, we found that
they were highly exploitable.

Table 2 shows the performance of the different methods against some scripted test policies.
Notice that the policy learned under HASP is less exploitable and therefore closer to an
equilibrium policy than the different self-play runs. Note that randomly choosing a sub-policy
also achieves a low exploitability, although not as low as with HASP .

4.3 Generals.io

For all of our Generals experiments, we initialize our agent with behavioral cloning on an
open-sourced agent called FloBot. After behavioral cloning, our agent can get only an
average of -1.7 reward against FloBot but is able to win rarely. While we include our final
results against FloBot, note that they are slightly inflated in the self-play baseline, since the
initial FloBot imitator is always in the training pool and therefore we learn a style that is
effective against it. We find that when learning our our sub-policies, we can learn styles that
are different from that of FloBot’s.

In order to break symmetry between strategies, we added a small negative reward to each
time step. This discourages our agents from playing a safe, defensive strategy, and encourages
them to use the information they know about their opponents in order to end the game
faster. The final reward that we use for training in Generals is:

Table 3: Reward on 12x12 Generals.io 1v1 mode.

reward 1 2 3
trained vs. all -0.67 -0.87 -0.73
best sub-policy -0.45 -0.73 -0.58

7



Under review as a conference paper at ICLR 2019

Table 4: Reward on 12x12 Generals.io 1v1 mode. expand_left, expand_right, and ex-
pand_more are all trained using self-play along with "achievement" rewards

reward achieved expand_left expand_right expand_more FloBot min
HASP -0.63[0.04] -0.44[0.02] -0.33[0.08] -0.23[0.1] -0.63[0.4]

Random-Ens -0.64 -0.46 -0.36 -0.22405 -0.64
Self-Play -0.75[0.11] -0.64[0.11] -0.34[0.04] -0.034[0.05] -0.77[0.08]

r(s, a, s′) =


1 win
−1 loss
−0.005 else

We initialize the first phase of HASP with an agent trained to prefer owning territory on the
top half of the map by adding the achievement reward described in Section 3.2. Running
phase 1 of HASP , we obtained 6 different sub-policies that are diversely distributed in the
sub-policy space. From observation, we find that the sub-policies are different from each
other in terms of playing styles. We also find that, as we expected, each of them is trying to
counter the previous self by a large margin, although it is exploitable itself.

We performed the same test of training an agent against all our sub-policies to see if our
sub-policies are meaningfully diverse. Table 3 shows the performance of our agent trained vs.
several sub-policies generated via CSP compared to the best response to those policies. Since
the best-responses have the highest reward, we conclude that knowing ahead of time which
opponent we are facing is valuable and therefore our strategies are meaningfully diverse.

For Generals, we trained our ensemble model using the Algorithm 1. The final usage
frequencies (averaged over several games) of use of the sub-policies when facing another style
of playing agent “expand_down” is shown in Table 5. Note that our agent learns to play a
mixture of all strategies.

Table 5: The frequency at which our policy selects each sub-policy when playing against
expand_left

sub-policies 1 2 3 4 5 6
0.14 0.2 0.18 0.22 0.12 0.14

Table 4 shows the performance of our HASP agent as well as the baselines against several
held-out agents that we trained using self-play with an additional "achievement" reward:
expand-left, expand-right, and expand-more. The agent trained using HASP achieves a higher
reward against all of the held-out agents that we tested on. In contrast with our Iterated
Rock-Paper-Scissors results, randomly selecting a sub-policy at each turn is competitive with
our policy that can change the probability of sampling a sub-policy with the current state.
This suggests that the power of our method in Generals comes from the diverse sub-policies
themselves.

5 Conclusions

In this paper, we investigate a novel learning approach Hierarchical Agent with Self-Play to
learning strategies in competitive games and real-time strategic games by learning several
opponent-dependent sub-policies. We evaluate its performance on a popular online game,
where we show that our approach generalizes better than conventional self-play approaches to
unseen opponents. We also show that our algorithm vastly outperforms conventional self-play
when it comes to learning optimal mixed strategies in simpler matrix games. Though our
method has achieved good results, there are some areas which could be improved in future
research. In the future, we hope to also achieve good performance on larger versions of
Generals, where games last longer and therefore learning is harder. We would also like to
investigate further the effects that our algorithm has on exploration with sparse reward.

8



Under review as a conference paper at ICLR 2019

References
Bansal, Trapit, Pachocki, Jakub, Sidor, Szymon, Sutskever, Ilya, and Mordatch, Igor. Emergent

complexity via multi-agent competition. International Conference on Learning Representations,
2018.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John, Tang, Jie,
and Zaremba, Wojciech. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Brown, George W. Iterative solution of games by fictitious play. Activity analysis of production and
allocation, 13(1):374–376, 1951.

Brown, Noam and Sandholm, Tuomas. Safe and nested subgame solving for imperfect-information
games. In Advances in Neural Information Processing Systems, pp. 689–699, 2017.

Busoniu, Lucian, Babuska, Robert, and De Schutter, Bart. A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Systems, Man, and Cybernetics, Part C, 38(2):156–172,
2008.

Eysenbach, Benjamin, Gupta, Abhishek, Ibarz, Julian, and Levine, Sergey. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Foerster, Jakob, Farquhar, Gregory, Afouras, Triantafyllos, Nardelli, Nantas, and Whiteson, Shimon.
Counterfactual multi-agent policy gradients. arXiv preprint arXiv:1705.08926, 2017.

He, He, Boyd-Graber, Jordan, Kwok, Kevin, and Daumé III, Hal. Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning, pp. 1804–1813, 2016.

Heinrich, Johannes and Silver, David. Deep reinforcement learning from self-play in imperfect-
information games. CoRR, 2016.

Lanctot, Marc, Zambaldi, Vinicius, Gruslys, Audrunas, Lazaridou, Angeliki, Perolat, Julien, Silver,
David, Graepel, Thore, et al. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 4193–4206, 2017.

Lauer, Martin and Riedmiller, Martin. An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. In In Proceedings of the Seventeenth International Conference
on Machine Learning. Citeseer, 2000.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel, Pieter. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Littman, Michael L. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pp. 157–163. Elsevier, 1994.

Lowe, Ryan, Wu, Yi, Tamar, Aviv, Harb, Jean, Abbeel, OpenAI Pieter, and Mordatch, Igor.
Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances in Neural
Information Processing Systems, pp. 6382–6393, 2017.

Matignon, Laëtitia, Laurent, Guillaume J, and Le Fort-Piat, Nadine. Hysteretic q-learning: an
algorithm for decentralized reinforcement learning in cooperative multi-agent teams. In Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 64–69. IEEE,
2007.

McMahan, H Brendan, Gordon, Geoffrey J, and Blum, Avrim. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timothy,
Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Neller, Todd W and Lanctot, Marc. An introduction to counterfactual regret minimization, 2013.

9



Under review as a conference paper at ICLR 2019

Omidshafiei, Shayegan, Pazis, Jason, Amato, Christopher, How, Jonathan P, and Vian, John.
Deep decentralized multi-task multi-agent rl under partial observability. arXiv preprint
arXiv:1703.06182, 2017.

OpenAI. Openai dota 2 1v1 bot, 2017. https://openai.com/the-international/, 2017. Accessed:
2018-05-13.

Panait, Liviu and Luke, Sean. Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3):387–434, 2005.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. High-dimensional continuous control
using generalized advantage estimation. International Conference of Learning Representations,
2016.

Shoham, Yoav and Leyton-Brown, Kevin. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

Silver, David, Huang, Aja, Maddison, Chris J, Guez, Arthur, Sifre, Laurent, Van Den Driessche,
George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam, Veda, Lanctot, Marc, et al.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

Silver, David, Schrittwieser, Julian, Simonyan, Karen, Antonoglou, Ioannis, Huang, Aja, Guez,
Arthur, Hubert, Thomas, Baker, Lucas, Lai, Matthew, Bolton, Adrian, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354, 2017.

Taylor, Peter D and Jonker, Leo B. Evolutionary stable strategies and game dynamics. Mathematical
biosciences, 40(1-2):145–156, 1978.

Tesauro, Gerald. Temporal difference learning and td-gammon. Communications of the ACM, 38
(3):58–68, 1995.

Vinyals, Oriol, Ewalds, Timo, Bartunov, Sergey, Georgiev, Petko, Vezhnevets, Alexander Sasha,
Yeo, Michelle, Makhzani, Alireza, Küttler, Heinrich, Agapiou, John, Schrittwieser, Julian, et al.
Starcraft ii: a new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Zinkevich, Martin, Johanson, Michael, Bowling, Michael, and Piccione, Carmelo. Regret minimization
in games with incomplete information. In Advances in neural information processing systems, pp.
1729–1736, 2008.

10

https://openai.com/the-international/

	Introduction
	Background and Related Work
	Markov Games and Multi-agent Reinforcement Learning
	Self-Play
	Generals.io

	Method
	Proximal Policy Optimization and Network Architecture
	Counter Self Play
	Hierarchical Agent with Self-Play 

	Experiments
	Baseline methods
	Iterated Rock-Paper-Scissor: A Motivating Example
	Generals.io

	Conclusions

