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AbstractÐThe main motivation of this paper is to propose a new classification and regression method for challenging high-

dimensional data. The proposed new technique casts classification problems (class labels as output) and regression problems

(numeric values as output) into a unified regression problem. This unified view enables classification problems to use numeric

information in the output space that is available for regression problems but are traditionally not readily available for classification

problemsÐdistance metric among clustered class labels for coarse and fine classifications. A doubly clustered subspace-based

hierarchical discriminating regression (HDR) method is proposed in this work. The major characteristics include: 1) Clustering is

performed in both output space and input space at each internal node, termed ªdoubly clustered.º Clustering in the output space

provides virtual labels for computing clusters in the input space. 2) Discriminants in the input space are automatically derived from the

clusters in the input space. These discriminants span the discriminating subspace at each internal node of the tree. 3) A hierarchical

probability distribution model is applied to the resulting discriminating subspace at each internal node. This realizes a coarse-to-fine

approximation of probability distribution of the input samples, in the hierarchical discriminating subspaces. No global distribution

models are assumed. 4) To relax the per class sample requirement of traditional discriminant analysis techniques, a sample-size

dependent negative-log-likelihood (NLL) is introduced. This new technique is designed for automatically dealing with small-sample

applications, large-sample applications, and unbalanced-sample applications. 5) The execution of HDR method is fast, due to the

empirical logarithmic time complexity of the HDR algorithm. Although the method is applicable to any data, we report the experimental

results for three types of data: synthetic data for examining the near-optimal performance, large raw face-image data bases, and

traditional databases with manually selected features along with a comparison with some major existing methods, such as CART,

C5.0, and OC1.

Index TermsÐDiscriminant analysis, classification and regression, decision trees, high-dimensional data, image retrieval.

æ

1 INTRODUCTION

THE capability of computers to efficiently and effectively
retrieve information from image databases gives a

significant impact on the progress of digital library
technology. A central task of a multimedia information
system is to efficiently store, quickly and correctly retrieve,
and easily manage images in the database.

An essential issue for an image database is the
representation of the image. We can categorize the con-
tent-based image retrieval into two types: the model-based
and the appearance-based. The model-based approach uses
manually defined features to represent objects in the
images. A lot of efforts has been made in this approach
[1], [2], [3], [4], [5]. Most of them have been focusing on
designing an efficient algorithm from a set of manually
selected features. The strength of the model-based approach
is the efficiency in representing images. With a proper
design and a restricted domain of images, only a very small
number of parameters is sufficient to represent the objects
in the image and to distinguish among different objects.
However, the model-based approach is difficult to general-
ize. For example, given a face image database, the designer
needs to manually find the features for faces. The face
features become useless when a car image database is

presented. The designer has to find another set of features
for car images. Such a process of manually designing
features cannot scale up to large and complex domains
since there are countless models to be built.

The appearance approach has recently drawn much
attention in machine vision [6], [7], [8]. Instead of relying on
human designer to define features, the appearance-based
approach enables machines to automatically derive features
from image samples. To do so, it considers a two-
dimensional image as a long vector. Statistical classification
tools are applied directly to the sample vectors. One
example is the nearest neighbor (NN) classifier. As is
well-known, an NN classifier is very time and space
consuming for high-dimensional image space or a large
image database. To use fewer features to represent a set of
images, the principal component analysis (PCA) has been
used for face recognition [6], [9]. PCA can optimistically
reconstruct the images represented with the least mean
square errors. However, the features which can well
represent the original data set are not necessarily good for
the purpose of classification. The features derived from the
linear discriminant analysis (LDA) are meant for well
distinguishing different classes and, thus, are relatively
better for the purpose of classification, provided that the
samples contain sufficient information [10].

The second issue for image databases is how to organize
the represented features so that the retrieval is both fast and
successful. Linear search is very time-consuming which
makes it not practical for very large image databases. One
way to solve this problem is to use a decision tree. A well
designed decision tree can retrieve a matched sample with a
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logarithmic time complexity. This is a very useful

characteristic for large image databases. There is a very

rich literature about decision trees, see surveys [11], [12],

[13], [14]. However, the applications of decision trees have

been traditionally for a low-dimensional feature space with

manually selected features. This is true, largely because

humans cannot define a large number of useful features.

The appearance-based approach drastically changed this

situation. Traditional decision trees for a low-dimensional

input space have been found not suitable for input

dimensionality of a few thousand and up, even after data-

dimensional reduction using techniques such as PCA, as we

report in this paper. A major reason is the high complexity

of sample distribution that cannot be adequately captured

by a single-level PCA. As demonstrated by [15], if a

different subspace is computed at each internal node of

the tree, a better generalization power results. In [16], they

have demonstrated that using an appropriate tree the

classification can be better and faster. A series of limitations

of existing tree classifiers has motivated the work presented

here with advances and advantages summarized in the

abstract.

2 A NEW SUBSPACE REGRESSION TREE FOR

HIGH-DIMENSIONAL LEARNING

2.1 Hierarchical Discriminant Regression

Discriminant analysis can be categorized into two types
according to their outputs: class-label output and numerical
output. If the output is a class label, the task is called
classification. Otherwise, the task is called regression. We
cast both classification and regression tasks into a regres-
sion one in this study.

A classification task can be stated as follows: Given
a training sample set L � f�xi; lk� j i � 1; 2; . . . ; n; k �

1; 2; . . . ; cg, where xi 2 X is an input (feature) vector and
lk is the symbolic label of xi, the task is to determine the
class label of any unknown input x 2 X .

How can one cast a classification task into a regression
one? We consider three cases:

1. If a cost matrix �cij� is readily available from
applications, where cij is the cost of confusing
classes i and j, one can embed c class labels into an
�cÿ 1�-dimensional Euclidean output space by as-
signing vector yi and yj to class i and j, respectively,
where i; j � 1; 2; . . . ; c, so that jjyi ÿ yjjj is as close to
cij, as much as possible. This process is not always
possible since a predefined cost matrix �cij� is not
always easy to provide.

2. Canonical mapping. Map c class labels into a c-
dimensional output space so that the ith class label
corresponds to a vector in which the ith component
is one and all other components are zeros. After this
mapping, the distance between any two different
class labels is the same: one. This label mapping does
not assign different distances to different output
vectors but will do so for coarse classes in a coarse-
to-fine classification as we explain below.

3. Mapping labels into the input space. Each sample
�xi; lk� belonging to class k is converted to �xi; yk�
where yk, the vector class label, is the mean of all xi

that belong to the same class. This label mapping
scheme considers the distance in input space among
different classes. In many applications, this is a
desirable way. In each leaf node of the regression
tree, each training sample �xi; yk� has a link to label lk
so that when �xi; yk� is found as a good match for
unknown input x, lk is directly output as the class
label. There is no need to search for the nearest
neighbor in the output space for the corresponding
class label.

As we know, one cannot map a numeric output space
into a set of class labels without losing the numeric
properties among an infinite number of possible numerical
vectors. Therefore, a regression problem is more general
than the corresponding classification problem.

2.1.1 Discriminant Analysis for Numerical Output

Now, we consider a general regression problem: approx-
imating a mapping h : X 7!Y from a set of training samples
f�xi; yi� j xi 2 X ; yi 2 Y; i � 1; 2; . . . ; ng. If yi was a class
label, we could use linear discriminant analysis (LDA) [17]
since the within-class scatter and between-class scatter
matrices are all defined. Unfortunately, if each class has
only very few samples, the within-class scatter matrix is
poorly estimated and the LDA is not very effective. If the
classification problem is cast into a regression one, it is
possible to form coarse classes so that each class has more
samples, which enable better estimation of the within class
scatter matrix. However, if yi is a numerical output, which
can take any value for each component, it is a challenge to
figure out an effective discriminant analysis procedure.

To attack this challenge, we introduce a new hierarchical
statistical modeling method. Consider the mapping
h : X7!Y, which is to be approximated by a regression
tree,1 called a hierarchical discriminant regression (HDR)
tree, for the high-dimensional space X . Our goal is to
automatically derive discriminant features, although no
class label is available (other than the numerical vectors in
space Y).

Two types of clusters are formed at each node of the
HDR treeÐy-clusters and x-clusters, as shown in Fig. 1. The
y-clusters are clusters in the output space Y and x-clusters
are those in the input space X . There are a maximum of
q clusters of each type at each node. The q y-clusters
determine the virtual class label of each training sample
�x; y� based on its y part. The virtual class label is used to
determine which x-cluster the input sample �x; y� should
update using its x part. Each x-cluster approximates the
sample population in X space for the samples that belong to
it. It may spawn a child node from the current node if a
finer approximation is required. At each node, y in �x; y�
finds the nearest y-cluster in, e.g., Euclidean distance (more
general distance metrics can also be used). This y-cluster
indicates to which corresponding x-cluster the input �x; y�
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belongs. Then, the x part of �x; y� is used to compute the

statistics of the x-cluster (the mean vector and the

covariance matrix). These statistics of every x-cluster are

used to estimate the probability for the sample �x; y� to

belong to which x-cluster, whose probability distribution is

modeled as a multidimensional Gaussian at this level. A

total of q centers of the q x-clusters gives q ÿ 1 discriminant

features which span �q ÿ 1�-dimensional discriminant

space. A probability-based distance (to be discussed in

Section 2.2) from x to each of the q x-clusters is computed to

determine which x-cluster should be further searched. If the

probability is high enough, the sample �x; y� should further

search the corresponding child (maybe more than one but

with an upper bound k) recursively, until the corresponding

terminal nodes are found.

For computational efficiency, none of the x-clusters and

y-clusters keep actual input samples, unlike the traditional

clustering methods. Only the first order statistics are used to

represent the clusters. For example, each y-cluster keeps the

mean vector and the covariance matrix, depending on the

distance metric used in the Y space, while each x-cluster

keeps the mean vector and the full covariance matrix in an

efficient form.

In summary, the algorithm recursively builds an HDR

tree from a set of training samples. The deeper a node is in

the tree, the smaller the variances of its x-clusters are. The

way we use decision trees is very different from the

traditional ones like CART [14] and OC1 [13]. We do not

compute the features of all the data set and then build the

decision tree only on these features. Instead, the method

automatically derives (linear) features for each internal

node using all the samples assigned to that node. Thus, the

tree is also a feature deriver, not just a feature selector. Our

tree does not select an input component at a time as other

trees do. The proposed HDR tree in fact automatically

derives features, which are linear combination of all the

input components using class labels. The following is the

outline of the algorithm for tree building and retrieval.

Procedure 1. BuildSubtree: Given a node N and a subset
S0 of the training samples that belong to N ,
S0 � f�xi; yi� j xi 2 X ; yi 2 Y; i � 1; 2; . . . ; ng, build the
subtree which roots from the nodeN using S recursively.
At most q, clusters are allowed in one node.

1. Let p be the number of the clusters in node N .

. Call Clustering-Y (procedure 2) to obtain
p y-clusters.

. If yi belongs to jth y-cluster, then xi belongs
to jth x-cluster.

2. Compute the mean and covariance matrices of
each x-cluster.

3. For every xi of �xi; yi� in S0:

. Find the nearest x-cluster j according to the
probability-based distances.

. Assign the sample �xi; yi� to cluster j.
4. For each cluster j, now we have a portion of

samples Sj assigned to it. If the largest Euclidean
distance among yi's in the x-cluster is larger than
a number �y, a child node Nj of N is created from
the x-cluster and this procedure is called recur-
sively with input samples Sj and node Nj. The
number �y represents the sensitivity of the HDR
tree in the space Y.

Procedure 2. Clustering-Y: Given a set of output vectors

Y � �y1; y2; . . . ; yn�, return p y-clusters. p � q, where q

represents the maximum number of clusters allowed in

one node.

1. Let the mean Y1 of y-cluster 1 be y1. Set p � 1 and
i � 2.

2. For i from 2 to n do

a. Find the nearest y-cluster j for yi.
b. Compu t e t h e Eu c l i d e an d i s t a n c e

d � dist�yi; Yj�, where Yj is the jth y-cluster
mean, j � p.

c. If d � �y and p < q, let the mean Yp�1 of
y-cluster p� 1 be yi. Set p � p� 1.

d. Otherwise, update y-cluster j using the new
member yi.

The procedure to create a HDR tree just calls procedure

BuildSubtree with root R and all the training samples

S � f�xi; yi� j xi 2 X ; yi 2 Y; i � 1; 2; . . . ; ng. The procedure

to query the HDR tree for an unknown sample x is

described below.

Procedure 3. Retrieval: Given an HDR tree T and a

sample x, estimate the corresponding output vector y. A
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Fig. 1. Y-clusters in space Y and the corresponding x-clusters in space X . The first and the second order statistics are computed for each cluster. By

default, the normalized Mahalanobis distance is used for x-cluster and the Euclidean distance is used for y-cluster.



parameter k specifies the upper bound in the width of
parallel tree search.

1. From the root of the tree, compute the probability-
based distance to every cluster in the node. Select
at most top k x-clusters which have the smallest
probability-based distances to x. These x-clusters
are called active x-clusters.

2. For every active cluster received, check if it
points to a child node. If it does, mark it inactive
and explore its child node by computing the
probability-based distances of x-clusters in the
child node. At most, k2 active x-clusters can be
returned.

3. Mark at most k active x-clusters according to the
smallest probability-based distances.

4. Do the above steps 2 through 3 recursively until
all the resulting active x-clusters are all terminal.

5. Let the cluster c have the shortest distance among
all terminal active x-clusters. Output the corre-
sponding mean of its y-cluster as the estimated
output y for x.

It is worth noting that the boundary partition uses the
samples according to the pseudo y labels. The resulting
partition does not have to correctly separate every sample
according to its label, because finer levels can do that. The
samples that fall into partition cells that are not ideally
for them should not be used to compute partition since
they will deteriorate the partition (without using correct
y-labels.) This is because we want to use discriminant
analysis instead of unsupervised clustering methods.

If we use Gaussian distribution to model each x-cluster,
this is a hierarchical version of the well-known mixture-of-
Gaussian distribution models: The deeper the tree is, the
more Gaussians are used and the finer are these Gaussians.
At shallow levels, the sample distribution is approximated
by a mixture of large Gaussians (with large variances). At
deep levels, the sample distribution is approximated by a
mixture of many small Gaussians (with small variances).
The multiple search paths guided by probability allow a
sample x that falls in-between two or more Gaussians at
each shallow level to explore the tree branches that contain
its neighboring x-clusters. Those x-clusters to which the
sample �x; y� has little chance to belong are excluded for
further exploration.

2.2 Distance in Discriminating Space

2.2.1 Discriminating Subspace

In the above section, we need to estimate the distance for an
input vector x to belong to an x-cluster. For a real-time
system, it is typically the case that the system cannot afford
to keep all the samples in each cluster. Thus, each cluster
will be represented by some statistical measures with an
assumed distribution.

We first consider x-clusters. Each x-cluster is represented
by its mean as its center and the covariance matrix as its
size. However, since the dimensionality of the space X is
typically very high, it is not practical to directly keep the
covariance matrix. If the dimensionality of the input space
X is 3,000, for example, each covariance matrix requires

3; 000� 3; 000 � 9; 000; 000 numbers! We adopt a more
efficient method.

As explained in Section 2.1.1, each internal node keeps
up to q x-clusters. The centers of these q x-clusters are
denoted by:

C � fc1; c2; :::; cq j ci 2 X ; i � 1; 2; :::; qg: �1�

The locations of these q centers tell us the subspace D in
which these q centers lie. D is a discriminant space, since the
clusters are formed based on the clusters in the output
space Y. We can compute the between-cluster scatter and
within-cluster scatter in the subspace D. Suppose that the
number of samples in cluster i is ni and, thus, the grand
total of samples is n �

Pq
i�1

ni. The mean of the q cluster
centers, denoted by c is computed as:

c �
1

n

Xq

i�1

nici:

The covariance matrix of cluster i is denoted by ÿi,
i � 1; 2; :::; q. The within-cluster scatter matrix is the
weighted average of the q covariance matrices:

Sw �
1

n

Xq

i�1

niÿi: �2�

The between-cluster scatter matrix is the sample covariance
matrix for the cluster centers:

Sb �
1

n

Xq

i�1

ni�ci ÿ c��ci ÿ c�T : �3�

The sample mixture matrix is the covariance matrix of all
the samples regardless of their cluster assignments and it is
also equal to

Sm � Sw � Sb:

The Fisher's linear discriminant analysis [17], [18] finds a
subspace that maximizes the ratio of between-cluster scatter
and within-cluster scatter: jSbj=jSwj. Since we decide to use
the entire discriminant space D, we do not need to consider
the within-cluster scatter here in finding D and, thus,
simplifies the computation. Once we find this discriminat-
ing space D, we will use the size-dependent negative-log-
likelihood (SDNLL) distance as discussed in Section 2.2.2 to
take care of the reliability of each dimension in D by using
information that is richer than the matrix Sw.

2.2.2 Size-Dependent Negative-Log-Likelihood

We need a system that fully uses the information available
no matter how many samples have been observed. This is
an issue that has received little attention, since it is typically
assumed that sufficient samples are available. However, it
is often not the case in practice. In terms of belongingness,
we have three measures: likelihood, Mahalanobis distance,
and Euclidean distance. The likelihood uses the covariance
matrix of each individual cluster. It requires that each
x-cluster has enough samples to estimate the �q ÿ 1� � �q ÿ 1�
covariance matrix. It is the most demanding in richness of
observations. The Mahalanobis distance uses the average of
the covariance matrices. It is less demanding since it just
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requires that the average of covariance matrix has reason-
ably rich observations but not necessarily every x-cluster.
The Euclidean distance is estimated by �2I and, thus, has
only one parameter �, the standard deviation of all samples.
Thus, it is the least demanding. When very few samples are
available for all the clusters, the Euclidean distance is a
suitable measurement.

Consider the negative-log-likelihood (NLL) defined from
Gaussian density:

L�x; ci� �
1

2
�xÿ ci�

T
ÿ
ÿ1

i �xÿ ci� �
1

2
ln�jÿij�: �4�

We call it Gaussian NLL for x to belong to the ith cluster.
We call it Mahalanobis NLL if ÿi is replaced by the within-
class scatter matrixÐthe average of the covariance matrices.
We call it Euclidean NLL if ÿi is replaced by a scalar
matrix �2I. We would like to use the Euclidean NLL when
the number of samples in the node is small. Gradually, as
the number of samples increases, the within-class scatter
matrix of q x-clusters is better estimated. Then, we would
like to use the Mahalanobis NLL. When a cluster has very
rich observations, we would like to use the full Gaussian
NLL for it. However, since we approximate the global
distribution using coarse-to-fine and global-to-local techni-
ques, no assumption about global distribution is made.

Before we discuss how to realize this transition among
the three NLLs, we discuss different characteristics of them.
Suppose that the input space is X and the discriminating
subspace for an internal node is D. The Euclidean NLL
treats all the dimensions in the discriminating subspace D

the same way, although some dimensionalities are more
important than others. It has only one parameter � to
estimate. The Mahalanobis NLL uses within-class scatter
matrix Sw computed from all the samples in all the
q x-clusters. It uses the inverse matrix Sÿ1

w as the weight in
computing NLL. The meaning of this Mahalanobis matrix
weight Sÿ1

w is as follows: The matrix Sÿ1

w properly rotates
the basis b1, b2; :::; bqÿ1 of the subspace D so that the
correlation about the new basis vectors b0

1
, b0

2
; :::; b0qÿ1

all
vanishes. Then Sÿ1

w applies to each rotated basis vector b0i,
i � 1; :::; q ÿ 1, a weight which is the inverse of the sample
variance along b0i. It can be noticed that, using Mahalanobis
NLL as the weight is equivalent to using Euclidean NLL in
the basis computed from Fisher's LDA procedure [17], [10].
Thus, the Mahalanobis NLL takes care of the reliability of
different input components but the Euclidean NLL does
not. The former not only decorrelates the input components,
but also weighs all decorrelated new components. The
number of parameters in Sw is q�q ÿ 1�=2 and, thus, the
Mahalanobis NLL requires more samples than the Eucli-
dean NLL. Next, consider the Gaussian NLL. As we can see,
the Mahalanobis NLL does not treat different x-clusters
differently because it uses a single within-class scatter
matrix Sw for all the q x-clusters in each internal node. This
is not the case with Gaussian NLL. Using Gaussian NLL,
L�x; ci� in (4) uses the covariance matrix ÿi of x-cluster i.
Note that the decision boundary of the Euclidean NLL and
the Mahalanobis NLL is linear and that of the Gaussian
NLL is quadratic.

How do we realize such an automatic transition from the

three NLLs? We also like to make this transition smooth

when the number of samples increases. We have two

measurements of maturity for each cluster i: the number of

samples ni and the elapsed time since its creation ti. The

former is appropriate for off-line applications where the

elapsed time is not applicable. The latter is more suitable for

real-time applications where a very large number of similar

samples may be observed during a short time period,

causing ni to increase significantly without having observed

enough variation in the data. In the following, we assume

that ni is used as the maturity measurement. For each node,

we compute the within-class scatter Sw, which has a total of

n �
Pq

i�1
ni samples. For each x-cluster in the node, we

estimate its sample covariance matrix ÿi. For each x-cluster,

we start with a scalar covariance matrix �2I. For the three

types of NLLs, we have three matrices, �2I, Sw, and ÿi.

Consider the number of samples received for each scalar,

called the number of samples per scalar (NSPS), of the

element of the matrices. The NSPS for �2I is nÿ 1, since the

first sample does not give any estimate of the variance. A

bounded NSPS is defined to limit the growth of NSPS so

that other matrices that contain more scalars can take over

when there are a sufficient number of samples for them.

Thus, the bounded NSPS for �2I is

be � minfnÿ 1; nsg;

where ns denotes the switch point for the next more

complete matrix to take over. At this point, a weight of

about 50 percent will be used for �2I and another weight of

50 percent for the next matrix. How large should ns be?

Consider a series of random variables drawn independently

from a distribution with a variance �2, the expected sample

mean of n random variables has a covariance �2=�nÿ 1�.

We can choose a switch confidence value � for 1=�nÿ 1�.

When 1=�nÿ 1� � �, we consider that the estimate can take

about a 50 percent weight. Thus, n � 1=�� 1. As an

example, let � � 0:1 meaning that we trust the estimate

with 50 percent weight when the expected variance of the

estimate is reduced to about 10 percent of that of a single

random variable. We get then n � 11, which leads to

ns � 11.

Now, consider the NSPS for Sw matrix for the Mahala-

nobis NLL. The number of independent vectors received is

nÿ q because each of the q x-cluster requires a vector to

form its mean vector. Thus, there are �nÿ q��q ÿ 1�

independent scalars. There are �q ÿ 1�q=2 estimated scalars

in the (symmetric) matrix Sw. Thus, the NSPS for Sw is

�nÿ q��q ÿ 1�

�q ÿ 1�q=2
�

2�nÿ q�

q
:

To prevent the value from being negative when n < q, we
take NSPS for Sw to be

max
2�nÿ q�

q
; 0

� �

:
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The bounded NSPS for Sw is

bm � min max
2�nÿ q�

q
; 0

� �

; ns

� �

:

Since the Gaussian NLL cannot be trusted until every
matrix ÿi has received enough samples, we define the NSPS
for ÿi estimates for the Gaussian NLL as the minimum
among all the q x-clusters:

bg � min
1�i�q

2�ni ÿ 1�

q

� �

: �5�

This is somewhat conservative, since it may be the cases
where x-cluster that has the least samples is not among the
nearest x-clusters. The above NSPS is meant to contain the
worst error (when the x-cluster with the fewest samples is
the nearest x-cluster). Alternatively, if we are interested in
containing the mean error, we may choose NSPS to be the
average number of samples per x-cluster:

bg �
1

q

X

q

i�1

2�ni ÿ 1�

q

� �

�
2�nÿ q�

q2
: �6�

In the above computation, we only consider the x-clusters
that have at least one sample. It is worth noting that the
NSPS for the Gaussian NLL does not need to be bounded,
since among our models it is the best estimate with a large
number of samples.

Let us consider the three NSPS: be, bm, and bg. From the
definitions, we know that they grow roughly at rates n, 2n=q
and 2n=q2, respectively. be gets saturated by ns the earliest.
Then, bm does. bg never saturates. Table 1 summarizes the
result of the NSPS values of the above derivation.

We define a size-dependent scatter matrix (SDSM) Wi as a
weighted sum of three matrices:

Wi � we�
2I � wmSw � wgÿi; �7�

where we � be=b, wm � bm=b, wg � bg=b, and b is a normal-
ization factor so that these three weights sum to one:
b � be � bm � bg. Using this size-dependent scatter
matrix Wi, the size-dependent negative log likelihood (SDNLL)
for x to belong to the ith x-cluster is defined as:

L�x; ci� �
1

2
�xÿ ci�

TWÿ1

i �xÿ ci� �
q ÿ 1

2
ln�2�� �

1

2
ln�jWij�:

�8�

It is worth noting the relation between LDA and SDNLL
metric. Fisher's LDA in space D gives a basis for a subspace
D0 � D. This basis is a properly oriented and scaled version
for D so that the within-cluster scatter in D0 is a unit matrix
[17, Sections 2.3 and 10.2]. In other words, all the basis
vectors in D0 are already weighted according to the within-
cluster scatter matrix Sw in D. If D0 has the same

dimensionality as D, the Euclidean distance in D0 is
equivalent to the Mahalanobis distance in D, up to a scale
factor. However, if the covariance matrices are very
different across different x-clusters and each of them has
enough samples to allow a good estimate of individual
covariance matrix, Fisher's LDA in space D is not as good as
Gaussian likelihood. The SDNLL in (8) allows automatic
and smooth transition between three different types of
likelihood, Euclidean, Mahalanobis, and Gaussian, accord-
ing to the predicted effectiveness of each likelihood.

2.2.3 Computational Considerations

We are now ready to discuss the computational steps for the
previous procedures.

The first issue is how to represent the space D which is
spanned by the centers of x-clusters in (1). These centers are
vectors in X , which typically has a very high dimension-
ality. The matrix weighted squared distance from a vector
x 2 X to the cluster i is defined by:

d2�x; ci� � �xÿ ci�
TWÿ1

i �xÿ ci�; �9�

which is two times of the first term of (8).
We have two major issues to deal with. First, the

dimensionality of the SDSM Wi is very large if we represent
it in X directly. Second, the sample covariance matrix,
which we will use to estimate matrix Wi, is not invertible
before the number of samples has reached the high
dimensionality of X . We must find an efficient way of
computing the weighted matrix square distance from each
x-cluster.

A way to address the first issue is to represent the
discriminant space D by orthonormal basis vectors. Using
the method explained in Appendix A, we keep an
orthonormal basis of the linear manifold D. To address
the second issue, we represent the covariance matrix in the
orthonormal basis for subspace D instead of X . Since the
dimensionality of D is at most q ÿ 1, the matrix Wi in the
orthonormal basis is much smaller than that in the original
space X .

The computational steps are described as follows:
Suppose that the dimensionality of the input space X is d.
From q x-cluster centers in (1) in X , use the GSO procedure
in Appendix A to compute the q ÿ 1 orthonormal basis
vectors M � ��1; �2; :::; �qÿ1�, where each column �i is a unit
basis vector, i � 1; 2; :::q ÿ 1, and M is a d� �q ÿ 1� matrix.
For each x-cluster center ci, its projection vector in the
orthonormal basis M is given by:

ei � MT ci:

Thus, each x-cluster ci is represented by only a
(q ÿ 1)-dimensional vector ei. Given an unknown vector
x 2 X , project it onto the basis v � MTx. Then, the
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matrix-weighted squared distance in (9) is computed only

in (q ÿ 1)-dimensional space using the basis M. The SDSM
Wi for each x-cluster is then only a �q ÿ 1� � �q ÿ 1� square

symmetric matrix, of which only q�q ÿ 1�=2 parameters

need to be estimated. When q � 6, for example, this number

is 15.
Given a column vector v represented in the discriminat-

ing subspace with an orthonormal basis whose vectors are
the columns of matrix M, the representation of v in the

original space X is x � Mv.
To compute the matrix weighted squared distance in (9),

we should use a numerically efficient method. For example,

we can use Cholesky factorization [19, Section 4.2] which is

for a positive definite matrix (which is symmetric). The

Cholesky decomposition algorithm computes a lower
triangular matrix L from W so that W is represented by

W � LLT . The procedure is relegated to Appendix B.
With the lower triangular matrix L, we first compute the

difference vector from the input vector x and each x-cluster

center ci: di � xÿ ci. The matrix weighted squared distance

is given by:

d2�x; ci� � vTWÿ1

i v � vT �LLT �ÿ1v � �Lÿ1v�T �Lÿ1v�: �10�

We solve the linear equation Ly � v and then y � Lÿ1v and

d2�x; ci� � �Lÿ1v�T �Lÿ1v� � kyk2. Since L is a lower trian-

gular matrix, the solution for y in Ly � v is trivial since we

simply use the backsubtitution method as described

in [20, p. 42].
Another issue is the shape of the automatically generated

tree. A major advantage of clustering at each node is that

each node tends to spawn an approximately balanced

subtree. However, there is no guarantee that the resulting

tree is balanced. If we allow certain amount of unbalance

but limit its degree, it is called bounded unbalanced tree
[16]. In Appendix C, we prove that the height of such a tree

and thus the time complexity of updating it per sample is

logarithmic in the number of leaf nodes.

3 THE EXPERIMENTAL RESULTS

Several experiments were conducted using the proposed

HDR algorithm. First, we present the experimental results

using synthetic data. Then, we show the experimental

results for real face images. In addition to these, the

proposed algorithm was also applied to the data with

manually extracted features from images.

3.1 Experiments Using Synthetic Data

The motivation of using synthetic data for testing is to
investigate the behavior of different distance matrices and

to examine the near optimality potential of our new

algorithm with known distributions as a ground truth

(but our algorithm does not know the distribution).
The first experiment used a data set that has three

clusters. The number of dimension is two. Each cluster was

modeled by a Gaussian distribution. The centers of the
clusters are at �0; 0�, �5; 0�, and �0; 5�, respectively. The

covariance matrix of the first cluster is an identity matrix.

Those for the second and the third are,

4 0

0 1

� �

;
4 0

0 2:25

� �

;

respectively. We first show the effects of the number of
samples. In Fig. 2a, only three samples per class are used to
estimate the decision boundaries. Since the number of
samples is very small, the SDNLL is very much like that of
the Euclidean distance, which results in a reasonable
boundary as shown. There are twenty samples per class
in Fig. 2b. The decision boundary of SDNLL is between
those of Euclidean distance and Mahalanobis distance.
Fig. 2c used 500 samples per class. The decision boundary
of SDNLL then is very close to that of Gaussian NLL, which
is an appropriate distance metric here because of the large
number of available samples. Fig. 2d shows the behaviors
under the unbalanced sample situation where the third
cluster receives much fewer samples than the first while the
number of samples for the second cluster is in-between.
Fig. 2 indicated that the SDNLL distance metric behaves in
the way we wanted.

For the large-sample case of Fig. 2c, we would like to
examine how close the error rates are to the best possible
Bayesian error rates which use the ground truth about the
distribution instead of samples. In the experiment, we used
500 samples per class to train. Table 2 shows the
classifications from 1) ground truth of distribution using
Bayesian optimality (Bayesian-GT), 2) the parameters
estimated from the training data based on Bayesian
optimality (Bayesian-Sample), and 3) the proposed new
algorithm (SDNLL). It shows that the classification errors
are very close among all the measurements. Of course, our
method would not be able to be close to the Bayesian error
rates if there are not enough samples per class.

The second experiment presented here is for a 3D data
set with a 2D discriminating space. There were three
clusters, each being modeled by a Gaussian distribution
with means, �0; 0; 0�, �5; 0; 0�, and �0; 5; 0�, respectively.
Their covariance matrices are:

1 0 0

0 1 0

0 0 1

2

4

3

5;
4 0 0

0 1 0

0 0 1

2

4

3

5;
1 0 0

0 4 0

0 0 2:25

2

4

3

5:

There were 500 samples per class for training. Since it is not
easy to estimate the error probability in high-dimensional
space, we use the random-generated samples to obtain the
error probability instead of using analytical probability to
compute it. A total of 10,000 trials with 1,500 samples per
trial is tested.

We know that the basis is on x-y plane for the ground
truth and we expect the deriving discriminating space D to
be roughly so. The basis vectors derived from the proposed
algorithm are: �0:89;ÿ0:45; 0:001�, �ÿ0:45;ÿ0:89;ÿ0:025�,
which are very close to what we expect. The error rate is
estimated on the basis we derived. Table 3 shows the
classification results from Bayesian-GT, Bayesian-Sample
rule, and our new algorithm SDNLL, like the case of 2D. Of
course, the Bayesian-Sample algorithm cannot deal cases
with small sample and unbalanced samples.

The third experiment used a high-dimensionality and six
clusters. Each class was modeled by a Gaussian distribution
in 100 dimensions with means �0; . . . ; 0�, �0; 5; 0; . . . ; 0�,
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�0; 0; 5; 0; . . . ; 0�, �0; 0; 0; 5; 0; . . . ; 0�, �0; 0; 0; 0; 5; 0; . . . ; 0�, and

�0; 0; 0; 0; 0; 5; 0; . . . ; 0�, respectively. The covariance matrix

for class 0 is an identity matrix. The covariance matrix for

the class i; i > 0 is an identity matrix except that the �i; i�

element is equal to 2.25. There were 500 samples per class

for training and the other 500 samples per class for testing.

We expect the basis for discriminating subspace D is very

much in the first six dimensions. The resulting basis is

indeed very close to what we expect. Table 4 shows the

error rates for the three types of classification rules under

comparison. Since the first cluster overlaps with the other

clusters, the errors listed in Table 4 in the first row and

column are larger than the other rows and columns. The

error rates from the proposed algorithm are comparable

with those that use direct Bayesian optimality. This is

because our framework at each node is based on Bayesian

optimality. Due to speed requirements, we do not require

global tree optimality since it otherwise requires prohibitive

iterations in high-dimensional space.

3.2 Experiments Using Real Face Data

We applied the new algorithm to appearance-based face

image retrieval tasks. The first experiment used face images

from the Weizmann Institute at Israel. The image database
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Fig. 2. Decision boundaries estimated by different number of samples for different metrics. Lines ªBº mean decision boundaries for Bayesian

decision rule. This method uses the ground truth for distribution and thus is independent of samples. Lines ªEº are for Euclidean distance measured

from a scalar covariance matrix �2I. Lines ªGº are measured by Gaussian NLL using estimated full sample covariance matrices for all clusters. Lines

ªMº are for Mahalanobis distance using a single estimated covariance matrix Sw. Lines ªLº use our SDNLL. (a) Small-sample case. (b) Mid-sample

case. (c) Large-sample case. (d) Unbalanced-sample case.

TABLE 2
Optimality for 2D Synthetic Data



was constructed from 28 human subjects, each having

30 images with all possible combinations of two different

expressions under three different lighting conditions with

five different orientations. An example of the face images

from one human subject is shown in Fig. 3.

As mentioned in Section 2.1, there are three mapping

methods for a classification problem, we used the third

mapping method (class mean in X space as the label) for the

face recognition problem. It is worth noting that we chose �y

very small in this experiment. This makes the first

q prototypes to be the cluster centers and the leaf nodes

have only samples with the same class label (pure node).

We applied the leave-one-out cross validation method to

test this image data set. We first used the first view of each

subject as testing samples and the rest of them as training

samples. So there are 28 images as the testing samples for

the first run. The second run used the second view of each

subject as the testing samples. This results in the other

28 images count in the testing samples. We followed the

same fashion for 30 runs. The total number of testing

images is 28� 30 � 840. Table 5 compares different appear-

ance-based methods. For the principal component analysis

(PCA), the number of eigenvectors used is determined by

keeping 95 percent of the total sample variance. This gives

127 eigenvectors for PCA. A PCA tree is a binary

classification tree where each node uses PCA.
Further, we compared the error rate of the proposed

HDR algorithm with some major tree algorithms. CART2

and C5.0 are among the best known classification trees.
However, like most other decision trees, they are univariate
trees in that each internal node used only one input
component to partition the samples. This means that the
partition of samples is done using hyperplanes that are
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TABLE 3
Error Rates for 3D Synthetic Data

TABLE 4
Error Rates for 100D Synthetic Data

Fig. 3. Face images from Weizmann Institute, all the combinations of three lightings, two expressions, and five orientations.

2. We have experimented with the same data set using CART
implemented by OC1. The performance is much worse than those reported
in Table 5. See CART for FERET set in Table 7.



orthogonal to one axis. We do not expect this type of tree
can work well in a high-dimensional space for highly
correlated multimedia data like images. Thus, we also
tested a more recent multivariate tree OC1. We realize that
these trees were not designed for high-dimensional spaces
like those from images. We also tested the corresponding
versions by performing PCA before using CART, C5.0, and
OC1 and call them CART with PCA, C5.0 with PCA, and
OC1 with PCA, respectively.

As shown in Table 5, LDA shares the best performance
with our new HDR method in this test. However, the new
HDR method is faster than LDA and has a more compact
representation. The speed difference will be more signifi-
cant when the data set is much larger.

The same data set was divided into training set and
testing set for the other comparison. The training set
contains 504 face images. Each subject contributed 18 face
images in the training set which includes three different
poses, three different lightings, and two different expres-
sions. The remaining 336 images were used for the testing
set. Each subject had 12 images for testing, which include
two different poses, three different lightings, and two
expressions.

Table 6 compares several methods. PCA is faster than
nearest neighbor (NN) and shares a similar accuracy.
However, the 95 percent of variance used by PCA results
in about 98 eigenvectors which are much less than that of

NN (5,632D!). PCA organized with a binary tree was faster
than straight NN, as shown in Table 6. It is the fastest
algorithm among all the methods we tested but the
performance is worse than those of PCA and NN. The
accuracy of LDA is the second best. The proposed HDR
method is faster than LDA and resulted in the lowest error
rate.

We also applied support vector machines (SVM) [21],
[22] to this image set to compare the performance. We used
the SVM software obtained from Royal Holloway, Uni-
versity of London [23] for this experiment. We used the
PCA of the face images as the input features for the SVM.3

The best result we obtained by tuning the parameters of the
software is reported in Table 6. The recognition rate of the
SVM with PCA is similar to that of PCA alone. However,
SVM with PCA is faster than PCA. This is because SVM has
more compact representation and PCA alone needs to
conduct linear search for every training sample.

To give an intuitive display about what are inside the
HDR tree, we show in Fig. 4 the mean face images and the
discriminating features with q � 5. Then, the dimensionality
of the discriminating subspace is four.

We also performed two experiments using the FERET
face data set [24]. We used the frontal views from the data
set. There are 457 persons with frontal views, 33 with four
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The Performance for Weizmann Face Data Set

TABLE 5

The Performance for Weizmann Face Data Set

3. The software failed when we used the original image input with
dimensionality 5,632.



frontal images, one with six images, and the remaining 423
people having only two images each.

A face normalization program was used to translate,
scale, and rotate each face image into a canonical image of
88 rows and 64 columns so that eyes are located at the
prespecified positions, as shown in Fig. 5. To reduce the
effect of background and nonfacial areas, image pixels are
weighted by a function of the radical distance from the
image center. Further, the image intensity is masked by a

linear function so that the minimum and maximum values

of each image are zero and 255, respectively. Fig. 5 shows

the effect of such a series of transformations.
In the first experiment for the FERET data set 34 human

subjects were involved. Each person had three face images

for the purpose of training. The other face image was used

for testing. We compare different options of the proposed

algorithms. First, we used Euclidean distance in the

discriminating subspace instead of SDNLL distance. With

different choices of the number of x-clusters (q), we found

that the performance does not significantly increase with

the increase of q. Then we used SDNLL distance and the

result is shown in Fig. 6. We found that the best q (q � 18

and beyond) resulted in 100 percent recognition rate.
Fig. 7a shows the depth of the HDR trees with different

qs and distance metrics. All the options resulted in a similar

tree height. The tree constructed using Euclidean distance
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Fig. 4. An illustration of the HDR algorithm. The training images come from the Weizmann face data set. Each block indicates a tree node. The first

row of each node shows the x-cluster centers presented as images. The first image of the second row is the grand mean of all the x-clusters. The

remaining images of the second row are the discriminating features represented as images.

Fig. 5. The demonstration of the image normalization process. (a) and

(d): The original images from the FERET data set. (b) and (e): The

normalized images. (c) and (f): The masked images.

Fig. 6. The plot of error rate vs. number of x-clusters for FERET face test

one using Euclidean distance and the new SDNLL distance.



has the most shallow depth. Fig. 7b and c give the nodes

counts at every level of the trees for q � 2. It is worth noting

that the structure of the trees affects the speed of the

algorithm. As shown in Fig. 8b, a deeper tree results in a
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Fig. 7. The tree structures of FERET face test one. (a) The plot of depth of the tree vs. q for different distance options. (b) and (c): The plots of tree

structures for different options with q � 2 for EU and SDNLL, respectively. EU: Euclidean Distance.

Fig. 8. The timing data of FERET face test one. (a) The plot of the average training time vs. q. (b) The plot of the average testing time vs. q.

EU: Euclidean Distance.



faster tree retrieval because it works on a lower-dimen-

sional space at each level. Fig. 8 indicates that the SDNLL

distance metric does not require significantly more time to

compute.

A summary of the performance comparison with some

existing major tree classifiers is listed in Table 7. Notice that

the training time is measured for the total time to train the

corresponding system. The testing time is the average time

per query. To make a fair comparison, the computation time

for PCA is included in C5.0 with PCA, OC1 with PCA, and

CART with PCA. As shown, none of the existing decision

trees can deal with the FERET set acceptably well, not even

the versions that use PCA as a preprocessing step.

The second experiment for the FERET data set used all

the available data. Some decision tree programs used in

Table 7 failed on this large data set, which prevented us

from doing an extensive comparison as in Table 7. That was

why we used a smaller data set in experiment one for

comparison purpose in the first place. As described before,

most of subjects have only two views in this large set. We

used leave-one-out cross validation method. For each trial,

one image was selected for each person for testing and the

remaining images were used for training. Thus, the number

of samples for each cluster is not equal. The error rates of

the HDR method are plotted in Fig. 9. A characterization of

the tree generated by the new HDR method is shown in

Fig. 10. The speed of updating the tree on a SPARC 20

station is given in Fig. 11.

3.3 Experiments Using Data with Manually
Extracted Features

We further investigated how our HDR algorithm performs

on lower-dimensional real data, such as those publically

available data sets that use human defined features. We

reported the comparison results for two data sets from the

StatLog project [25].

1. Letter image recognition data. There are 26 classes

which corresponding to 26 capital letters. Each

sample has 16 numeric features. 15,000 samples
were used for training and 5,000 samples were used

for testing.
2. Satellite image dataset. There are six decision classes

representing different types of soils from satellite

image. Each sample has 36 attributes. The training

set includes 4,435 samples and the testing set

includes 2,000 samples.

We inserted the performance of the new HDR algorithm

to the results which were published in the StatLog project,

as shown in Tables 8 and 9. For these lower-dimensional

data sets, the performance of HDR algorithm is comparable

with other best existing ones.

4 CONCLUSIONS

We cast both classification and regression problems into a

unified regression framework. This allows us to design the

new doubly-clustered method. The clusters in the output

space provide coarse-to-fine virtual class labels for the

clusters in the input space. To deal with high-dimensional

input space, a different discriminating subspace is
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TABLE 7
The Performance Comparison of Decision Trees for the FERET Test One

Fig. 9. The performance plots of FERET test two. The plots of error rate

vs. number of x-clusters. EU: Euclidean Distance.



automatically derived at each internal node of the tree. A

size-dependent probability-based distance metric SDNLL is

proposed to deal with large sample cases, small sample

cases, and unbalanced sample cases according to Bayesian

framework under local coarse Gaussian models. The global

model, however, does not assume Gaussian distribution.
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Fig. 10. The tree structures of FERET face test two. (a) the plot of depth of the tree vs q for different options. (b) and (c) are the plots of tree structures

for Euclidean Distance and SDNLL distance with q � 2, respectively.

Fig. 11. The timing data of FERET face test two. (a) The plot of the average training time vs. q. (b) The plot of the average testing time vs. q.

EU: Euclidean Distance.



Our experimental study with synthetic data showed that

the method can achieve near-Bayesian optimality for both

low-dimensional data and high-dimensional data with

low-dimensional data manifolds. With the help of the

new decision tree, the retrieval time for each sample is of

a logarithmic complexity for a bounded unbalanced HDR

tree. The output of the system can be both class label or

numerical vectors, depending on how the system trainer

gives the training data. The experimental results have

demonstrated that the algorithm can deal with a wide

variety of sample sizes with a wide-variety of

dimensionality.

APPENDIX A

LINEAR MANIFOLD

Given a set of vectors V � fv1; v2; :::; vng, which is a subset

of a vector space X . We want to express the subspace that

passes the head tips of the vectors in V .
For numerical stability, we use the center of the vectors

in V ,

�v �
1

n

Xn

i�1

vi

and define the set of scatter vectors from their center:

si � vi ÿ �v, i � 1; 2; :::; n. These n scatter vectors are not

linearly independent because their sum is equal to a zero
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vector. Let S be the set that contains these scatter vectors:

S � fsi j i � 1; 2; :::; ng. The subspace spanned by S, de-

noted by span�S�, consists of all the possible linear

combinations from the vectors in S.

A translation of a subspace is called a linear manifold

[26] (also called linear variety [27]). The subspace M

translated to vector v0 is denoted by v0 �M: v0 �M �

fv0 �m j m 2 Mg. Thus, the subspace that passes the head

tips of the vectors in S can be represented by the linear

manifold D � �v� span�S�, as shown in Fig. 12.

The orthonormal basis a1; a2; :::; anÿ1 of the subspace

span�S� can be constructed from the radial vectors

s1; s2; :::; sn using the Gram-Schmidt Orthogonalization (GSO)

procedure:

Procedure 4. GSO Procedure: Given vectors s1; s2; :::; snÿ1,

compute the orthonormal basis vectors s1; s2; :::; snÿ1.

1. a1 � s1=ks1k.
2. For i � 2; 3; :::; nÿ 1, do the following

a. a0i � si ÿ
Piÿ1

j�1�s
T
i aj�aj.

b. ai � a0i=ka
0
ik.

In the above procedure, a degeneracy occurs if the

denominator is zero. In the first step, the generacy means

s1 is a zero vector. In the remaining steps, it means that the

corresponding vector si is a linear combination of the

previous radial vectors. If a degeneracy occurs, the

corresponding si should be discarded in the basis computa-

tion. The number of basis vectors that can be computed by

the GSO procedure is the number of linearly independent

radial vectors in S.

Given a vector x 2 X , we can compute its scatter part

s � xÿ �v. Then compute the projection of x onto the linear

manifold. It's ith coordinates in the orthonormal basis is

given by �i � sTai, i � 1; 2; :::; nÿ 1. We call the vector f �

��1; �2; :::; �nÿ1�
T the feature vector of x in the linear

manifold S.

APPENDIX B

CHOLESKY DECOMPOSITION

Procedure 5. Cholesky factorization: Given an n� n

positive definite matrix A � �aij�, compute lower trian-

gular matrix L � �lij� so that A � LLT .
For i � 1; 2; :::; n do

1. For j � 1; 2; :::; iÿ 1 do

lij � �aij ÿ
X

jÿ1

k�1

likljk�=ljj:

2. lii �
����������������������������

aii ÿ
Piÿ1

k�1 l
2
ik

q

:

APPENDIX C

TIME COMPLEXITY OF THE HDRT RETRIEVAL

ALGORITHM

Theorem 1. Given n training samples, the time complexity for
a retrieval from a Bounded Unbalanced HDR tree is
O�2qd logn= log �1=���, where � is the Unbalanced Bound
of the tree and d is the dimensionality of the input space X .
The time complexity is O�log�n�� if d is considered as a
constant.

Proof. Suppose a node N of the tree is assigned with

n1 � n2 � � � � � nq samples, where ni is the number of

samples assigned to the ith child of N . Rank these ni's

so that n1 � n2 � � � � � nq. Because the tree is a

Bounded Unbalanced Tree, by definition we know

that n1 � ��n1 � n2 � � � � � nq�, and is true for all the

nodes of the tree.
In other words, each deeper level of the tree reduces

the number of samples by a factor of at least �. The lth

level down the tree will receive at most n�l samples. In

the worst case, we have just a single sample at tree

height h (thus, the largest height possible.) Then n�h � 1,

and �h � �1=n�. Then the height of the tree

h � log�1=�� n � �logn= log �1=���:

For the time complexity of the operation in a node N ,

the HDR retrieval algorithm first subtracts the grand

cluster mean from the test sample x and then projects the

scatter vector to the q ÿ 1 dimensional feature space. The

computational cost for these operations is d� 2d�q ÿ 1�.

The computational cost of the SDNLL to each X-cluster is

about �q ÿ 1� � �q ÿ 1�2, which involves subtracting the

cluster mean and a backsubstitution operation. The total

computational time for a given test sample in a node thus

is about d� 2d�q ÿ 1� � q��q ÿ 1� � �q ÿ 1�2�. Since typi-

cally we have d � q, the computational cost in a node

can be approximated by 2qd. The retrieval time can be

estimated by

T � h� �2qd� � �2qd= log �1=��� logn � O�log�n��:

. tu
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Fig. 12. The linear variety (hyperplane) that passes through the head

points of the vectors. It can be represented by �v� span�S�, the spanned

space from scatter vectors translated by the center vector �v.
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