
Hierarchical Dwarfs for the Rollup Cube

Yannis Sismanis
University of Maryland

isis@cs.umd.edu

Antonios Deligiannakis
University of Maryland

adeli@cs.umd.edu

Yannis Kotidis
AT&T Labs

kotidis@research.att.com

Nick Roussopoulos
University of Maryland

nick@cs.umd.edu

ABSTRACT
The data cube operator exemplifies two of the most important as-
pects of OLAP queries: aggregation and dimension hierarchies. In
earlier work we presented Dwarf, a highly compressed and clus-
tered structure for creating, storing and indexing data cubes. Dwarf
is a complete architecture that supports queries and updates, while
also including a tunable granularity parameter that controls the am-
ount of materialization performed. However, it does not directly
support dimension hierarchies. Rollup and drilldown queries on
dimension hierarchies that naturally arise in OLAP need to be han-
dled externally and are, thus, very costly. In this paper we present
extensions to the Dwarf architecture for incorporating rollup data
cubes, i.e. cubes with hierarchical dimensions. We show that the
extended Hierarchical Dwarf retains all its advantages both in terms
of creation time and space while being able to directly and effi-
ciently support aggregate queries on every level of a dimension’s
hierarchy.

Categories and Subject Descriptors
H.2.7.b [Database Management]: Data warehouse and repository;
H.2.2.a [Database Management]: Access Methods

General Terms
Algorithms Design Performance

Keywords
Data Cubes, Warehouses, Aggregation, Indexing, OLAP, Prefix
Elimination, Suffix Coalescing, Structural redundancy, Dwarf Cube,
Granularity, Materialization

1. INTRODUCTION
The introduction of the data cube operator has been both a bless-

ing and a curse for those interested in analyzing large amounts
of data in the area of On Line Analytical Processing (OLAP). It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’03,November 7, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-727-3/03/0011 ...$5.00.

provides the means for the succinct formulation of query primi-
tives that are fundamental in OLAP, including histograms (aggrega-
tion over computed categories), roll-up and drill-down operations
and cross-tabulation. The data cube operator has formalized the
concepts of multidimensional aggregate views and the hierarchies
within them.

Unfortunately, the expressive power unleashed by the data cube
comes at a big cost. The number of views in the data cube in-
creases exponentially with the number of dimensions. As a result
a naive computation and storage of all the views was deemed non-
feasible but for toy-like datasets. Following the seminal paper of [9]
there has been a flurry of literature for handling the alarming com-
plexity of the data cube by pre-computing a subset of all possible
views [10, 11, 22], providing approximate answers using a lossy
representation of the data cube [1, 24], or by using some form of
online aggregation [12].

All these techniques, albeit their novelty, leave a taste of defeat;
instead of attacking the problem, they rather circumvent it. In an
earlier work [21] we introduced Dwarf, a novel and complete ar-
chitecture for computing, storing, indexing, querying and updating
both fully and partially materialized data cubes. Dwarf makes fea-
sible the materialization of vast, high-dimensional data cubes by
eliminating prefix and suffix redundancies among the dimension
values of multiple views. We have demonstrated that prefix redun-
dancies are considerable in dense areas of the cube while suffix
redundancies are order of magnitudes more considerable in sparse
areas. The effect of both is reflected on every aspect of cube man-
agement, from its size to its computation and updates.

The Dwarf construction algorithm employs a unique top-down
computation strategy for the data cube, which automatically dis-
covers and eliminates all prefix and suffix redundancies on a given
dataset. What is important is that this elimination happens prior
to the computation of the redundant values. As a result, not only
is the size of the Dwarf dramatically reduced, but its computation
is also drastically accelerated. This property is unique to Dwarf
and can not be acquainted by techniques that employ a bottom-up
computation of the data cube [4, 16].

The Dwarf architecture of [21] is limited to aggregates computed
directly on the raw data. Nevertheless, in most data warehouse
applications, dimensional values are further annotated with hier-
archies. The presence of hierarchies has a profound effect on the
size of the data cube; in-fact it increases its computational and stor-
age complexity exponentially!1 Dwarf, as was presented in [21],

1A D-dimensional data cube has 2D aggregate views. When each dimension has a hi-
erarchy with L levels, the number of views increases to (L+1)D i.e. by an exponential
factor of (L+1

2)D.

17

handles hierarchies externally. Rollup or drilldown hierarchical
queries are mapped into queries on the raw data and their results
are further aggregated in a second step. This model however can
be very costly, especially for queries at the higher levels of a hi-
erarchy. One, thus, would like to be able to answer these queries
directly while retaining all other benefits of Dwarf (storage, cre-
ation, maintenance). This is the focus of this paper.

We here describe two extensions to the Dwarf structure for rollup
data cubes; i.e. data cubes computed over all dimension hierar-
chies. The first extension partitions the views of the rollup data
cube into disjoint sets and then indexes each set using a Partial
Dwarf. In contrast to the Dwarf structure presented in [21], a Par-
tial Dwarf only stores a subset of the aggregate views of the se-
lected dimensions. This is done in order to avoid replicating views
among different Partial Dwarfs. We present an efficient algorithm
for generating these partitions through a simple enumeration pro-
cess. This property is important because of the exponential number
of the views that makes polynomial time algorithms impractical.

One drawback of using multiple Partial Dwarfs is that prefix and
suffix redundancies among views that share dimension values but
are staged on different Dwarfs are not fully exploited. In [21] we
have shown that the elimination of suffix redundancies (through a
process we call suffix coalescing) has the most profound effect in
the computation time and storage reduction obtained by Dwarf. To
retain the full benefits of the Dwarf framework, we further present
the Hierarchical Dwarf, a new data structure that incorporates all
aggregate views of the rollup data cube in a single store. The Hi-
erarchical Dwarf requires non-trivial extensions on the properties
and algorithms of the original Dwarf structure.

Both extensions that we describe here are not limited to full
rollup cubes, where all possible aggregations are materialized. Us-
ing a granularity parameter Gmin we can avoid the materialization
of sparse areas of the cube with a small number of tuples, less than
Gmin, where the aggregation is postponed and is performed during
query time. The resulting coarse-grainedDwarfs typically require
much less storage and computation time while query performance
often improves, due to improved buffering and clustering [21].

Due to space limitations in this paper we present the properties of
the modified Dwarf structures (Partial and Hierarchical) and only
sketch their computation algorithms. We defer presenting the full
algorithms and discussing updates in the full version of this paper.
Similarly, we do not discuss here the clustering algorithms that we
employ for improving access times to the views, in a way analogous
to [21].

To our knowledge, the Dwarf extensions that we present here are
the only compact structures that directly attempt to fully or partially
materialize the rollup data cube. The benefit of this materializa-
tion is significantly improved query performance for hierarchical
queries as will be demonstrated by our experiments.

The rest of the paper is organized as follows. In Section 2 we
discuss related work. In Section 3 we introduce Partial Dwarfs,
while Section 4 describes the properties of the Hierarchical Dwarf
structure and Section 5 its creation algorithm. Section 6 contains
our experiments and Section 7 concluding remarks.

2. RELATED WORK
Roussopoulos in [18] first explored the problem of selecting a set

of materialized views (with no aggregations) for answering queries
under the presence of updates and a global space constraint. View
selection algorithms in the context of the data cube can be found
in [10, 11, 22]. The authors of [15] show that the view selection
problem optimizing the query response time is NP-complete. We
notice here that most of the aforementioned greedy algorithms have

complexity that is polynomial in the number of views, which is in-
fact exponential in the number of dimensions, making them imprac-
tical on multidimensional datasets in the presence of hierarchies.

The time to compute the data cube is another overwhelming
factor. The techniques that have been proposed take advantage
of commonalities between different views by sharing partitions,
sorts or partial sorts and intermediate results [2, 6, 20]. In [26]
an array-based algorithm is proposed that uses memory-arrays to
store partitions and to avoid sorting. Unfortunately, similar to most
array-based Multidimensional-OLAP (MOLAP) techniques, per-
formance quickly degrades as the number of dimensions and the
sparsity of the data increases. The algorithms in [4, 17] are de-
signed to handle sparse data cubes. The Bottom-Up Cube (BUC)
algorithm described in [4] stores only those partitions of a view
whose values are produced by aggregating at least MinSuptuples
of the fact table. The parameter MinSup is called the minimum
supportand is analogous to the Gmin parameter of [21].

Several indexing techniques have been devised for storing data
cubes. Cube Forests [14] exploit prefix redundancy when storing
the cube. However, they do not eliminate suffix redundancy that
is the most dominant factor in data cube compression [21]. In the
Statistics Tree [8] prefix redundancy is partially exploited however,
the tree contains all possible paths (even paths corresponding to tu-
ples that have not been inserted) making it inappropriate for sparse
datasets. In [25] the notion of a base single tupleis similar to the
one of a coalesced tuple in Dwarf. Compared to this work, our
method provides a much more efficient method not only for the au-
tomatic discovery of the coalesced tuples, but also for indexing the
produced cube, something also not done by most of the methods
for cube computation listed above. Cubetrees [19], QC-trees [16]
and DC-trees [7] are also designed for data cube aggregates. From
this list, only the last supports hierarchies. However, it only store
uncompresseddata cubes; i.e. no prefix or suffix elimination is per-
formed. Thus, their use is only limited to small data cubes and
cannot compete with the Dwarf representation simply because of
their enormous storage requirements.

3. VIEW-COVERING PARTIAL DWARFS
We now present a natural extension of the Dwarf structure for

storing the rollup cube. To store all the views of the rollup cube, we
create a forest of Partial Dwarfs, each of which will store a subset
of the cube’s views. Each view corresponding to a combination
of hierarchy levels from different dimensions is stored in a single
Dwarf cube. All but the first of these Dwarfs will be partial in the
sense that they do not store every possible combination of views.
This is done to avoid duplicating the storage of some views and will
be made clear with an example.

Hierarchies Declared Metadata
Store Product Customer Dimension Metadata

ALL

↑
Retailer

↑
StoreId

ALL

↑
Group

↑
Code

ALL

↑
Name

Store

Store

Store

Product

Product

Product

Customer

Customer

S1→ R1
S2→ R1
S3→ R2
C1→ G2
C2→ G1
C3→ G2

N1
N2

Table 1: Example of declared Hierarchies

Table 1 contains the declaration of the hierarchies imposed on
the Store, Product and Customerdimensions of a sample dataset.

18

There are 18 possible views (Table 2) defined in the rollup data
cube in the presence of these hierarchies. For instance the view Re-
tailer.Code.Name aggregates the measure(s) on three dimensions:
Store(at the Retailer level), Product (at the finer Codelevel) and
Customer(at the Name: level).

Partial
Dwarf

Calculated
Views

Not Calculated
Views

1

StoreId.Code.Name,
StoreId.Code,

StoreId.Name, StoreId,
Code.Name, Code,

Name,None

2
StoreId.Group.Name,

StoreId.Group,
Group.Name, Group

StoreId.Name, StoreId,
Name, None

3
Retailer.Code.Name,

Retailer.Code,
Retailer.Name, Retailer

Code.Name, Code,
Name, None

4
Retailer.Group.Name,

Retailer.Group

Retailer.Name,
Group.Name,Retailer,
Group,Name, None

Table 2: Partial Dwarfs for Dataset of Table 1

To store the 18 views of the rollup cube, we create 4 Dwarfs, as
shown in Table 2, and store in each Dwarf a subset of the possible
views (the original Dwarf [21] of a set of D attributes stores all 2D

views on every combination of the attributes). We here note that we
cannot directly use the Dwarf structure as presented in [21] to store
all 18 views, and that the definition of the 4 Dwarfs is not unique.
Any non-redundant set of Dwarfs that coversall the views of the
rollup data cube is acceptable as a solution. However, if the i-th
dimension contains Li hierarchy levels, then we can show that at
least ∏D

i=1 Li Dwarfs need to be created to cover all the views. The
proof is based on the fact that each Dwarf of D dimensions can only
store views that contain a subset of these D dimensions. In this ex-
ample, at least 2×2×1 = 4 Dwarfs need to be created. However,
these are constructed partially, to avoid duplicating the storage of
some views. Table 2 presents the views that are stored at each Par-
tial Dwarf, and the ones that are not calculated or stored, to avoid
their duplication. These Partial Dwarfs can be easily computed by
simple modifications to the algorithms of [21] by “blocking” some
recursive calls (calls to the SuffixCoalesce Algorithm) that create
these views.

To understand why the view covering presented in Table 2 is a
good candidate covering, one has to recall that the computation of
each Dwarf requires an initial sort of the fact table (a single sort
using the combined key composed by all dimension values). We
can create the fact tables for Dwarfs 2,3 and 4 (in the specified
order) from the fact tables of Dwarfs 1,1 and 3 (respectively) by
using the declared metadata (ex: Table 1) to map the values of each
hierarchy to the next level. Notice that the fact tables for Dwarfs
2 and 4 will then be partially sorted, because the initial dimension
is the same as in the Dwarfs 1 and 3. Thus, the sorting operations
for these Dwarfs are less costly. However in the general case the
mapping of the dimension values to higher levels of its hierarchy
can be arbitrary and is not necessarily order preserving.

To construct the view covering of Table 2 we use a simple enu-
meration process. We first set the fact table of the first Dwarf to
contain the most detailed levels of each dimension. We then enu-
merate all the possible combinations of hierarchy levels, by chang-
ing more quickly the hierarchy level of the last dimension, and

slower the hierarchy levels of the first dimension, and assign each
such combination one-by-one to the Partial Dwarfs. The advantage
of this enumeration is that the duplication of views can be avoided
by just looking at the definition of the latest Partial Dwarf. Due to
space constraints we refer the reader to the full version of the paper.

4. HIERARCHICAL DWARF
We first describe the Hierarchical Dwarf structure in the presence

of hierarchies at each dimension with an example. We then define
the properties of Dwarf formally. A description of the Dwarf struc-
ture in the absence of hierarchies can either be found in [21], or can
be obtained from our discussion when all the dimensions contain
just one hierarchy level. For brevity we refer to the Hierarchical
Dwarf as Dwarf in what follows.

StoreId Code Name Sales

S1 C2 N1 $10
S2 C3 N2 $30
S3 C1 N1 $60

Table 3: Sample Fact Table

4.1 A Dwarf example
In Figure 1 we show the Dwarf for the hierarchies and metadata

of Table 2 and the fact table of Table 3. It is a rollup cube using
the aggregate function sumand containing a total of (2+1)× (2+
1)× (1+1) = 18 views. The nodes are numbered according to the
order of their creation. The height of the Dwarf structure is equal
to the number of dimensions, each of which is mapped onto one
of the levels shown in the figure. Each dimension i contains nodes
that correspond to one of its Li hierarchy levels. In this example,
the Store, Productand Customerdimensions contain 2, 2 and 1
hierarchy levels, respectively. The root node (node 1) contains cells
of the form [key,pointer], one for each distinct value of the first
dimension at its most detailed (bottom-most) hierarchy level. The
pointer of each cell points to a node on the next level containing
all the distinct values of the next dimension that are associated with
the cell’s key. In the data of Table 3 the product with Code C2 is the
only product associated with S1 (first tuple). The node pointed by a
cell and all the cells inside it are dominatedby the cell. For example
the cell S1 of the root dominates node 2. Each node that does not
correspond to the least detailed level of the last dimension (lowest
level in Dwarf) has a special ALL cell, shown as a small gray area
to the right of the node, holding a pointer and corresponding to all
the values of the node. For example, node 1 that corresponds to the
StoreIdlevel of the Storehierarchy has an ALL cell that points to
node 11, which corresponds to the Retailerlevel. The ALL cell of
nodes of the top-most level of a hierarchy points to a node at the
most detailed hierarchy level of the next dimension. For example,
the ALL cell of node 11 in Figure 1 (corresponding to the least
detail Retailerlevel) points to node 15 (corresponding to the Code
hierarchy level for the Productdimension).

If we denote as li, j the j-th hierarchy level of dimension i, and as
vi, j a value of the hierarchy level li, j , then a path from the root
to a leaf such as 〈 ALL . . . ALL

︸ ︷︷ ︸

k1−1 times

v1,k1 . . .ALL . . .ALL
︸ ︷︷ ︸

kd−1 times

vd,kd
〉 cor-

responds to an instance of the group-by (view) l1,k1 , . . . , ld,kd
and

leads to a cell which stores the aggregate value of that instance.
For example, the path 〈 ALL R2 C1 N1 〉 leads to the cell [N1 $60]
which contains the aggregate value of the sales of product C1 that
Customer N1 has bought from stores supplied by retailer R2. Some

19

S2 R1 R2S1 S3

C2 C1 C2 C3 C1 C2 C3C3

$30

$40

$60

$10

$100

$90

(1)

Store Dimension

(2) (4) (5)

(6)

(7) (8)

(9)

(10)

(11)

(12)

(3)

(13)

(14)

(15)

(16)

(17)

(18)

N2 $30

N1 $60

N1 $10

N1 $10 N2 $30

N1 $60 N2 $30

N1 $70 N2 $30

G1 G2 G2 G1 G2

G1 G2 Product Dimension

Customer Dimension

Figure 1: The Dwarf Cube for Table 3

dimensions may be left completely unspecified. For example, 〈 ALL
R1 ALL ALL N2 〉 leads to the cell [N2 $30] of node 14, and cor-
responds to the sum of the prices paid by customer N2 for any
product at stores supplied by retailer R1. At the leaf level, each cell
is of the form [key,aggregate] and holds the aggregate of all tuples
that match a path from the root to it. Each leaf node correspond-
ing to the least detailed hierarchy level also has an ALL cell that
stores the aggregates for all the cells in the entire node. 〈ALL ALL
ALL ALL ALL 〉 in our example leads to the total sales (group-by
NONE) of $100 (ALL cell of node 18). The reader can observe that
the seven paths 〈 S1 C2 N1 〉, 〈 S1 ALL G1 N1 〉, 〈 S1 ALL ALL
N1 〉, 〈 ALL R1 C2 N1 〉, 〈 ALL R1 ALL G1 N1 〉, 〈 ALL ALL C2
N1 〉, and 〈 ALL ALL ALL G1 N1 〉, whose values are extracted
from processing just the first tuple of the fact-table, all lead to the
same cell [N1 $10] of node 3, which, if stored in different nodes,
would introduce suffix redundancies. By coalescingthese nodes,
we avoid such redundancies. In Figure 1 all nodes pointed by more
than one pointer are coalesced nodes.

4.2 Properties of the Hierarchical Dwarf
The Dwarf data structure for storing rollup cubes has the fol-

lowing properties. It is a directed acyclic graph (DAG) with just
one root node and has exactly D levels, where D is the number of
the cube’s dimensions. Each level i is conceptually (only) parti-
tioned into Li fragments, where Li is the number of hierarchy lev-
els of dimension i. The fragments are considered ordered based on
the hierarchy level they correspond to, starting from the most de-
tailed level and moving toward the least detailed level of the hierar-
chy. Nodes at the D-th level (leaf nodes) contain cells of the form:
[key, aggregateValues], while nodes in levels other that the D-th
level (non-leaf nodes) contain cells of the form: [key, pointer]. A
cell C in a non-leaf node of level i points to a node at the first frag-
ment of level i + 1, which it dominates. Each node also contains
a special cell, which corresponds to the cell with the pseudo-value
ALL as its key. If this cell does not belong to the last fragment of
its level, then it contains a pointer to a node in the next fragment
of its level. Otherwise, this cell contains either a pointer to a node
at the next level, or the aggregateValues if it is a leaf node. Cells
belonging to nodes at fragment j of the i-th level of the structure
contain keys that are values of the cube’s i-th dimension and which
correspond to the j-th hierarchy level of this dimension. No two
cells within the same node contain the same key value.

Each cell Ci at the i-th level of the structure, corresponds to the
sequence Si of i ≤ |Si | ≤∑i

j=1 L j keys found in a path from the root
to the cell’s key. This sequence corresponds to a group-by with the
last (D− i) dimensions unspecified. All group-bys having sequence
Si as their prefix, will correspond to cells that are descendants of
Ci in the Dwarf structure. For all these group-bys, their common
prefix will be stored exactly once in the structure (prefix reduction).

When two or more nodes (either leaf or non-leaf) generate iden-
tical nodes and cells to the structure, their storage is coalesced, and
only one copy of them is stored. This happens, when the exact same
tuples contribute the same aggregates to different group-bys ([21]).
In such a case, the coalesced node will be reachable through more
than one paths from the root, all of which will share a common
suffix. For example, in node 3 at the bottom of the Customer level
of Figure 1, the first cell of the node corresponds to the sequences
(among others) 〈 S1 C2 N1 〉 and 〈ALL ALL C2 N1 〉, which share
the common suffix 〈 C2 N1 〉. If a node N is a coalesced node, then
any node X which is a descendant of N will also be a coalesced
node, since it can be reached from multiple paths from the root.

A traversal in the Dwarf structure follows a path of length at least
D and at most ∑i Li (where Li is the number of hierarchy levels of
dimension i) starting from the root to a leaf node. For each dimen-
sion i, the path contains exactly Li ALL values, if the dimension
is left unspecified. If a value V at the j-th fragment is specified,
then the path for the i-th dimension contains j−1 ALL values, fol-
lowed by the V value. As in [21], the defined Dwarf structure itself
constitutes an efficient inter-level indexing method and requires no
additional external indexing.

We now define some terms which will help in the description of
the algorithms. The dwarf of a node Nis defined to be the node
itself and all the dwarfs of the nodes dominated by the cells of N.
The dwarf of a node X that is dominated by some cell of N is called
a subdwarf of N. Since leaf node cells at the last fragment dom-
inate no other nodes, the dwarf of such a node is the node itself.
The contentof a cell Ci , belonging to a node N, is either the aggre-
gateValues of Ci or the sub-dwarf of Ci , depending on whether Ci
stores a pointer or aggregateValues.

4.3 Improvements and Tradeoffs
With the current description of the Dwarf structure, a query may

have to access up to ∑i Li nodes in order to be answered. An obvi-
ous improvement would be to move the ALL pointers from all hier-

20

archy levels to the corresponding nodes at the first fragment of the
level. In this way, a maximum of 2×D node accesses are required,
and the size of the Dwarf structure is not modified. Moving the
ALL pointers one level up in the structure, to the father that dom-
inates the corresponding node at the first fragment, is another op-
tion that would decrease the maximum number of accessed nodes
to D. However, this would require that each node at level j would
store exactly L j+1 pointers, which would be a serious increase of
the required storage since only one pointer is actually needed when
coalescing occurs.

We also here need to emphasize that a node access in the Dwarf
structure does not necessarily correspond to a page access. Due
to the clustered nature of the Dwarf structure, a disk page typi-
cally contains multiple levels of the Dwarf data cube, especially in
the case of sparse datasets, or when the proposed dimension order-
ing of [21] (order dimensions in decreasing cardinalities) is being
used. Thus significantly fewer disk accesses are needed to answer
a query, than the number of visited nodes.

Another option is to allow cells in the lowest level of the Dwarf
structure to contain pointers to other cells, if the contentsof the
cell are identical. Notice for example that the cell [N1 $10] ap-
pears three times in Figure 1. This approach may decrease the
storage size if the size of the pointer is smaller than the size of
the aggregate values. However, this depends on the actual storage
representation of the aggregate values, and introduces a number of
problems, including an additional node access in queries, the in-
ability to perform binary search on the nodes due to the variable
size of the cells, and also complicates the update procedure. Since
the overwhelming amount of storage and processing time saved is
based on the identification of suffix coalescing in higher levels of
the Dwarf structure, such a modification was not incorporated in
our implementation.

5. CONSTRUCTION OF DWARF CUBE
The Dwarf construction, as described in [21], is governed by

two processes: the prefix expansion, and the suffix coalescing. The
identification of suffix redundancies in the cube is performed prior
to their computation and storage using these two interleaved pro-
cesses. We emphasize that identifying suffix redundancies prior to
their computation is essential for both efficiency and practical use
reasons. Any method without this characteristic (ex: [4, 16]) will
not scale to large datasets with multiple dimensions due to the enor-
mous amount of time and space that it will require to calculate and
store intermediate results.

The CreateDwarfCube and SuffixCoalesce algorithms for con-
structing the Dwarf cube in the absence of hierarchies are described
in [21]. Due to space constraints we will not present them here
in detail. We will rather describe the modifications that we need
to make to these algorithms for constructing the rollup cube. The
reader is referred to [21] for a description of the algorithms, and to
the full version of this paper for the modified algorithms.

To construct the Dwarf cube in the absence of hierarchies, the
fact table is first sorted, and then tuples are processed sequentially
by the CreateDwarfCube and unique prefixes are stored just once
in the Dwarf Structure. In the process of creating unique prefixes,
as soon as the CreateDwarfCube algorithm finishes with a prefix,
then the SuffixCoalesce Algorithm is called to create the subdwarf
that will be pointed by the ALL cell of the node. This algorithm
receives as input a set of cells (in this case the cells of the node
whose ALL cell we are calculating), and then recursively merges
the cells for the levels below. If there is just one cell to merge, then
suffix coalescing occurs and the algorithm returns the correspond-
ing subdwarf immediately. This is the step that saves storage and

computation time.
In the presence of hierarchies, when we create the sub-dwarf

pointed by the ALL cell of a non-leaf node which does not be-
long at the last fragment of its hierarchy level, we do not merge
subdwarfs rooted at one level lower in the Dwarf structure. Instead
we are moving one level up in the current dimension’s hierarchy,
and we create a subdwarf that maps each key value of the cells to
be merged to their parent values in the hierarchy, and then merge
the corresponding subdwarfs. The metadata manager provides us
with this parent mapping. When the cells belong to upper hierarchy
level of their dimension, then the original SuffixCoalesce algorithm
is called.

Algorithm 1 Hierarchical Suffix Coalesce
Input: DwarfSet: Set of cells pointing to the subdwarfs to merge

(each subdwarf corresponds to one cell)
1: MDS← /0 {Set of Dwarfs to Merge}
2: if cells in DwarfSet are not in last fragment of their hierarchy

then
3: for each cell [Keyi , Contenti] of DwarfSet do
4: fatherMapping = getFatherMapping(Keyi)
5: MDS.insert(cell [fatherMapping,Contenti])
6: end for
7: Merge cells∈MDS with the same keyi using SuffixCoalesce
8: Create a node N with the merged cells
9: N.ALL← HierarchicalSuffixCoalesce(MDS)

10: return N
11: else
12: return SuffixCoalesce(DwarfSet)
13: end if

We achieve this by substituting all the calls to the SuffixCoa-
lesce algorithm from the CreateDwarfCube and the SuffixCoalesce
algorithms, with calls to the HierarchicalSuffixCoalesce algorithm
presented in Algorithm 1, where the getFatherMapping() subrou-
tine provides us with the parent mapping, as described above. The
overall memory requirements of our algorithms remain the same as
in [21], and are equal to the sum of the dimension cardinalities at
the most detailed hierarchy levels.

5.1 Hierarchical vs Partial Dwarfs
Any covering of the rollup cube’s views using a set of Partial

Dwarfs has certain disadvantages. First of all, there are cases when
some prefix redundancies are not exploited. For example, views
containing the hierarchy level StoreId exist in both the first and
the second Dwarf. Moreover, by using multiple Dwarfs we cannot
remove all the suffix redundancies of the rollup cube. Suppose for
example that some retailer supplies a single store. Then the views
containing this store in the Partial Dwarfs 1 and 2 (in the StoreId
and Retailer levels correspondingly) will be identical, and their
storage will be duplicated.

Partial Dwarfs have the advantages that are more resilient and
simpler to recover in case of failures and that -for certain applictions-
the covering of the rollup cube can be directed by given localized
query properties in a way that benefits both the query performance
and the storage requirements.

5.2 Handling Complex Hierarchies
Some hierarchies are more complex than the ones that we have

presented so far. Consider for example the graph of Figure 2 where
we demonstrate different aggregation paths for the time hierachy.

Figure 3 depicts, conceptually, how we can create nodes of the
Dwarf cube in different fragments by following the paths in the

21

WeekMonth

Year

Day

Figure 2: Non-Flat Time Hierarchy

graph hierarchy. At each step we can create from any node N nodes
that correspond to all possible immediate parent hierarchy levels
based on the graph hierarchy.

D1 D4D2 D3

W1 W2 W3

M2M1 Y2Y1

Time

Figure 3: Conceptual representation of non-flat hierarchy

In practice, we do not want to deviate from the properties of
the original Dwarf structure, and we prefer to have just one ALL
cell stored in each node in order to avoid the storage overhead
and limitations of handling a variable number of ALL pointers per
node. Figure 4 demonstrates an example of such a serialization.
By traversing the graph hierarchy in a Depth-First manner we con-
struct the corresponding nodes and serialize them. The metadata
manager can then be used to locate any level at query time.

D1 D4D2 D3 M1 M2 Y1 Y2 W1 W2 W3

Time

Calculated by

Figure 4: Real implementation of non-flat hierarchy

6. EXPERIMENTS
In this section we provide an evaluation of both the Partial Dwarfs

and the Hierarchical Dwarf for managing rollup data cubes. We
used a real dataset provided by an OLAP company, whose name
we cannot disclose due to our agreement. The eight-dimensional
dataset has hierarchies on four dimensions and its characteristics
are summarized in Table 4. All the experiments were performed on
a Pentium 4 PC clocked at 1.8GHz and with 1GB of memory.

We evaluate the computation time and storage space required, as
well as the query performance of the modified Dwarf structures.
As a reference we use the “Base Dwarf” where only the lower lev-
els (i.e. the most detailed) levels of the hierarchies are used. Ev-
ery query that addresses less detailed levels is “broken” to many
point/range queries using the metadata manager. The resulting tu-
ples are then appropriately aggregated to provide the answer to the
original query.

6.1 Computation/Storage Space Evaluation
In this experiment we use a varying uniform sample of the origi-

nal dataset to demonstrate the scalability of the techniques with re-
spect to the number of tuples. We also used two values for the gran-
ularity parameter Gmin, a very conservative Gmin = 1, which calcu-
lates every possible aggregate but the ones that can be calculated

Dimension Level
Cardinalities

A 7458→ 2265→ 737→ 188→ 32→ 11
B 2765→ 91→ 31→ 8
C 3857→ 841→ 111→ 16
D 213→ 68→ 8
E 3247
F 660
G 4
H 4

Table 4: Real Dataset Hierarchies

by examining just a single tuple, and an optimistic Gmin = 1,000
which avoids materialization of areas of the cube with under 1,000
tuples. The aggregation for these areas is performed during query
time.

The results are summarized in Tables 5 and 6 where the com-
putation time, the required storage space and the sorting time are
given. The table column names refer to the corresponding struc-
ture. Base Dwarf contains only the most detailed 256 views for
this 8-dimensional dataset. In contrast, the rollup data cube has
11,200 views, partitioned among 288 Partial Dwarfs, as described
in Section 3. Note that the first Partial Dwarf is identical to the
Base Dwarf. The Hierarchical Dwarf contains all 11,200 views in
a single store.

We observe that in all cases the Hierarchical Dwarf needs consid-
erably less space and time to be computed than the Partial Dwarfs.
It is important to note here that when the hierarchies are not order-
preserving (i.e. sorted values in lower levels do not map to sorted
values in higher levels) a sorting operation is required for each Par-
tial Dwarf. The sorting time in that case is dominant and over-
whelms the computation time. For this experiment, we exploited
partially overlapping sort orders, as explained in Section 3.

The Base Dwarf is always much smaller than the Hierarchical
one and takes much less time to compute since it contains only
a small fraction of the views the hierarchical Dwarf does (256 vs
11,200 views). However in Section 6.2 we demonstrate that the
query performance for the Base Dwarf suffers significantly due to
the amount of online processing required. Since data warehouses
are typically bulk-loaded at specific time intervals, the superior
query performance of the Hierarchical Dwarf would be more de-
sirable in most applications where a significant amount of queries
and post-processing is performed.

Table 7 shows the number of tuples and the binary storage foot-
print (BSF) of the base cube (without hierarchies) and of the rollup
cube respectively. The BSF representation stores the cube in unin-
dexed binary relation [21] form. The presence of hierarchies sub-
stantially increases the cube size. In Table 8 we further compute the
compression ratios obtained by the Dwarf structures –for the Base
Dwarf the computation is over the size of the base cube– when
Gmin=1,000. We observe that the storage savings are even higher
for the Hierarchical Dwarf. We notice that in all structures the ratio
decreases with the size of the fact table, as the cube becomes more
dense and there is less opportunity for suffix coalescing. We note
that, unlike most multidimensional indexes that suffer with an in-
crease in the number of dimensions, in Dwarf the compression ratio
is increased with dimensionality because of the increased sparsity
of the resulting cube. We omit these experiments here and refer to
the evidence presented in [21].

As already demonstrated in [21] a value Gmin = 100− 1,000
provides significant savings in both space and computation time,

22

Base
Dwarf

Partial
Dwarfs

Hierarchical
Dwarf

Tuples Gmin Time Storage Time Storage Time Storage

134,280 1 10s 20MB 418s 1.2GB 145s 238MB
1,344,591 1 183s 157MB 3021s 6.38GB 1379s 1.4GB
2,690,181 1 386s 270MB 5479s 9.96GB 3155s 2.3GB
134,280 1,000 2s 9.5MB 158s 821MB 29s 84MB

1,344,591 1,000 45s 111MB 1847s 6.17GB 441s 872MB
2,690,181 1,000 95s 211MB 3947s 10.1GB 956s 1.65GB

Table 5: Computation/Storage Evaluation

Tuples Base Dwarf Partial Dwarf Hierarchical Dwarf

134,280 1s 286s 1s
1,344,591 10s 3160s 10s
2,690,181 34s 10221s 34s

Table 6: Sorting Evaluation

while exhibiting at the same time excellent query performance. In
this experiment we observed the same behavior, with the only ex-
ception being the case of the Partial Dwarfs, where the required
storage remains relatively unaffected. As mentioned in [21], the
part of the Dwarf in the coarse-grained areas can either be stored in
a tree-like fashion (to eliminate prefix redundancy), or as tuples to
avoid the overhead of the pointers. In the current implementation
we used the latter approach. As we can see from the results for
the Partial Dwarfs, the benefits of not calculating some aggregates
by using a larger Gmin value are balanced with the benefits when
eliminating prefix redundancy by using a small Gmin value. The
number of these areas is significantly larger in the Partial Dwarfs
case, where in all but the first Dwarf the opportunities for suffix
coalescing above the coarse-grained areas is significantly smaller,
due to the smaller number of views that are stored on average at
each partial Dwarf.

6.2 Query Performance Evaluation
In OLAP applications, the user typically performs a series of ex-

ploratory queries to identify areas of interest, and then drills down
(or rolls up) to more (or less) detailed data. A very common oper-
ation in this case, is to use a children(x) function to specify interest
to all the children for a given value x in a hierarchy level, and then
drill down to those children. For example, in a sample Timehier-
archy, the value of children(2003) could be the twelve months of
year 2003.

We used two workloads that try to emulate this behavior by gen-
erating queries that reference parts of the cube. The difference in
the two workloads lies in the amount of rollup/drilldown queries.
Workload A contains rollup/drilldown queries with a probability
1/2, i.e every other query is either a rollup or a drilldown query.
Workload B contains only random ad-hoc queries without any rollup
or drilldown queries. We believe that a real query workload lies
somewhere in the middle. Both workloads contained 1,000 queries
and their parameters are presented in Table 9.

Each query can be described as a path 〈DADB . . .DH〉, where
Di is a subpath that corresponds to dimension i and has the pat-
tern 〈li,1li,2...li,k〉, where li, j is the level j of dimension i. The
query specifies at each li, j either the pseudo-value ALL, or a set
of “points”. A point can either be a literal value of that level or all
the children values of a father value in the immediately higher level.
The column “ALL” represents the probability of Di not participat-
ing (being specified) in the query. In the case where Di participates,

Fact Table Full Rollup
Cube

Full Base
Cube

Tuples
Tuples

(billions)
BSF (GB)

Tuples
(billions)

BSF (GB)

134,280 16.9 12.2 0.565 0.45
1,344,591 109.8 65.8 2.9 3.1
2,690,181 189.9 124.7 5.4 5.2

Table 7: Full Cube Statistics

Fact Table
(Tuples)

Base
Dwarf

Partial
Dwarfs

Hierarchical
Dwarf

134,280 1:49 1:15 1:149
1,344,591 1:29 1:11 1:77
2,690,181 1:25 1:12 1:76

Table 8: Compression Ratio over corresponding Data Cube

a level li, j is uniformly chosen from all levels of Di , and a set of val-
ues is generated for that level. The “Width” column corresponds to
the number of values that are generated and in our case it is uni-
formly distributed over 5% of all possible values for the level. The
“Children” column corresponds to the probability of asking for the
children of a father value and in our case is 30%. The “DD/RU”
column depicts the probability for a Drill-Down or a Roll-Up query.
Such a query is created by rewriting appropriately the immediately
previous query.

Table 10 contains the results for workloads A and B over the
Base Dwarf, the Partial Dwarfs and the Hierarchical Dwarf. In
the Base Dwarf a lot of external aggregation is required for most
queries. The result is substantially slower query response times
compared to both Partial Dwarfs and the Hierarchical Dwarf. Par-
tial Dwarfs are faster than the Base Dwarf but require significantly
more space and time to compute.

The Hierarchical Dwarf significantly outperforms both the Base
Dwarf and the Partial Dwarfs, while requiring much less computa-
tion time and storage than Partial Dwarfs. Compared to the Base
Dwarf it offers 5− 24 times better query performance. This im-
provement in query performance is, as mentioned above, very im-
portant for data warehousing applications that receive a large num-
ber of queries.

The effect of having Drill-Down and Roll-Up queries is the same
overall for all storage techniques. Due to common paths being
buffered between such queries, all structures benefit from their ex-
istence [21]. This is more evident in the case of Partial Dwarfs, be-
cause their size is much larger than the available memory and they
can use all possible speedup from buffering. On the contrary, due
to lack of locality, random queries (workload B) that often access
different pages/Dwarfs are, proportionally, worse in Partial Dwarfs.

We also observe that the effect of Gmin = 1,000 in query per-
formance is beneficial for all techniques (similar to [21]) although
less materialization takes place, due to the reduced size of the con-
structed structures. The benefit is maximized for the Hierarchical

Probabilities
Workload Queries All DD/RU Children Width

A 1,000 60% 50% 30% 5%
B 1,000 60% 0% 30% 5%

Table 9: Workload parameters

23

Base
Dwarf

Partial
Dwarfs

Hierarchical
Dwarf

#Tuples Gmin A B A B A B

134,280 1 2m45s 3m06s 45s 57s 23s 30s
1,344,591 1 6m40s 7m00s 1m5s 2m50s 59s 1m15s
2,690,181 1 8m44s 8m53s 1m58s 4m05s 1m25s 1m49s
134,280 1,000 2m26s 2m46s 27s 44s 6s 7s

1,344,591 1,000 5m30s 6m17s 1m35s 1m50s 30s 36s
2,690,181 1,000 6m56s 7m18s 2m02s 2m22s 47s 56s

Table 10: Query Performance Evaluation

Dwarf, which exhibits the larger reduction in size when increasing
the value of Gmin.

7. CONCLUSIONS
We have presented two extensions to the Dwarf architecture for

the problem of managing data cubes that aggregate data over all
dimension hierarchies. The modified Dwarfs retain the main de-
sired characteristics of the Dwarf framework, namely the automatic
elimination of suffix and prefix redundancies. The Hierarchical
Dwarf is a fusion of the original Dwarf structure and the hierar-
chy schemata and in the experiments we have demonstrated that it
achieves substantially better query performance because it directly
stores all possible aggregates (in a very compact representation).
Thus, no post-processing of the results is required.

In addition, as is the case for the original Dwarf, we have demon-
strated that the proposed extensions are not limited to fully mate-
rialized cubes and that the amount of materialization can be con-
trolled through a single degree of freedom called granularity, offer-
ing a very efficient alternative to the problem of view selection. An
important observation we made is that the reduction in size and cre-
ation time of the Hierarchical Dwarf due to prefix and suffix elim-
ination (coalescing), is epitomized in rollup cubes because of the
correlation among aggregates of multiple hierarchies. For instance,
while the Basic Dwarf (without hierarchies) achieves a compres-
sion ratio of up to 1:49 in the real dataset we used, the savings are
up to 1:149 for the Hierarchical Dwarf.

8. REFERENCES
[1] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional

Samples for Approximate Answering of Group-By Queries.
In Proc. of ACM SIGMOD, pages 487–498, Dallas, Texas,
2000.

[2] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, and S. Sarawagi. On the
computation of multidimensional aggregates. In Proc. of
VLDB, pages 506–521, 1996.

[3] E. Baralis, S. Paraboschi, and E. Teniente. Materialized View
Selection in a Multidimensional Data base. In Proc. of
VLDB, pages 156–165, Athens, Greece, August 1997.

[4] K. Beyer and R. Ramakrishnan. Bottom-Up Computation of
Sparse and Iceberg CUBEs. In Proc. of ACM SIGMOD,
pages 359–370, Philadelphia, PA, USA, 1999.

[5] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. SIGMOD Record,
26(1), September 1997.

[6] P. Deshpande, S. Agarwal, J. Naughton, and
R. Ramakrishnan. Computation of multidimensional
aggregates. Technical Report 1314, University of Wisconsin
- Madison, 1996.

[7] M. Ester, J. Kohlhammer, and H.-P. Kriegel. The DC-Tree:
A Fully Dynamic Index Structure for Data Warehouses. In
Proc. of ICDE, pages 379–388, San Diego, California, 2000.

[8] L. Fu and J. Hammer. CUBIST: A New Algorithm for
Improving the Performance of Ad-hoc OLAP Queries. In
DOLAP, 2000.

[9] J. Gray, A. Bosworth, A. Layman, and H. Piramish. Data
Cube: A Relational Aggregation Operator Generalizing Gro
up-By, Cross-Tab, and Sub-Totals. In Proc. of ICDE, pages
152–159, New Orleans, February 1996. IEEE.

[10] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman.
Index Selection for OLAP. In Proc. of ICDE, pages
208–219, Burmingham, UK, April 1997.

[11] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing
Data Cubes Efficiently. In Proc. of ACM SIGMOD, pages
205–216, Montreal, Canada, June 1996.

[12] J. Hellerstein, P. Haas, and H. Wang. Online Aggregation. In
Proc. of ACM SIGMOD, pages 171–182, Tucson, Arizona,
May 1997.

[13] H. V. Jagadish, L. Lakshmanan, and D. Srivastava. What can
Hierarchies do for Data Warehouses? In Proc. of VLDB,
pages 530–541, Edinburgh, Scotland, September 1999.

[14] T. Johnson and D. Shasha. Some Approaches to Index
Design for Cube Forests. Data Engineering Bulletin,
20(1):27–35, March 1997.

[15] H. J. Karloff and M. Mihail. On the Complexity of the
View-Selection Problem. In Proc. of Symposium on
Principles of Database Systems, pages 167–173,
Philadelphia, Pennsylvania, May 1999.

[16] L. Lakshmanan, J. Pei, and Y. Zhao. QC-Trees: An Efficient
Summary Structure for Semantic OLAP. In Proc. of ACM
SIGMOD, pages 64–75, San Diego, California, 2003.

[17] K. A. Ross and D. Srivastana. Fast Computation of Sparse
Datacubes. In Proc. of VLDB, pages 116–125, Athens,
Greece, 1997.

[18] N. Roussopoulos. View Indexing in Relational Databases.
ACM Trans. Database Syst., 7(2):258–290, June 1982.

[19] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos.
Cubetree: Organization of and Bulk Incremental Updates on
the Data Cube. In Proc. ACM SIGMOD, pages 89–99,
Tucson, Arizona, May 1997.

[20] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the
data cube. Technical Report RJ10026, IBM Almaden
Research Center, San Jose, CA, 1996.

[21] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: Shrinking the PetaCube. In Proc. ACM
SIGMOD, pages 464–475, Madison, Wisconsin, 2002.

[22] D. Theodoratos and T. Sellis. Data Warehouse
Configuration. In Proc. of VLDB, pages 126–135, Athens,
Greece, August 1997.

[23] P. Vassiliadis and T. Sellis. A Survey of Logical Models for
OLAP Databases. SIGMOD Record, 28(4):64–69, 1999.

[24] J. Vitter, M. Wang, and B. Iyer. Data Cube Approximation
and Histograms via Wavelets. In Proc. of CIKM, 1998.

[25] W. Wang, H. Lu, J. Feng, and J. X. Yu. Condensed Cube: An
Effective Approach to Reducing Data Cube Size. In Proc. of
ICDE, 2002.

[26] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An
array-based algorithm for simultaneous multidimensional
aggregates. In Proc. of ACM SIGMOD, pages 159–170,
1997.

24

