
Hierarchical Directed Spectral Graph Partitioning

MS&E 337 - Information Networks

Stanford University

Fall 2005

David Gleich

February 1, 2006

Abstract

In this report, we examine the generalization of the Laplacian of a graph due to Fan
Chung. We show that Fan Chung’s generalization reduces to examining one particular
symmetrization of the adjacency matrix for a directed graph. From this result, the
directed Cheeger bounds trivially follow. Additionally, we implement and examine
the benefits of directed hierarchical spectral clustering empirically on a dataset from
Wikipedia. Finally, we examine a set of competing heuristic methods on the same
dataset.

1 Clustering for Directed Graphs

Clustering problems often arise when looking at graphs and networks. At the highest
level, the problem of clustering is to partition a set of objects such that each partition
contains similar objects. The choice of how to define the similarity between objects is
the key component to a clustering algorithm.

If we restrict ourselves to clustering graphs, then a natural way to define a clustering
is a graph partition. That is, each of the objects is a vertex in our graph and we want
to partition the vertices of the graph to optimize a function on the edges and vertices.
For example, one common function is the normalized cut objective function. Given a
set of vertices S,

ncut(S) = vol ∂S

(

1

volS
+

1

vol S̄

)

,

where

S̄ = V − S, vol ∂S =
∑

(u,v)∈E|u∈S,v∈S̄

wi,j , and volS =
∑

u∈S

∑

(u,v)|u→v

wu,v.

1

Figure 1: An example where an “optimal” directed cut differs from an “op-
timal” symmetrized cut. Edges without arrows are bi-directional, and this
graph has two natural groupings – the leftmost 5 nodes and the rightmost
6 nodes. With directionality intact, the obvious cut is the set of directed
edges (the left cut). Without directionality, the two cuts are indistinguish-
able when looking at the ratio of cut edges to vertices.

For those readers to whom these definitions are not yet entirely clear, we’ll revisit them
soon.

This definition, however, only applies to undirected graphs. Given a directed graph,
how do we generalize this property? In [1], Fan Chung provides an answer. We’ll see
her proposal in section 2. Before we delve into the details of her method, however, let’s
examine the question of why?

That is, why look at directed graph partitioning? Given any directed graph, we can
symmetrize the graph to an undirected graph by dropping the direction of each edge.
We can then use any of the numerous partitioning methods for undirected graphs. The
problem with this approach is that it loses information. Consider the graph in figure 1,
which shows an example where the loss of information is critical to making a correct
choice. In this sense, directed clustering is critical to preserving the information in the
original graph.

2 The Directed Laplacian

We begin this section by summarizing previously known results about the Laplacian
of a graph. Next, we introduce the normalized Laplacian and Fan Chung’s directed
Laplacian. We conclude the section with a proof of the directed Cheeger bounds for
the directed Laplacian by reducing to the undirected case.

Let G = (V,E, w) be a weighted, undirected graph (we’ll handle the directed case
soon!). We restrict ourselves to positive weights w > 0. For an unweighted graph, let

2

wi,j = 1 if (i, j) is an edge. Let W be the weighted adjacency matrix for G,

Wi,j =

{

wi,j if (i, j) ∈ E

0 otherwise.

Definition. The Laplacian of G is the matrix

L = Diag(We) − W,

where Diag(We) is a diagonal matrix with the row-sums of W along the diagonal.

The Laplacian has a particularly nice set of properties. First, the matrix L is
symmetric because W is symmetric for an undirected graph. For an unweighted graph,

Li,j =

di if i = j

−1 if i is adjacent to j

0 otherwise,

where di is the degree of vertex i. For a weighted graph, we have

Li,j =

∑

j Wi,j if i = j

−Wi,j if i is adjacent to j

0 otherwise,

From these facts, we have that L is a singular matrix with null-space (at least) e, the
vector of all ones. From now on, we will only consider the weighted case, but mention
useful reductions to the unweighted case.

Doing a little bit of algebra (which is readily available in most references on the
Laplacian), we have

xT Lx =
∑

(i,j)∈E

wi,j(xi − xj)
2.

From this fact, it follows that L is positive semi-definite. We’ll now state more prop-
erties of the Laplacian.1

Claim. [2] Let 0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1 be the eigenvalues of L. Then L is connected
if and only if λ1 > 0. Additionally, the number of connected components of G is equal
to the dimension of the null-space of L (the multiplicity of the zero eigenvalue).

While this claim appears to provide an algorithm for computing the number of
connected components of a graph, it should not be used in this manner. Computing
the connected components is a trivial operation using a breadth first search of the
graph. In contrast, computing the eigenvalues is an inherently iterative procedure
(due to the insolvability of the quintic and higher order polynomials) and plagued with
numerical roundoff issues.

1For proofs of these facts, see the references.

3

Claim. [3] Let G1 be a subgraph of G with the same nodes and a subset of edges. Let
L denote the Laplacian matrix for G and L1 denote the Laplacian of G1, then

λ1(L1) ≤ λ1(L).

This definition is one motivation for calling λ1 the algebraic connectivity of G. As
we decrease the number of edges in a graph, λ1 decreases; that is to say, as we decrease
the connectivity of G, λ1 decreases.

Perhaps the most important theorem with the Laplacian are the Cheeger inequal-
ities. However, first we need a few more definitions. The first definition is a formal-
ization of a graph partition and the induced graph cut. Following that, we define the
volume associated with a graph and a cut. Finally, we define the conductance of a cut
and the conductance of a graph.

Definition. S ⊂ V is called a cut of a graph because it induces a partition of V into
S and S̄.

Definition. The volume of a vertex v is defined

vol v =
∑

u

Wv,u.

Likewise, the volume of a set is

volS =
∑

v∈S

vol v.

Finally, the volume of a cut is

vol ∂S =
∑

u∈S,v∈S̄

Wu,v.

One important property of the vol ∂S is that

vol ∂S = vol ∂S̄.

That is, the volume of the cut is symmetric for each side of the partition. This fact
follows straightforwardly from the symmetry of W .

vol ∂S
∑

u∈S,v∈S̄

Wu,v =
∑

u∈S,v∈S̄

Wv,u = vol ∂S̄.

Definition. The conductance of a cut S is

φG(S) =
vol ∂S

min(volS, vol S̄)
.

The conductance of a graph G is

φG = min
S⊂V

ρG(S).

4

Instead of the Laplacian, we often examine the normalized Laplacian of a graph.

Definition. The normalized Laplacian of a graph is the matrix

L = D−1/2LD−1/2 = I − D−1/2WD−1/2,

where D = Diag(We).

Finally, we can state the a key theorem.2

Theorem 2.1. [2] The second eigenvalue of the normalized Laplacian of the graph, λ1

is related to the conductance φG by

φ2
G

2
≤ λ1 ≤ 2φG.

This theorem relates the conductance of the graph to the second eigenvalue. This
statement is further motivation for calling λ1 the algebraic connectivity of G.

2.1 Directed Generalization

In [1], Fan Chung generalized many of the results from the previous section to a directed
graph. We’ll first examine some properties of a random walk. Then we’ll define a
circulation which allows us to define a symmetrization of the graph. Finally, we’ll
show that Chung’s definitions of volume directly correspond to the definitions from
the previous section when applied to the adjacency matrix ΠP + P T Π (the matrices
used will be defined later). Thus, the Cheeger bounds for the directed Laplacian follow.

Given a weighted directed graph G = (V,E, w), a random walk on G is a Markov
process with transition matrix

P = D−1W,

where D = Diag(We) as always. If G is strongly connected, by the Perron-Frobenius
theorem, we know that P has at least one left eigenvector which is strictly positive
with eigenvalue 1 (because ρ(P) ≤ 1 and Pe = e). P has a unique left eigenvector with
eigenvalue 1 if G is aperiodic. Henceforth, we’ll assume that G is strongly connected
and aperiodic and discuss what happens if this is not the case in section 2.3.

Let π be the unique left eigenvector such that

πP = π.

The row-vector π corresponds to the stationary distribution of the random walk. Look-
ing at the previous equation we have that

π(u) =
∑

v,v→u

π(v)P (v, u),

that is, the probability of finding the random walk at u is the sum of all the incoming
probabilities from vertices v that have a directed edges to u.

2Note to Amin, I believe this is the correct form of this theorem. If it isn’t, one of my subsequent results
will not follow.

5

On an undirected graph, we have that

π(u) =
volu

volV
,

because
∑

v,v→u

vol v

volV

Wv,u

vol v
=

∑

v,v→u

vol v

volV

Wu,v

vol v
=

volu

volV
.

We now define a circulation on a directed graph G.

Definition. [1] A function F : E → R
+ ∪ {0} that assigns each directed edge to a

non-negative value is called a circulation if

∑

u,u→v

F (u, v) =
∑

w,v→w

F (v, w),

for each vertex v.

One interpretation of a circulation is a flow in the graph. The flow at each vertex
must be conserved, hence, the flow in is equal to the flow out.

Now, we’ll demonstrate one circulation on a graph. Let

Fπ(u, v) = π(u)P (u, v).

The conservation property the circulation follows directly from the stationarity prop-
erty of π.

∑

u,u→v

Fπ(u, v) =
∑

u,u→v

π(u)P (u, v) = π(v) · 1 =
∑

w,v→w

π(v)P (v, w).

Using the circulation Fπ, we define the directed volume. These specific definitions
come from [4] though Fan Chung calls them flows on a directed graph.

Definition. The volume of a vertex v in a directed graph is

vol v =
∑

u,u→v

F (u, v).

The definition of the volume of a set generalizes in the same way. The volume crossing
a cut is

vol ∂S =
∑

u∈S,v∈S̄

F (u, v).

One critical property of this definition is that

vol ∂S = vol ∂S̄.

Intuitively, this follows because of the conservation of circulation property. Because the
circulation out of each vertex equals the circulation into each vertex, the net circulation

6

out of a subset of vertices (vol ∂S) must equal the net circulation into the subset
(vol ∂S̄). Formally, but not intuitively, we have

vol ∂S =
∑

u∈S,v∈S̄

F (u, v)

=
∑

u∈S,v∈S̄

F (u, v) +
∑

u∈S,v∈S

F (u, v) −
∑

u∈S,v∈S

F (u, v)

= vol(S) −
∑

u∈S,v∈S

F (u, v).

Now, we appeal to the definition of a circulation on volS, namely,

volS =
∑

v∈S

∑

w,v→w

F (v, w) =
∑

v∈V,u∈S

F (v, u).

To conclude,

vol ∂S =
∑

v∈V,u∈S

F (v, u) −
∑

u∈S,v∈S

F (u, v)

=
∑

v∈S̄,u∈S

F (v, u) +
∑

u∈S,v∈S

F (u, v) −
∑

u∈S,v∈S

F (u, v)

= vol ∂S̄.

At this point, we have a symmetric function over a cut in the graph. Hence, we
can reuse our previous definition of φG and directly apply it to a directed graph. It
remains to prove that the same Cheeger inequalities hold for this directed graph.

To accomplish this final step, we examine the matrix

W̃ =
ΠP + P T Π

2
,

where Π = Diag(π). In contrast to W , this matrix is symmetric. Let G̃ be the
associated undirected graph corresponding to W . In the following lemma, we’ll show
φG = φG̃.

Lemma. Let G be a directed graph and let G̃ be the weighted symmetrization of G such
that G̃ has adjacency matrix W̃ , then

volG S = volG̃ S,

and
volG ∂S = volG̃ ∂S,

where volG is the directed volume as previously defined and volG̃ is the undirected
volume.

7

Proof. The first equality is trivial. Let e be the vector of all ones, and eS be the vector
with a 1 corresponding to a vertex in S and 0 otherwise, then

volG̃ S = eSW̃e

=
eSΠPe + eSP T Πe

2

=
eSΠe + eSP T π

2

=
eSπ + eSπ

2

=
∑

u∈S

π(u).

Recall that
volG S =

∑

u∈S

∑

v,v→u

F (v, u).

In this case, F (u, v) = π(v)P (v, u), and we have that
∑

v,v→u

F (v, u) = π(u),

because of the stationarity of random walk. Thus, the first inequality holds.
The second equality is also simple,

volG̃ ∂S =
∑

u∈S,v∈S̄

π(u)P (u, v) + P (v, u)π(v)

2

=
volG ∂S

2
+

volG ∂S̄

2
.

We are done because volG ∂S = volG ∂S̄.

Theorem 2.2. Let G be a directed graph and let G̃ be the weighted symmetrization of
G such that G̃ has adjacency matrix W̃ . Then φG = φG̃.

Proof. This result follows directly from the previous lemma, because we equated all
the quantities in the definition.

Corollary. The Cheeger inequalities,

φ2
G

2
≤ λ1 ≤ 2φG,

hold for the directed graph G when we define the directed Laplacian,

L = L(G̃) = I − 1

2

(

Π1/2PΠ−1/2 + Π−1/2P T Π1/2
)

,

and λ1 is the first non-trivial eigenvalue of L.

Proof. This follows from Theorem 2.1 and the previous theorem.

The proof presented here differs from Fan Chung’s proof in that we do not directly
prove the Cheeger inequalities for the directed case. Rather, we show the equivalence
between symmetrizing the graph using the stationary distribution and the undirected
weighted analysis. This suggests a few ideas that are discussed in the conclusion.

8

2.2 Directed Laplacian on Undirected Graphs

If we happened to “forget” that a graph is undirected and use the directed Laplacian
algorithm on G instead of the undirected version, nothing would change. The definition
of the directed Laplacian is thus a generalization of the undirected Laplacian.

This fact follows from the stationary distribution of an undirected random walk.
In the previous section, we showed that, for an undirected graph,

π(u) =
volu

volV
.

Let D = Diag(We), then Dii = vol i and Π1/2 = 1√
vol V

D1/2. From these, we have that

L = I − 1

2

(

Π1/2D−1WΠ−1/2 + Π−1/2W T D−1Π1/2
)

= I − 1

2

(

1√
volV

D1/2D−1W
√

volV D−1/2 +
√

volV D−1/2W T D−1D1/2 1√
volV

)

= I − D−1/2WD1/2.

Thus, we get back the original normalized Laplacian.
For the original Laplacian, observe that

volV · ΠP = W.

Hence,

volV · L = volV · Π − 1

2

(

volV · ΠP + volV · P T Π
)

= Diag(We) − 1

2
(W + W T),

and L is a rescaled version of the undirected Laplacian.

2.3 Not Strongly Connected or Aperiodic

At the beginning of the analysis for the directed Laplacian, we assumed that G was
strongly connected and aperiodic. This allowed us to assume that G has a unique
stationary distribution π.

If G is not aperiodic but is strongly connected, the matrix P will not have a unique
stationary distribution. One remedy is to introduce the lazy random walk. Given the
transition matrix for a random walk P on a strongly connected graph, the lazy random
walk has a transition matrix

Plazy =
I + P

2
.

Clearly the lazy random walk is aperiodic (it has self-loops), thus it has a unique
stationary distribution. In [5], they suggest this modification.

If the graph G is not strongly connected, all is not lost! Instead, we can define the
PageRank transition matrix which is a modification of the transition matrix D−1W to
ensure aperiodicity and strong connection. We consider, instead,

PPR = αP +
(1 − α)

n
eeT .

9

In Zhou et al [4], they use this modification to enable directed graph regularization on
non-strongly connected graphs with α = 0.99.

Each of these modifications changes the underlying graph G and we must be careful
when using them to ensure that the results remain sensible on the original graph G.

3 Directed Spectral Clustering

The spectral graph partitioning algorithm is originally due to Fiedler. We interpret
this algorithm as a clustering algorithm in that graph partitioning often corresponds to
clustering. For an undirected graph, the algorithm is simple. We need to define a few
more concepts before we can state the algorithm. Using our definition of the directed
Laplacian from the previous section, we can immediately generalize this algorithm to
directed graphs.

First, the normalized cut of a partition S of a graph G is

ncut(S) = vol ∂S

(

1

volS
+

1

vol S̄

)

.

The normalized cut of a graph is the minimum over all subsets S. Second, the expansion
of a partition S of a graph G is

ρ(S) =
vol ∂S

min(|S|, |S̄|) .

Given the definition of volume from the previous section, these definitions generalize
to a directed graph as well.

Finally, we observe that a permutation of the vertices of G induces n− 1 partitions
of the graph G. Further, we can compute the value of ncut, ρ, and φ for each of the
n − 1 partitions in time O(|E|).

We formally state the recursive spectral clustering algorithm as figure 2. We provide
an “algorithm run visualization” in figure 3. The idea with the algorithm is to use v1

corresponding to λ1 as an ordering of the vertices of the graph G that reveals a good
cut. In the proof of the Cheeger inequalities, we use the fact that a sweep through all
possible partitions induced by the ordering given in v1 yields a good cut.

The origin of the normalized cut metric is [6]. Shi and Malik show that relaxing
the integer program for normalized cuts reduces to a generalized eigenvalue problem,

minx ncut(x) = miny
yT (Diag(We)−W)y

yT Diag(We)y
,

s.t. yT Diag(We)−1e = 0, y ∈ {1,−b}

for a particular (but irrelevant here) defined constant b. Relaxing y to be real-valued
gives that y the eigenvector with minimum eigenvalue of the generalized eigenvalue
problem

(Diag(We) − W)y = λ Diag(We)y,

s.t. yT Diag(We)−1e = 0.

10

Data: graph G = (V,E, w), minimum partition size p

Result: a recursive partitioning of G

if |V | < p then
stop and return.

end

if G has more than one connected component then
divide G into its components and recurse on each partition.

end

Compute v1 corresponding to λ1 of L or L for G.

Sort v1 into permutation P .

Sweep through all cuts induced by the ordering P and compute one of
ncut(P (1 : i)), ρG(P (1 : i)) , or φG(P (1 : i)) and let I correspond to the index
achieving the minimum value.

Recurse on G(P (1 : I)) and G(P (I + 1 : |V |)) (the subgraphs induced by the
subset of vertices).

Figure 2: The (directed) version of the recursive spectral graph partitioning
algorithm. If G is directed, then we must interpret G implicitly as one of
the standard modifications for possibly aperiodic, not strongly connected
graphs.

The second criteria merely states that that y is the first non-trivial eigenvector. Trans-
forming the generalized eigenvalue problem into a standard eigenvalue problem by
substituting ỹ = Diag(We)1/2y and left-multiplying by Diag(We)−1/2 shows that

Lỹ = ỹ.

Hence
y = D−1/2v1,

where v1 is the first non-trivial eigenvector of L.
In [4], Zhou et al show that using v1 corresponding to the normalized directed

Laplacian is a real-valued relaxation of computing the optimal normalized cut as an
integer program. With our analysis in this paper, this result is trivial and does not
require proof. Instead, it follows directly from the definition of normalized cut and the
symmetrization of the directed problem.

4 Other Directed Clustering

We can generalize our spectral clustering framework for any permutation vector P that
may reveal a good cut in the graph. That is, we relax our requirement that v1 is the
second smallest eigenvector of one of the Laplacian matrices. Sprinkled throughout the

11

Figure 3: An illustration of hierarchical spectral clustering. We start with
an initial graph G and compute the second smallest eigenvector of L of L. If
we look at the graph “along” this eigenvector, we see that the jump in the
eigenvector corresponds to a good partition of the graph. In this case, we
separate A from B. Next, we recurse on A and B and divide them into C,D

and E,F , respectively. We continue this process until a suitable stopping
criteria (e.g. less than p nodes in a partition) terminates the procedure. The
eigenvector is shown above the each graph.

12

literature are ideas that may yield a vector with the property that sorting the graph
by that vector reveals a good cut.

Our requirements for the algorithm and vector are simple:

• it must yield one or more vectors v that yield a sorting of the graph,

• it must work on directed graphs, and

• it should be computationally similar to computing v1.

4.1 Higher non-trivial eigenvectors

The first obvious relaxation is to consider additional eigenvectors of the Laplacian. The
motivation for this approach is direct in that each higher eigenvector is the next best
solution to the normalized cut problem, subject to orthogonality with all previous solu-
tions. Thus, we use algorithms that also examine higher eigenvectors and, potentially,
partition using these instead of v1.

The work required for this method is nearly equivalent to computing v1. Empir-
ically, we find that we often need many dimensions for the Arnoldi subspaces used
in the ARPACK algorithm. These additional dimensions correspond to additional
eigenvectors. Thus, if we have a cluster of eigenvalues near 0, we must find all the
corresponding eigenvectors before they will converge. In fact, the benefits of splitting
with these eigenvalues can be empirically motivated.

Consider the graph in figure 4. In that graph, the higher eigenvectors correspond
to slightly worse, but similar cuts. In fact, on a recursive application, the spectral
algorithm cuts these small clusters off one at a time.3

4.2 Cosine Similarity

Next, we come to the idea of cosine similarity. In a high-dimensional space, the cosine
of the angle between two vectors ai, aj is

cos(ai, aj) =
aT

i aj

||ai|| · ||aj ||
.

If we consider a particular node in the graph, i, we view that node as a row-vector of
the adjacency matrix, aT

i . We then compute the cosine similarity between that node
and the rest of the graph. Trivially, cos(ai, ai) = 1. The dot-product aT

i aj counts the
number out-links shared between nodes i and j. If these nodes share many outlinks,
then they may be assigned to the same cluster. Hence, cosine similarity may correspond
to some indication of clustering in the graph.

McSherry alluded to formalization of a similar algorithm for clustering in [7]. His
algorithm naturally extends to bounding cosine similarity from below instead of bound-
ing Euclidean distance above. However, instead of depending on the cosine value to
directly correlate with clusters in the graph, we directly minimize one of the objective
functions instead.

3This motivates using multiple eigenvectors to divide the graph, which is often used in practice [4].

13

(a) The graph

(b) Eigenvectors

Figure 4: An example of where higher eigenvectors yield additional par-
titioning information. The 5 small clusters are the first 50 vertices of the
graph (10 vertices each) and are composed of a clique. The remainder of the
graph is a 50 vertex clique. The first 5 eigenvectors shown here all have a
similar form and separate the small clusters.

14

Using the vector of cosine similarities to a particular node is significantly faster than
computing the second smallest eigenvector. Further, this method has no problems with
directed graphs.

4.3 PageRank and Personalized PageRank

We’ve examined PageRank as a stationary distribution for a non-strongly connected,
periodic graph. However, here we view it differently. PageRank roughly corresponds
to the popularity of a given page. Hopefully, pages that are somehow similar may have
similar PageRank values. Effectively, this idea is wishful thinking. Nevertheless, it is
a trivial extension and leads to the idea of personalized PageRank.

In PageRank, we use the transition matrix

PPR = αP +
(1 − α)

n
eeT .

This modification corresponds to adding a clique to our graph between all vertices with
a low transition probability, 1−α

n , to each page in the graph. In contrast, with Personal
PageRank, we add transitions from each vertex in our graph to one particular vertex
i. Thus,

PPPRi
= αP + (1 − α)eeT

i .

For Personal PageRank, we interpret the random walk as a process that begins at node
i and proceeds according to the transition matrix P with probability α and resets with
probability 1 − α. Personalized PageRank, then, ranks the out-neighborhood of node
i.

Personalized PageRank seems nearly ideal for this application, because it also de-
fines a stationary distribution over the Personal PageRank modified graph. Thus,
when we use Personalized PageRank as a sorting vector, it seems natural to use the
Personalized PageRank symmetrized adjacency matrix to evaluate the cut metrics for
choosing the split.

4.4 Right Hand Eigenvectors

In [8] Stewart states that the subdominant right hand eigenvectors are an indication
of state clustering. That is, given a Markov chain transition matrix P , the dominant
left eigenvector is the stationary distribution. The dominant right eigenvector is the
vector e. Stewart shows, through straightforward algebra, that the coordinates of the
subdominant right hand eigenvectors indicate how far the state is from the stationary
distribution.

Naturally, these vectors fit nicely into our framework. Again, we can compute
eigenvectors of the transition matrix P for our graphs at least as easily as computing
the smallest eigenvectors for the Laplacian matrix. Thus, the computational time is
equivalent. Again, there is no problem with directed graphs. For this method, we have
to assume that P is strongly connected and aperiodic, however, as with the Laplacian,
this is not a problem.

15

4.5 Random Permutations

Finally, in [2], we see that any random vector has a similar property to v1 for the
Laplacian matrix. Thus, guessing a random vector may yield a good ordering of the
states.4

5 Implementation

We implemented all of the directed spectral clustering algorithm in a Matlab program.
The usage for the program follows.

SPECTRAL Use recursive spectral graph partitioning to cluster a graph.

[ci p] = spectral(A, opts)

ci gives the cluster index of all results

p is a ordering permuation of the adjacency matrix A

The algorithm works slightly different than a standard second eigenvetor

splitting technique. If possible for the desired problem type, the

algorithm will compute opts.nv vectors and use each vector as a linear

ordering over the vertices of the graph. The algorithm chooses the

cut that maximizes the smallest partition size (i.e. best bisection).

opts.verbose: extra output information [{0} | 1]

opts.maxlevel: maximum recursion level [integer | {500}]

opts.minsize: minimum cluster size [integer | {5}]

opts.maxfull: largest size to use for full eigensolve [integer | {150}]

opts.split: a string specifying the split type

[{’ncut’} | ’expansion’ | ’conductance’]

opts.directed: directed spectral clustering [{0} | 1]

opts.nv: the number of eigenvectors to check [integer | {1}]

options for directed spectral clustering

opts.directed_distribution: stationary distribution for graph

[{’pagerank’} | ’lazywalk’ | ’exact’]

opts.pagerank_options: options structure for PageRank (see pagerank.m)

pagerank_options.v is ignored

opts.laziness: laziness parameter is not using PageRank [float | {0.5}]

opts.lazywalk_options: options structure for lazywalk (see lazywalk.m)

opts.problem: which problem to solve for the sorting vector

[’minbis’ | {’ncut’} | ’cos’ | ’prank’ | ’pprank’ | ’random’ | ’reig’]

The implementation in Matlab uses ARPACK for eigenvalue computations. We
either use the stationary distribution for the exact graph G, or one of the two mod-
ifications – the lazy walk or PageRank vector. Second, we allow the users to choose

4This fact is in the notes, but I really don’t see how it can be correct. From my experiments, this
algorithm tends to bisect the graph in virtually every case because the cut values are monotone in the size
of the smallest partition.

16

Abbv. |V| |E| Description

wb-cs 9914 36854 All pages from 2001 Webbase crawl on cs.

stanford.edu.

wp-100 18933 908412 Strongly connected component of Wikipedia ar-
ticles with at least 100 inlinks.

neuro 202 2540 Neuron map from C. Elegans.

Table 1: A summary of statistics on our datasets.

which “problem” they use to generate the sorting vector v (or vectors if nv > 1 and
the method produces multiple vectors). There is nothing particularly slick about the
implementation.

The current implementation scales to roughly 100,000 vertex graphs. Around this
point, the inefficiencies that result from Matlab begin to dominate. In theory, nothing
prohibits a distributed data implementation of these ideas.

6 Evaluation

[Note: I intended to have a more thorough evaluation. However, due to time con-
straints, it has been abbreviated.]

We empirically evaluate the implementation of the previous section on a few graphs.
The graphs are summarized in table 1.

We begin with wb-cs. This graph demonstrates a few interesting properties of the
algorithms. First, the graph is directed and is not strongly connected. Thus, we use
the PageRank modification of the graph with α = 0.99. If we try using only one
eigenvector of the directed Laplacian, the algorithms fail and we only divide off very
small portions of the graph. Using multiple eigenvectors nv = 25 helps, although, the
process still tends to stagnate. See figure 5 for a summary of the results from each run.

Next, we examine the wiki dataset. This dataset comes from a Wikipedia dump
in November. We processed the dataset by removing all pages without at least 100
inlinks and computing the largest strongly connected component of what remained.
This procedure yields a nice core subset of the wikipedia pages.

In contrast to the previous dataset, the partitioning algorithm worked well on the
Wikipedia dataset with few modifications. At the end of the algorithm, we concate-
nated all the results into a permutation of the adjacency matrix. The results are
presented in figure 6 and table 2. In figure 7, we show details on two of the apparent
clusters in the dataset, the “time” cluster, which has links to many nodes, and the
“baseball” cluster, which is tight with few links elsewhere.

Finally, we partition the neuro dataset. Like wiki, there were no problems with the
algorithms on this dataset. This directed dataset corresponds to the neural connections
in C. Elegans. For these nodes, a cluster is a set of highly interconnected neurons. It is
particularly important to obey directionality in the clustering as the direction indicates
the flow of information. The permutation shown in figure 8 should help biologists
identify functional units among the neurons.

17

No progress with nv = 1

>> [ci p] = spectral(A, struct(’directed_distribution’, ’pagerank’, ...

’directed’, 1, ’pagerank_options’, struct(’c’, 0.99), ’nv’, 1));

level=0; split=[1, 9913]; cv=0.01 str=lambda_1=-9.72e-017; lambda_2=7.38e-003

level=1; split=[1, 9912]; cv=0.01 str=lambda_1=1.88e-015; lambda_2=7.38e-003

level=2; split=[9909, 3]; cv=0.01 str=lambda_1=-2.19e-015; lambda_2=7.38e-003

level=3; split=[9908, 1]; cv=0.01 str=lambda_1=-3.69e-015; lambda_2=7.38e-003

level=4; split=[5, 9903]; cv=0.01 str=lambda_1=3.16e-015; lambda_2=7.38e-003

Better with nv = 25

>> [ci p] = spectral(A, struct(’directed_distribution’, ’pagerank’, ...

’directed’, 1, ’pagerank_options’, struct(’c’, 0.99), ’nv’, 25));

level=0; split=[240, 9674]; cv=0.01 str=lambda_1=3.05e-017; lambda_2=7.38e-00

level=1; split=[276, 9398]; cv=0.01 str=lambda_1=2.13e-015; lambda_2=7.13e-0033

level=2; split=[9340, 58]; cv=0.01 str=lambda_1=2.70e-015; lambda_2=8.29e-003

level=3; split=[20, 9320]; cv=0.01 str=lambda_1=-3.31e-015; lambda_2=8.42e-003

level=4; split=[20, 9300]; cv=0.01 str=lambda_1=-2.92e-015; lambda_2=8.42e-003

...

Best with nv = 25, using right-hand eigenvectors

>> [ci p] = spectral(A, struct(’directed_distribution’, ’pagerank’, ...

’directed’, 1, ’pagerank_options’, struct(’c’, 0.99), ’nv’, 1, ...

’problem’, ’reig’));

level=0; split=[1271, 8643]; cv=0.02 str=lambda_1=1.00e+000; lambda_2=9.88e-001

level=1; split=[614, 657]; cv=0.01 str=lambda_1=1.00e+000; lambda_2=9.86e-001

level=1; split=[7805, 838]; cv=0.03 str=lambda_1=1.00e+000; lambda_2=9.89e-001

level=2; split=[1131, 6674]; cv=0.01 str=lambda_1=1.00e+000; lambda_2=9.89e-001

level=3; split=[622, 509]; cv=0.01 str=lambda_1=1.00e+000; lambda_2=9.90e-001

...

Figure 5: The simple algorithm stagnates and cannot cut the webgraph
in the first two instances. The “split” indicates the size of each partition.
In the first case, we partition individual nodes – hardly worth solving an
eigenvalue problem. By changing the permutation vector for the graph, we
can improve the results and make significant cuts in the graph.

18

(a) Original Adjacency Matrix

(b) Permuted Adjacency Matrix

Figure 6: An ordering of the adjacency matrix for the neuro dataset. The
ordering generates small blocks on the diagonal which correspond to more
highly interconnected groups of neurons.

19

’Sahel’ ’Distribution’ ’Spear’
’Niger’ ’Parameter’ ’Nymph’
’Benin’ ’Leonhard Euler’ ’Aphrodite’

’Drought’ ’Riemann zeta function’ ’Dionysus’
’Niger River’ ’Function (mathematics)’ ’Hermes’
’West Africa’ ’Complex number’ ’Artemis’

’Mali’ ’Square root’ ’Persephone’
’Senegal’ ’Neal Stephenson’ ’Apollo’
’Chad’ ’Limit (mathematics)’ ’Oracle’

’Sahara’ ’Natural logarithm’ ’Zeus’
’Sahara Desert’ ’Continuous function’ ’Helen’

’Oasis’ ’Impedance’ ’Theseus’
’Muammar al-Qaddafi’ ’Complex analysis’ ’Demeter’

’Mauritania’ ’Real number’ ’Hera’
’Libya’ ’Mathematical’ ’Hades’

’Maghreb’ ’Trigonometric function’ ’Helios’
’Hashish’ ’Distance’ ’Hercules’
’Tangier’ ’Fractal’ ’Heracles’
’Nomad’ ’Derivative’ ’Gaia (mythology)’
’Bedouin’ ’Category:Mathematical analysis’ ’Centaur’
’Algeria’ ’Vector’ ’Ares’

Table 2: A set of proximate articles according to the final permutation of
the wikipedia dataset. We see that each linear list of articles is topically
coherent indicating a good permutation of the adjacency matrix.

20

(a) “Universal” Time Cluster

(b) Baseball Cluster

Figure 7: An ordering of the adjacency matrix for the neuro dataset. The
ordering generates small blocks on the diagonal which correspond to more
highly interconnected groups of neurons.

21

nz = 2540

(a) Original Adjacency Matrix

nz = 2540

(b) Permuted Adjacency Matrix

Figure 8: An ordering of the adjacency matrix for the neuro dataset. The
ordering generates small blocks on the diagonal which correspond to more
highly interconnected groups of neurons.

22

7 Conclusion and Future Ideas

To recap, we explored the directed Laplacian as defined by a circulation on a graph.
We proved that the directed Laplacian obeys the Cheeger inequalities based on a
particular symmetrization of the adjacency matrix of a graph. Second, we built an
implementation of the directed spectral clustering idea that follows from the directed
Laplacian and used non-Laplacian eigenvectors to help partition the graphs. One of
these ideas worked well on a graph where the eigenvectors the Laplacian were not
helpful.

The directed Laplacian is promising. However, it tends to exhibit the same problems
as the undirected Laplacian in that it chooses small cuts in many cases. One possibility
is to use a semidefinite embedding of the directed graph to correct this problem. Recent
empirical results have show that using the semidefinite embedding yields more balanced
cuts of power-law graphs [9].

Our results suggest future work in a few directions. First, Fan Chung choose to
preserve the symmetry of the volume operator on a graph cut,

vol ∂S = vol ∂S̄.

For any circulation, this directly leads to computing the eigenvalues of a symmetric
matrix,

F + F T

2
.

Instead, we might define a non-symmetric volume, or choose another property of the
undirected volume operation to preserve. A second idea is to relate the concept of a
circulation more directly with flows on the graph. Clearly, any s− t flow gives rise to a
circulation on the graph where we add an edge from t to s with the max-flow capacity.
This fact immediately suggests a new algorithm for clustering under the constraint
that a small set of nodes are in separate clusters. (Setup an s − t max flow between
one pair, solve, partition, and then repeat on each partition until all vertices are in
different clusters.)5

References

[1] Fan Chung. Laplacians and the Cheeger inequality for directed graphs. Annals of
Combinatorics.

[2] Amin Saberi, Paul Constantine. Lecture Notes for MS&E 337. October 31, 2005.

[3] James Demmel. CS267: Notes for Lecture 23, Graph Partitioning 2.
April 9, 1999. http://www.cs.berkeley.edu/∼demmel/cs267/lecture20/
lecture20.html, accessed on 30 January 2006.

[4] Dengyong Zhou, Jiayuan Huang, and Bernhard Sch olkopf. Learning from labeled
and unlabled data on a directed graph. In Proceedings of the 22nd International
Conference on Machine Learning. 2005.

5It seems like there should be a more direct way to solve this problem and I would be surprised if there
wasn’t something known about it already.

23

[5] Fan Chung. Random walks and cuts in directed graphs. Accessed from http:

//www.math.ucsd.edu/∼fan/research.html during December.

[6] Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence. Volume 22, Issue 8, 2005. Accessed from http:

//www.cs.berkeley.edu/∼malik/papers/SM-ncut.pdf.

[7] Frank McSherry. Lecture for MS&E 337. Accessed from http://www.stanford.

edu/class/msande337/notes/talk.pdf.

[8] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[9] Kevin Lang. Finding good nearly balanced cuts in power-law graphs. Accessed
from http://research.yahoo.com/publication/YRL-2004-036.pdf.

24

