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ABSTRACT
Automatically categorizing documents into pre-defined topic
hierarchies or taxonomies is a crucial step in knowledge
and content management. Standard machine learning tech-
niques like Support Vector Machines and related large mar-
gin methods have been successfully applied for this task,
albeit the fact that they ignore the inter-class relationships.
In this paper, we propose a novel hierarchical classification
method that generalizes Support Vector Machine learning
and that is based on discriminant functions that are struc-
tured in a way that mirrors the class hierarchy. Our method
can work with arbitrary, not necessarily singly connected
taxonomies and can deal with task-specific loss functions.
All parameters are learned jointly by optimizing a com-
mon objective function corresponding to a regularized up-
per bound on the empirical loss. We present experimental
results on the WIPO-alpha patent collection to show the
competitiveness of our approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and retrieval—Information Filtering ; I.2.6 [Artificial
Intelligence]: Learning—Induction; I.5.1 [Pattern Recog-
nition]: Models—Statistical
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1. INTRODUCTION
Document categorization is a crucial and well-proven in-

strument for organizing large volumes of textual informa-
tion. Being no brainchild of our age, comprehensive classi-
fication systems have been developed and maintained by li-
brarians since the 19th century and are today in widespread
use. The advent of the Web and the enormous growth of
digital content in intranets, databases, and archives, have
further increased the demand for categorization. In the face
of the pace and complexity of this process, manual catego-
rization often lacks economic efficiency and automatic tools
are indispensable to supplement human efforts.

In most cases, the use of statistical or machine learning
techniques has been proven to be successful in this context,
since it is typically more feasible to induce categorization
rules based on example documents, than to elicit such rules
from domain experts. The wide range of methods applied to
this problem include nearest neighbor classifiers [23], neural
networks [19], generative probabilistic classifiers [6, 7], and –
more recently – boosting [12] and Support Vector Machines
(SVMs) [5], to name just a few. Extensive experimental
comparisons (e.g. [5, 24, 1]) have evidenced that among the
methods available today, SVMs are highly competitive in
their classification accuracy and can therefore be considered
the state-of-the art in document categorization.

A potential drawback of all of the above mentioned clas-
sification methods is that they treat the category structure
as ‘flat’ and that they do not consider relationships between
categories, which are commonly expressed in concept hierar-
chies or taxonomies. Such structures, however, are the pre-
ferred way in which concepts, subject headings, or categories
are arranged in practice. Taxonomies offer clear advantages
in supporting tasks like browsing, searching or visualization.
They are also easier to maintain and alleviate the manual an-
notation process. This is witnessed by the fact that virtually
all real world classification systems have complex hierarchi-
cal structure. This includes traditional systems like Dewey
or Library of Congress subject headings, the International
Patent Classification (IPC) scheme [21], the Medical Subject
Headings (MeSH) maintained by NIH, as well as Web cata-
logs created by Yahoo!, the Open Directory Project (DMOZ)
or LookSmart, to name some of the most important ones.

There is reason to believe that taxonomies offer valuable
information which learning methods should be able to capi-
talize on, in particular since the number of training examples
for individual classes may be relatively small when dealing



with tens of thousands of classes. The potential loss of valu-
able information suffered from ignoring class hierarchies has
been pointed out many times before and has led to a num-
ber of approaches that deal with ways to exploit hierarchies,
e.g. [6, 8, 19, 18, 4].

In this paper, we present a generalization of the SVM clas-
sification architecture [17] that directly incorporates prior
knowledge about class relationships. This is accomplished
by using discriminant functions that decompose into contri-
butions from different levels of the hierarchy. Compared to
previous approaches, our main contribution is a novel for-
mulation of hierarchical classification as a joint large mar-
gin problem (cf. Section 2), for which we derive an efficient
training algorithm (cf. Section 4). Moreover, the proposed
method is not restricted to the zero-one classification loss,
but is able to directly incorporate specific loss functions, in
particular ones derived from the taxonomy (cf. Section 3).

2. HIERARCHICAL SVM CLASSIFICATION
There are two slightly different settings for document cat-

egorization: problems involving multiple overlapping binary
classes and multiclass problems. In the latter case, each doc-
ument belongs to exactly one category, whereas in the for-
mer case a document may belong to multiple categories. We
will present a hierarchical model for both of these settings,
but will focus on the multiclass case with the experimental
evaluation on the WIPO-alpha collection [22] (cf. Section 6).

2.1 Multiclass SVM Classification
We take the multiclass SVM learning approach of [3] as

our starting point. Let {(xi, yi)}
n
i=1 be a set of n labeled

training documents. Here xi ∈ <d denotes a standard vector
representation for the i-th training document. Each label yi

refers to a unique category encoded as an integer, yi ∈ Y ≡
{1, . . . , q}, where q is the total number of categories.

Let us introduce a weight vector wy for every class 1 ≤
y ≤ q. We will refer to the stacked vector of all weights by
w = (w1, . . . ,wq). Then we can define a linear discriminant
function1

F (x, y;w) ≡ 〈wy,x〉 (1)

and a corresponding classification function f as

f(x;w) ≡ argmax
y∈Y

F (x, y;w) . (2)

Eq. (2) is also known as the Winner-Take-All (WTA) rule.
Generalizing from the binary classification case, the multi-
class margin of a weight vector w with respect to an instance
(xi, yi) can be defined as

γi(w) ≡ F (xi, yi) − max
y 6=yi

F (xi, y) (3)

Notice that the correct classification of a training instance
requires a positive margin. Assuming for now that the train-
ing data can indeed be correctly classified by some weight
vector w, then we can apply the maximum margin prin-
ciple to determine the weight vector w∗ achieving optimal

1One can also introduce explicit bias terms by for every class,
but this would complicate the presentation and leads to fur-
ther complications in the optimization algorithm. We thus
restrict ourselves to this simpler setting.

separation

w∗ = argmax
w:‖w‖=1

n

min
i=1

γi(w) . (4)

This can equivalently be written as a norm minimization
problem, which can also be augmented by slack variables in
order to account for possible margin violations by outliers
or hard instances. One arrives at the following soft-margin
multiclass formulation

min
w,ξ

1

2
‖w‖2 + C

n
X

i=1

ξi (5a)

s.t. γi(w) ≥ 1 − ξi, ξi ≥ 0, (∀i) (5b)

Notice that every non-linear constraints in Eq. (5b) can be
expanded into q − 1 linear constraints of the form

〈wyi
− wy,xi〉 ≥ 1 − ξi, (∀i, y 6= yi) (6)

so that Eq. (5) indeed corresponds to a convex quadratic
program with n · q linear constraints.

In the special case of q = 2 the constraints only involve
the difference vector v ≡ w1 − w2. Moreover it is easy to
see that the penalty on ‖w‖ implies that the optimal weight
vector fulfills w1jw2j = 0 for all features j. Hence, one can
equivalently minimize the norm ‖v‖, showing that the q = 2
case indeed reduces to binary SVM classification.

2.2 SVM Learning with Class Attributes
We would like to extend the above multiclass SVM formu-

lation to cases, where classes are not just arbitrary numbers,
but can be characterized by attribute vectors Λ(y) ∈ <s.
This should be carried out in a way that recovers the stan-
dard multiclass setting as a special case of an orthogonal
attribute representation with s = q and λr(y) = δyr, i.e. a
case where each class is interpreted as a binary attribute
of its own. To that extent, we propose to redefine a more
general version of the discriminant functions F in (1) as

F (x, y;w) ≡ 〈w, Φ(x, y)〉 , (7)

where Φ(x, y) = Λ(y)⊗x. Here ⊗ denotes a tensor product,
i.e. Φ(x, y) ∈ <d·s is a vector containing all products of coef-
ficients from the first and second vector argument. Writing
out Φ(x, y) one gets

Φ(x, y) =

0

B

B

@

λ1(y) · x
λ2(y) · x

. . .
λs(y) · x

1

C

C

A

, (8)

and for λr(y) = δry this simply reduces to

Φ(x, y) =

0

B

B

B

B

B

B

@

...
0
x
0
...

1

C

C

C

C

C

C

A

← y-th position. (9)

Notice that in this latter case 〈w, Φ(x, y)〉 = 〈wy,x〉 and
Eq. (7) indeed reduces to the formulation in Eq. (1). In
general, it is a straightforward consequence of the linearity
of Eq. (7) to show that one can re-write F as an additive
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Figure 1: Taxonomy with 5 categories and a total
of 10 nodes. The decomposition of the discriminant
function for category 2 is depicted as an example.

superposition of linear discriminants as follows

F (x, y;w) =
s

X

r=1

λr(y)〈wr,x〉, (10)

where wr ∈ <d is a weight vector associated with the r-th
class attribute. Using the new definition of F in Eq. (10) to
define the margin, one arrives at a quadratic program with
linear constraints

〈δΦi(y),w〉 ≥ 1 − ξi (∀i, y 6= yi) , ξi ≥ 0 (∀i) , (11)

where δΦi(y) ≡ Φ(xi, yi) − Φ(xi, y).

2.3 Dual Quadratic Program
It is of conceptual and computational interest to derive

the dual quadratic program (QP) of the above formulation
of large margin learning with class attributes. To that extent
one first forms the Lagrangian function

L(w, ξ, α, ζ) =
1

2
‖w‖2 + C

n
X

i=1

ξi −
n

X

i=1

ζiξi (12)

−
n

X

i=1

X

y 6=yi

αiy (〈δΦi(y),w〉 − 1 + ξi) .

Computing derivatives of L with respect to the primal vari-
ables results in

∇wL = 0 ⇐⇒ w =
n

X

i=1

X

y 6=yi

αiyδΦi(y) , (13)

∇ξL = 0 ⇐⇒ ζi = C −
X

y 6=yi

αiy, (∀i) . (14)

Since ζi ≥ 0, Eq. (14) reduces to a box constraint
X

y 6=yi

αiy ≤ C, (∀i) . (15)

Plugging in the optimality equation for w and exploiting
Eq. (14) one arrives at the dual objective

Θ(α) =

n
X

i=1

X

y 6=yi

αiy (16)

−
1

2

n
X

i=1

n
X

j=1

X

y 6=yi

X

y′ 6=yj

αiyαjy′〈δΦi(y), δΦj(y
′)〉 .

The solution of the dual QP is thus characterized by

α
∗ ≡ argmax

α

Θ(α), s.t. αiy ≥ 0,
X

y 6=yi

αiy ≤ C . (17)

Notice that the upper bound is a consequence of the in-
troduction of shared slack variables ξi for every training in-
stance. Moreover, we would like to point out that

〈Φ(xi, y), Φ(xj , y
′)〉 = 〈Λ(y),Λ(y′)〉〈xi,xj〉 , (18)

which follows immediately from the definition of Φ and thus

〈δΦi(y), δΦj(y
′)〉=〈Λ(yi)−Λ(y),Λ(yj)−Λ(y′)〉〈xi,xj〉 .

(19)

Herein one can simply replace the inner products 〈xi,xj〉 by
the values of any kernel function k(xi,xj) like in standard
SVM classification.

2.4 Class Attributes from Taxonomies
The application of the method presented in the previ-

ous section to classification problems with pre-defined tax-
onomies is straightforward. The main idea is to encode the
relationship between classes, expressed in the taxonomy, in
terms of a class attribute representation. We define a tax-
onomy as an arbitrary lattice (e.g. tree) whose minimal el-
ements (e.g. leaves) correspond to the categories. Cases
where interior nodes represent categories can be easily han-
dled by adding a single (terminal) node to every inner node.
Elements of the lattice, i.e. terminal as well as non-terminal
nodes are denoted by z ∈ Z = {z1, . . . , zp} in the following,
with p ≥ q and where we identify yk = zk for k = 1, . . . , q.

Then we define the class attributes by

λz(y) =

(

vz, if z ≺ y

0, otherwise,
(20)

where the relation ≺ denotes that a node z is a predecessor
of a node y or equal to y. Here the vz ≥ 0 are non-negative
weights, which in the simplest case can be set to 1, such that
λz becomes an indicator function. Other choices for vz are,
for example, setting all vz equal to a constant for nodes z
at the same depth in the lattice.

Defining class attributes via common predecessors in the
taxonomy leads to a very intuitive decomposition of the dis-
criminant function into contributions from all nodes along
the paths from a root to a specific leaf. Hence (7) becomes

F (x, y;w) =
X

z: z≺y

λz(y)〈wz,x〉, (21)

An illustrating example is depicted in Figure 1.

2.5 Hierarchical Multilabel Classification
The same idea can be carried out in the multilabel case

of overlapping binary classes, where document may be as-
signed to multiple categories. While the standard learning
approach amounts to treating every binary problem for class
y as an independent problem with weight vector wy, the bi-
nary problems are coupled in the hierarchical setting. The
latter happens through the shared weight vectors wz for
common ancestors z. Since we have not carried out experi-
ments with this formulation, we only present a brief sketch
of the formulation.

Let us assume that a set of labeled documents {(xi,yi)}
n
i=1

is given, where yi ∈ {−1, 1}q and yir = 1 encodes the fact
that document xi belongs to the r-th category. Then we can



formulate the following large margin problem:

w∗ = argmin
w,ξ

1

2
‖w‖2 + C

n
X

i=1

q
X

r=1

ξir, s.t. ξir ≥ 0 (22a)

and yir〈Φ(xi, r),w〉 ≥ 1 − ξir, ∀i, r . (22b)

Notice that the (trivial) orthogonal choice of Φ in Eq. (9)
’flattens’ the hierarchy and effectively leads to q indepen-
dent quadratic programs, since both the objective and the
constraints decompose. Other choices of Φ, in particular
the form derived from a taxonomy, will not lead to a similar
decomposition.

3. LOSS-SENSITIVE LEARNING
A shortcoming of the approach presented so far is that it is

based on the standard misclassification loss. More precisely,
it is well known that the average margin violation or hinge
loss 1

n

P

i
ξi provides an upper bound on the empirical mis-

classification rate. However, in many applications the actual
loss of an incorrect prediction will depend on the relation of
the classes. In particular, it is reasonable to assume that
confusing classes that are “nearby” in the taxonomy is less
costly or severe than predicting a class that is “far away”
from the correct class. Hence, we would like to work with
general loss functions 4 : Y×Y → < where 4(y, ŷ) denotes
the loss of predicting ŷ, when the true class is y. We assume
that 4(y, y) = 0 and that 4(y, ŷ) > 0 for y 6= ŷ. Two prob-
lems need to be addressed: (i) how to define meaningful loss
functions for taxonomies and (ii) how to modify the SVM
formulation to more directly minimize (an upper bound on)
the desired loss.

3.1 Hierarchical Loss Functions
The first problem of designing suitable metrics that take

the position of classes in the taxonomy into account has
been investigated in [18], where 4(y, y′) is defined via the
length of the shortest (undirected) path connecting y and
y′. Another related proposal based on similarities between
categories is due to [13], but the latter does not make use of
the taxonomy and rather computes the similarity between
classes from the cosine-similarity between class centroid vec-
tors.

We prefer a derivation of loss functions that is motivated
from a document filtering setting, although our approach
can be combined with any other loss function. As a moti-
vation, we assume a fictive scenario in which documents are
forwarded to users based on their position in the taxonomy,
i.e. users may subscribe to a particular topic by specifying
nodes z of interest. Denote by fz the subscription load at
a node z, i.e. the number of users that access documents
based on its categorization at or below z. Moreover, denote
by cz ≥ 0 the cost of assigning an item at or below z to a
category not at or below z. Denote by c̄z the cost of assign-
ing a document to a category at or below z that actually
belongs to a category not at or below z. It seems reasonable
to assume that such costs can be solicited from domain ex-
perts in real-world applications. Now the loss of predicting
a class ŷ instead of y can be defined formally as

4(y, ŷ) =
X

z:z≺y

z 6≺ŷ

fzcz +
X

z:z 6≺y

z≺ŷ

fz c̄z . (23)

Notice that the loss depends on the costs associated with

nodes in the symmetric difference of the predecessors of the
true and predicted class. In the case of a tree, the loss
involves the costs for nodes on the path to the first common
predecessor in the tree. For constant loads and losses this
reduces to the link distance used in [18].

3.2 Cost-Sensitive Learning
It remains to generalize the presented SVM formulation

to accommodate an arbitrary loss function 4. We propose
to do so by scaling the penalties for margin violations pro-
portional to the loss. This is motivated by the fact that
margin violations involving an incorrect class with high loss
should be penalized more severely. Implementing this idea,
the cost-sensitive multiclass formulation takes the following
form

min
w,ξ

1

2
‖w‖2 + C

n
X

i=1

ξi (24a)

s.t. 〈w, δΦi(y)〉 ≥ 1 −
ξi

4(yi, y)
, (∀i, y 6= yi) (24b)

ξi ≥ 0, (∀i) . (24c)

The linear margin constraints (24b) lead to minor modifi-
cations in the constraints of the dual problem. It is straight-
forward to generalize the derivation presented in Section 2,
which leads to a different upper bound constraint on the
dual variables. The dual problem then becomes

α
∗ ≡ argmax

α

Θ(α) (25a)

s.t. αiy ≥ 0 , (∀i) (25b)
X

y 6=yi

αiy

4(yi, y)
≤ C , (∀i, y 6= yi) . (25c)

The rationale behind (24b) is that 1
n

Pn

i=1 ξi will now pro-
vide an upper bound on the training loss as measured by 4.

Proposition 1. Denote by (ŵ, ξ̂) a feasible solution of

the QP in Eq. (24). Then 1
n

Pn

i=1 ξ̂i is an upper bound on

the empirical loss 4̂ ≡ 1
n

Pn

i=1 4(yi, f(xi)).

Proof. Notice that

ξ̂i ≥ max{0, max
y 6=yi

{4(yi, y)(1 − 〈δΦi(y), ŵ〉)}} .

Obviously, if f(xi) = yi then

ξ̂i ≥ 0 = 4(yi, f(xi)).

If f(xi) 6= yi then

ξ̂i ≥ 4(yi, f(xi))(1 − 〈δΦi(f(xi)), ŵ〉) ≥ 4(yi, f(xi)) ,

since 〈δΦi(f(xi)), ŵ〉) ≤ 0 is implied by f(xi) 6= yi. Apply-
ing the derived bound to every training example proves the
claim.

4. OPTIMIZATION ALGORITHM

4.1 General Strategy
The dual QP in Eq. (25) can become quite large in prac-

tice, since the number of α-variables equals n · (q − 1). In
particular the scaling with q, the number of categories, is
problematic when compared, for instance, to standard (bi-
nary) SVMs. We propose to exploit two properties of the



dual problem in order to design a more efficient optimization
algorithm.

First, notice that the upper bound constraints in the dual
problem Eq. (25) factorize over the instance index. By this
we mean that the constraints in Eq. (25c) do not couple
dual variables αiy and αjy′ belonging to different training
instances i and j. This can be exploited in an optimization
procedure which iteratively performs subspace optimization
over all dual variables αiy belonging to the same training
instance. This will in general be a much smaller QP, since it
freezes all αjy with j 6= i at their current values. This idea
has also been successfully applied in the multiclass SVM
optimization algorithm proposed in [3]. However, since class
attribute vectors Λ(y) are in general not orthogonal, we can
not use the fixpoint method proposed in [3].

Secondly, we expect the number of active constraints at
the solution to be relatively small, since only a small frac-
tion of categories y 6= yi will typically fail to achieve the
required margin. As with SVMs, this is not a necessity,
but for classification problems that can be solved with rea-
sonable accuracy, this sparseness property can be observed
empirically (cf. Section 6). We propose to exploit the ex-
pected sparseness by employing a variable selection strat-
egy for the dual problem. Equivalently, this corresponds to
a cutting plane algorithm for the primal QP. Intuitively, we
will identify the most violated margin constraint with in-
dex (i, y) and then add the variable αiy to the optimization
problem. This means that we start with extremely sparse
(i.e. small) problems and only successively increase the num-
ber of variables in the active set. This general approach to
deal with large linear or quadratic optimization problems is
also known as column selection. In practice, it is often not
necessary to optimize until final convergence, which adds to
the attractiveness of this approach.

4.2 Variable Selection Strategy
Since we use an iterative approach for optimization, which

selects one dual variable at a time for inclusion in the spar-
sified optimization problem, it is important to develop a
sensible strategy for selecting those variables. In particular,
we would like to utilize a heuristic which focuses on those
constraints that are most severely violated. In order to im-
plement this idea, we need to quantify the extent to which
constraints are violated. For that purpose, we generalize
the approach of [3] for which we will present a simplified
derivation in the sequel.

Given a feasible solution α of the dual QP problem Eq. (25),
i.e. α satisfies Eq. (25b) and (25c), the necessary and suffi-
cient conditions for α to be an optimal solution are

〈w(α), δΦi(y)〉 ≥ 1 −
ξi

4(yi, y)
, (∀i, y 6= yi) (26a)

ξi ≥ 0 , (∀i) (26b)

αiy



1 −
ξi

4(yi, y)
− 〈w(α), δΦi(y)〉

ff

= 0 , (∀i, y 6= yi)

(26c)

ζiξi =

0

@C −
X

y 6=yi

αiy

4(yi, y)

1

A ξi = 0 , (∀i) , (26d)

where w(α) =
Pn

i=1

P

y 6=yi
αiyδΦi(y). Eq. (26c) and (26d)

are KKT complimentary conditions. Let us define the fol-

lowing quantities for all instance and category pairs.

α̇iy(α) ≡

(

αiy if y 6= yi

C −
P

y′ 6=yi

α
iy′

4(yi,y′)
if y = yi

(27)

Fiy ≡ 4(yi, y) (1 − 〈δΦi(y),w(α)〉) (28)

= 4(yi, y)

0

@1 −
X

j

X

y′ 6=yj

αjy′〈δΦi(y), δΦj(y
′)〉

1

A .

Since 4(y, y) = 0, Fiyi
is always 0. Notice that by using

the definition of the weight vector w(α) via the optimality
condition of the primal, positive values of Fiy (y 6= yi) cor-
respond to violations of the requested (functional) margin
of 1. With these quantities, Eq. (26) is simplified to

ξi ≥ Fiy , (∀i, y) (29a)

α̇iy(α)(Fiy − ξi) = 0 , (∀i, y) (29b)

From Eq. (29a), we get

ξi ≥ max
y

Fiy (30)

By Eq. (29b), if α̇iy(α) > 0, then ξi = Fiy. Thus

ξi = min
y:α̇iy(α)>0

Fiy (31)

Notice that Eq. (31) is well defined since
P

y 6=yi

α̇iy

4(yi,y)
+

α̇iyi
= C and hence there exists at least one label y satisfying

α̇iy > 0 for any pattern i. Eq. (30) and (31) lead to

min
y:α̇iy(α)>0

Fiy = ξi ≥ max
y

Fiy , (∀i). (32)

We now define the following quantity for every instance,

ψi = max
y

Fiy − min
y:α̇iy(α)>0

Fiy . (33)

It can be shown that Eq. (29) holds if and only if ψi = 0 for
all i’s. Therefore, we have the proposition as below.

Proposition 2. Given a feasible solution α of Eq. (25),
α is an optimum if and only if ψi = 0 for all i = 1, . . . , n.

The proposition justifies the a selection strategy that se-
lects training pattern for which ψi is maximal. Once we
have selected the i-th example we select the class y 6= yi

for which Fiy is maximal and add the variable αiy to the
optimization.

Moreover, the following proposition sheds some light on
why it is reasonable to work on the reduced problem. Proof
is skipped due to lack of space.

Proposition 3. Given a set of selected variables S ⊆
{(i, y) : i = 1, . . . , n, y 6= yi} and a solution α∗ of the
dual QP over the reduced problem, i.e. the problem where
implicitly αiy = 0 for all (i, y) 6∈ S. Then α∗ is a solution
to the full QP in Eq. (25) if and only if ψi = 0 for all
i = 1, . . . , n.

4.3 Implementation Details
The previous discussion immediately leads to an optimiza-

tion algorithm. Pseudocode is shown in Algorithm 1. The
sets Si keep track of the selected constraints for each train-
ing pattern. In step 5,6 the next constraint is selected. For
the optimization in step 8 one can use any standard QP



Algorithm 1 Optimization algorithm using variable selec-
tion and subspace optimization.

1: inputs: training data {xi, yi}
n
i=1, tolerance ε ≥ 0

2: initialize Si = ∅, αiy = 0, for i = 1, . . . , n, y 6= yi

3: repeat
4: compute Fiy from (28) and ψi from (33)

5: select î = argmaxn
i=1 ψi

6: select ŷ = argmaxy 6=y
î
Fîy

7: Sî = Sî ∪ {ŷ}
8: solve reduced QP over {αîy : y ∈ Sî} [8a]

solve reduced QP over
Sn

i=1{αiy : y ∈ Si} [8b]
9: Sî = Sî − {y : αî,y = 0}

10: until ψî ≤ ε

solver. In order to guarantee convergence in a finite num-
ber of steps, one would need to optimize over all selected
variables in step (8b). However, in practice we propose to
use a variant based on step (8a) which only optimizes over
the subspace of the variables in Sî, i.e. the active dual vari-
ables belonging to the selected training instance. In order to
carry out step (8a), we have used the LOQO optimization
package [16] in our experiments. The tolerance ε specifies
the termination criterion based on the maximal margin vi-
olation, although in practice one might use other heuristics
to stop the training process, if one is only interested in an
approximate solution.

Finally, notice that one can keep track of the quantities
Fiy and incrementally update their values after each opti-
mization step, since only the αiy parameters for the selected
i-th training instance change, while the other dual variables
remain frozen at their current values. Introducing these aux-
iliary variables prevents the undue computational load of
naively evaluating the variable selection criterion.

5. RELATED WORK
There are a number of approaches pursued in the litera-

ture that are designed to take advantage of taxonomies in
document categorization. One intuitive and popular way is
to use a divide-and-conquer strategy to first classify docu-
ments on a coarse level and then on successively finer level.

Koller and Sahami [6] employed this strategy in conjunc-
tion probabilistic classifier (naive Bayes [7] and slightly less
naive versions thereof), which are trained at each split node
in the hierarchy. The classification decision is thus decom-
posed into a number of local routing or refinement decisions
in the taxonomy. In addition, [6] proposes feature selec-
tion at every refinement level and they show that locally
only a small number of discriminative feature may be suffi-
cient to achieve reasonable classification accuracy. Follow-
up work on the feature selection aspect has been performed
by Mladenik and Grobelnik [9]. The downside of this ap-
proach is the use of a less competitive classifier, naive Bayes,
together with an independent training process for each re-
finement classifier. The latter may lead to suboptimal dis-
crimination, since the classifiers are finally operated in a spe-
cific architecture that combines their outputs. Even more
severe are the disadvantages of the greedy decision process,
which does not allow to recover from incorrect routing deci-
sion made at higher levels of the hierarchy. Improved non-
greedy techniques have been investigated by Charkabarti et
al. [2].

Divide-and-conquer strategies in conjunction with SVM
classifiers have been proposed by Dumais and Chen [4] and
by Sun and Lim [13]. Again, classifiers are trained indepen-
dently and their outputs are combined by integrating scores
along each path. In [4] a sigmoidal transformation is ap-
plied to derive estimates of posterior probabilities. These
probabilities are then either thresholded independently or
combined multiplicatively and then thresholded. In [13] a
heuristic is developed to select training instances for train-
ing each refinement classifier. [4] also use a feature selection
strategy similar to [6].

Hierarchical neural networks architectures have been uti-
lized by Ruiz and Srinivasan [10] as well as by Weigend,
Wiener, and Pedersen [19]. In both approaches a quite ag-
gressive feature selection and/or dimension reduction step
is necessary in order to reduce the number of input weights
in the neural network. The training of networks at dif-
ferent levels is again performed independently using back-
propagation, leading to the same problems that were men-
tioned above.

In the context of naive Bayes classification, McCallum et
al. [8] have proposed the use of shrinkage, a particular form
of smoothing, to derive improved estimates of parameters
for the class conditional distributions. The hierarchy is thus
used to overcome sparseness problems in parameter estima-
tion and not in a divide-and-conquer manner. Toutanova et
al. [14] have developed an improved Expectation Maximiza-
tion algorithm that refines the technique of [8]. The main
downside of this line of work is that naive Bayes classifiers
are often not competitive and the gain from using the hier-
archy is often less than the loss in accuracy suffered relative
to more competitive methods like SVMs.

Finally, we would like to point out that our method is
a natural generalization of the multiclass SVM formulation
proposed in [3, 20] and a particularly interesting special case
of a more general learning architecture presented in [15].

Comparing our approach with previous work, we would
like to point out what we believe to be the main benefits
and strengths of our method. (i) Our architecture avoids a
greedy decision process, since it is not based on successive
refinements. (ii) The parameters of the model are fitted by
optimizing a joint objective. (iii) Being a generalization of
SVM learning, we can reasonably expect a high classification
accuracy. (iv) Our methods are not restricted to trees, but
can handle arbitrary lattices, which in particular includes
multiple trees. (v) A sparse approximation via variable se-
lection can be used to improve the scalability of the method.
The only downside we see is the fact that we have not uti-
lized feature selection so far, but this is a topic that can be
easily addressed in future work.

6. EXPERIMENTS

6.1 Experimental Setup
In this section, we compare the standard flat multiclass

SVM with our hierarchical multiclass SVM on two datasets:
a synthetic data collection generated according to a hier-
archical scheme and the WIPO-alpha collection [22]. The
taxonomy in either collection is a tree with categories in the
same depth of the tree. The particular loss function that is



used in the experiments is

4(y, ŷ) =
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which is a special case of Eq. (23) with constant frequency
fz and costs cz, c̄z. It also equals half the distance from y to
ŷ in case of a tree structure. The class attributes have been
chosen according to Eq. (20). More specifically, we have set

vz =

r

1

depth
= const , (35)

where depth is the depth of the tree structure. This scaling
is used for mathematical convenience, since it implies that
〈Λ(y),Λ(y)〉 = 1 and therefore we get that

〈Φ(x, y), Φ(x, y)〉 = 〈Λ(y),Λ(y)〉〈x,x〉 = 〈x,x〉 . (36)

This is also to facilitate fair comparison between flat and
hierarchical SVM classification since in the former case Φ(x, y)
can be viewed as in Eq. (9) and hence 〈Φ(x, y), Φ(x, y)〉
equals 〈x,x〉 as well.

In all experiments a linear kernel is used, since it has com-
putational advantages during optimization, while achieving
competitive performance compared to other more compli-
cated kernels such as polynomial kernel and RBF kernel in
the context of text categorization [5]. Moreover, document
vectors are normalized to be of unit length, ‖xi‖2 = 1, as a
preprocessing step. The test set performance was computed
using cross-validation and macro-averaging. The tolerance
parameter ε in algorithm 1 is set to 0.01 by default and
0.1 for some large runs. [3] points out that the choice of
ε = 0.1 achieves a good tradeoff between running time and
generalization performance.

6.2 Evaluation Measures
To evaluate the effectiveness of multi-class categorization

systems, we employ four different measures: accuracy, preci-
sion, taxonomy-based loss, and parent accuracy. The former
two are standard metrics commonly applied in the context
of multiclass problems (e.g. [11]). However, in the case of
taxonomies, it is often desirable to measure the quality of
the prediction by taking the relationship between categories
into account. We therefore propose the latter two metrics.

Each metric with respect to a set of test examples {(xi, yi)}
n
i=1

is defined as follows.

1. Accuracy

Accuracy evaluates how often the prediction f(x) is
correct. Let [.] be 1 if the predicate inside is true and
0 otherwise.

acc(f) =
1

n

n
X

i=1

[f(xi) = yi] (37)

2. Precision

Accuracy evaluates the quality of the top-ranked cat-
egory. In reality the prediction results are sometimes
viewed as a ranked list. It is thus preferred that the
correct label is ranked as high as possible. One metric
to evaluate the quality of the ranking is precision.

prec(f) =
1

n

n
X

i=1

„

1

|{y : F (xi, y) ≥ F (xi, yi)}|

«

. (38)

Put roughly, 1/prec(f) can be regarded as the average
position the true category is ranked at.

3. Taxonomy-based Loss

As noted earlier, it is reasonable to assume different
mistakes will incur different loss in a taxonomy. The
loss is characterized by a loss function 4. We therefore
have the taxonomy-based loss as

4-loss(f) =
1

n

n
X

i=1

4(yi, f(xi)) . (39)

The particular loss function we have utilized is defined
in Eq. (34).

4. Parent Accuracy

Parent accuracy measures the accuracy at the level
of category’s parents. Let Z̃ = {z : z ∈ Z ∧ ∃y ∈
Y s.t. parent(y) = z}. parent(y) = z means that z is

y’s immediate parent. Let f̃(x) = parent(f(x)). Then
the parent accuracy is defined as

pacc(f) =
1

n

n
X

i=1

[f̃(xi) = parent(yi)] . (40)

Assume two algorithms have similar accuracy. If a mis-
classification occurs, the algorithm with higher parent
accuracy then is more likely to assign an instance to
the true category’s siblings, than to assign it to a class
that is farther away from the correct class. An algo-
rithm with a higher parent accuracy is thus favored,
for instance, when used as an automatic categorization
tool to assist human experts.

6.3 Synthetic Data
The first step of generating synthetic data is to decide

on the tree structure and the number of features. Then
random weight vectors are generated for each node in the
tree, nodes at the same depth conforming to the same multi-
variate normal distribution. The co-variance matrices are
all chosen to be diagonal for simplicity and the variances
decrease from top to bottom of the tree. The sum of the
weight vectors from a category’s path to the root is then
assigned as the category’s weight vector. Data points are
randomly generated and then assigned to the category with
the highest score. If the difference between the highest score
and the second highest score is more than a given threshold
ρ, the data point is accepted. Otherwise it is rejected.

The way the artificial data is generated assures that weight
vectors of nearby categories are closer than that of distant
categories, simulating a property that we expect to be rel-
evant for real-world taxonomies. Table 1 summarizes the
performance of 5-fold cross-validation with hard margin sep-
aration. We observe that the hierarchical SVM consistently
excels on all runs with respect to all considered measures.

6.4 WIPO-alpha Collection
The World Intellectual Property Organization (WIPO)

published the WIPO-alpha collection in 2002 [22]. The
patent documents in the collection are classified according to
a standard taxonomy known as International Patent Classi-
fication (IPC) [21]. IPC categories are organized in a four-
level hierarchy, i.e. sections, classes, subclasses and groups



#children depth ρ acc (%) prec (%) 4-loss pacc (%)
flat hsvm flat hsvm flat hsvm flat hsvm

3 3
0.001 68.9 72.7 81.7 84.2 0.621 0.505 80.1 84.4

0.1 83.4 89.9 90.8 94.7 0.351 0.205 88.0 92.9

3 2
0.001 87.1 90.0 93.1 94.6 0.193 0.158 93.6 94.2

0.1 97.4 98.7 98.7 99.3 0.0478 0.0236 97.9 99.0

6 2
0.001 67.5 69.3 80.2 82.0 0.513 0.465 81.1 84.2

0.1 85.2 90.5 90.9 94.4 0.244 0.15 90.4 94.7

Table 1: Experimental comparison of flat SVM (flat) and hierarchical SVM (hsvm) on synthetic data. The
number of examples is fixed to 1000. The number of features is fixed to 20. ‘#children’ refers to the number
of child nodes that each interior node has, ‘depth’ the depth of tree, ρ the cutoff threshold, ‘acc’ the accuracy,
‘prec’ the precision, ‘4-loss’ the taxonomy-based loss, and ‘pacc’ the parent accuracy.

section #cat #doc acc (%) prec (%) 4-loss pacc (%)
flat hsvm flat hsvm flat hsvm flat hsvm

A 694 10962 42.3 42.9 51.7 53.2 1.24 1.15 61.5 65.0
B 1172 14690 33.2 33.8 41.5 43.1 1.54 1.41 57.3 62.2
C 852 16245 35.5 35.1 44.8 44.6 1.32 1.23 61.5 65.6
D 160 1710 41.8 42.8 52.3 54.4 1.20 1.08 65.4 69.1
E 230 3027 34.7 34.3 44.8 46.3 1.38 1.30 62.7 64.2
F 675 6685 31.2 32.4 40.6 42.9 1.47 1.33 57.6 63.3
G 470 10302 41.0 41.2 50.3 51.1 1.32 1.26 60.6 63.0
H 403 11629 43.0 43.1 54.2 55.2 1.12 1.07 63.3 66.2

Table 2: Performance comparison of flat SVM (flat) and hierarchical SVM (hsvm) on WIPO-alpha subtrees
rooted at various section codes. ‘#cat’ refers to the number of categories, ‘#doc’ the total number of
documents in the section, ‘acc’ the accuracy, ‘prec’ the precision, ‘4-loss’ the taxonomy-based loss, and
‘pacc’ the parent accuracy. Bold face is used to mark better performance. ε = 0.1 for runs on section A, B,
C, F, G, and H.

data #cat #doc acc (%) prec (%) 4-loss pacc (%)
flat hsvm flat hsvm flat hsvm flat hsvm

A, sample 3 694 1781 10.6 11.7 17.3 20.5 2.12 1.87 34.9 43.2
B, sample 3 1172 3033 9.56 11.3 14.7 18.9 2.25 1.99 36.5 45.6
C, sample 3 852 2212 12.1 13.3 18.1 20.7 1.90 1.69 45.4 53.0
D, sample 3 160 391 19.7 20.5 27.2 30.9 1.71 1.54 48.9 57.3
E, sample 3 230 600 10.2 11.4 17.3 20.6 2.01 1.82 40.5 48.3
F, sample 3 675 1729 13.1 14.5 19.4 22.8 2.02 1.75 40.8 50.5
G, sample 3 470 1228 12.4 13.6 18.9 22.4 2.09 1.87 35.2 43.5
H, sample 3 403 1084 14.8 15.7 22.6 25.0 1.81 1.66 42.0 48.0

Table 3: Performance comparison of flat SVM and hierarchical SVM on WIPO-alpha corpus with subsam-
pling. The notations are as those in Table 2. ε = 0.1 for ‘A, sample 3’, ‘B, sample 3’, and ‘C, sample
3’.



D: Textiles; Paper

D01: Natural or 
artificial threads or 
fibres; Spinning

D02: Yarns; Warping 
or Beaming; ...

D03: Weaving

D04: Braiding; Lace 
Making; Knitting; ...

D06: Treatment of 
Textiles; ...

D05: Sewing; 
Embroidering; Tufting

D07: Ropes; ...

D21: Paper; ...

D03C: Shedding mechanisms; 
Pattern cards or chains; Punching 
of cards; Designing patterns

D003D: Woven fabrics; 
Methods of weaving; 
Looms

D003J:Auxiliary weaving 
apparatus; Weavers’ tools;
Shuttles

Figure 2: Part of the IPC classification hierarchy
rooted at section ’D’ which contains a total of 160
main groups. Only classes and subclasses for D03
are shown.

(main groups and subgroups). Part of section D is illus-
trated in Figure 2 for concreteness.

While a patent can have multiple categories, exactly one
of them is labeled as the primary category. Predicting the
primary categories therefore is a multiclass categorization
problem. For our experiments we have indexed the title and
claim contents. Document parsing, tokenization, and term
normalization have been performed with the MindServer re-
trieval engine2.

Table 2 compares the performance of the flat SVM and
hierarchical SVM with respect to all 8 sections. When deal-
ing with a specific section, only documents with their main
category in the section in question are taken into account.
Three-fold cross-validation has been performed for all runs.
We observe that hierarchical SVM outperforms flat SVM
in terms of 4-loss in all cases. This can be attributed to
the fact that it explicitly optimizes an upper bound on the
4-loss of training set as well as to the specific hierarchical
form of the discriminant function. Moreover, hierarchical
SVM in most cases also produces higher accuracy, precision
and parent accuracy.

To investigate the effect of the training size, we have fur-
thermore subsampled the data. Results are shown in Ta-
ble 3, where three samples (or all available documents, if
the category possesses less than three training documents)
are randomly picked for each category. Again three-fold
cross-validation has been performed on all runs. We observe
that hierarchical SVM outperforms flat SVM. Moreover, the
performance gains are more significant in the scenario with
fewer training documents. This demonstrates that the hier-
archical formulation, which couples categories through the
weight vectors of common ancestors, is particularly useful
when operated on small training sets, since it allows more
reliable estimates for weight vectors associated with higher-
level nodes by effectively pooling observation in a manner
similar to [8].

Following the heuristic utilized in SVMlight [5], C is set
to 1 in the above runs (remember that input vectors are
normalized to unit length). Our experiments show that is
a good choice. Figure 3 depicts the accuracy of the inves-
tigated algorithms for varying values of C. It appears that
C = 1 leads to a decent performance and that the hierarchi-
cal SVM always achieves a lower 4-loss during testing.

Figure 4 is an example of how the optimization process
evolves over time as more and more variables are selected.

2http://www.recommind.com
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Figure 3: Performance on two sections of WIPO-
alpha with varying regularization parameter C.
Solid lines correspond to flat SVM and dashed lines
correspond to hierarchical SVM.

For that purpose we define the active dual variable ratio as

|{αiy|y 6= yi ∧ αiy > 0}|

n × (q − 1)
. (41)

We observe that in the beginning iterations, the variable
selection strategy almost always add a new dual variable in
each iteration. When the active set reaches a reasonable size,
the growth of the active set sizes slows down and more efforts
are focused on optimizing the variables that are already in
the set. In all our experiments on WIPO-alpha, the learned
solutions were very sparse, usually with an active ratio in
the range of [0.005, 0.1].

Our method of adding one or zero dual variable each time
into optimization also leads to sparser solutions and faster
convergence, when compared to strategies such as the one in
[3] that consider all variables belonging to the same instance
in the subspace optimization. Since the active set increases
slowly in our case and since we restrict optimization to the
variables in the active set, our method needs more subspace
optimizations, but needs to solve significantly smaller QPs in
every iteration. To show how the computational complexity
works out in a realistic example, we have trained the hier-
archical SVM on the D section of WIPO-alpha with both
optimization strategies. Our approach takes about 2,200
seconds with a final fraction of 4.6% non-zero dual variables.
Without maintaining an active set, the learning has taken
about 42,200 seconds with a larger active ratio of 4.9%. The
sparser solution can be explained by the conservative man-
ner of constructing the active set in our approach.

7. CONCLUSIONS
We have proposed a large margin architecture for hierar-

chical categorization that extends the strengths of Support
Vector Machine classification to also take advantage of in-
formation about class relationships encoded in a taxonomy.
It is possible to minimize upper bounds on arbitrary loss
functions, in particular ones that quantifies the severeness
of incorrect categorizations based on the taxonomy. We be-
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Figure 4: Optimization process of the hierarchical
SVM on D section. The objective of the dual prob-
lem is defined in Eq. (16).

lieve this to be a valuable feature in many real-world appli-
cations. Furthermore, we have derived a column generation
algorithm to more efficiently deal with the large number of
margin constraints. Results on patent classification have
confirmed the competitiveness of our overall approach.
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