

Hierarchical Dynamic Power Management Using Model-Free Reinforcement
Learning

Yanzhi Wang
1
, Maryam Triki

2
, Xue Lin

1
, Ahmed C. Ammari

23
, Massoud Pedram

1

1
Department of Electrical Engineering, University of Southern California, Los Angeles, CA USA

2
National Institute of the Applied Sciences and Technology (INSAT), Carthage University, Tunisia
3
Department of Elec. & Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: yanzhiwa@usc.edu

Abstract
Model-free reinforcement learning (RL) has become a

promising technique for designing a robust dynamic power

management (DPM) framework that can cope with

variations and uncertainties that emanate from hardware and

application characteristics. Moreover, the potentially

significant benefit of performing application-level

scheduling as part of the system-level power management

should be harnessed. This paper presents an architecture for

hierarchical DPM in an embedded system composed of a

processor chip and connected I/O devices (which are called

system components.) The goal is to facilitate saving in the

system component power consumption, which tends to

dominate the total power consumption. The proposed

(online) adaptive DPM technique consists of two layers: an

RL-based component-level local power manager (LPM) and

a system-level global power manager (GPM). The LPM

performs component power and latency optimization. It

employs temporal difference learning on semi-Markov

decision process (SMDP) for model-free RL, and it is

specifically optimized for an environment in which multiple

(heterogeneous) types of applications can run in the

embedded system. The GPM interacts with the CPU

scheduler to perform effective application-level scheduling,

thereby, enabling the LPM to do even more component

power optimizations. In this hierarchical DPM framework,

power and latency tradeoffs of each type of application can

be precisely controlled based on a user-defined parameter.

Experiments show that the amount of average power saving

is up to 31.1% compared to existing approaches.

Keywords
Dynamic power management, reinforcement learning,

Bayesian classification

1. Introduction
Dynamic power management (DPM), which refers to the

selective shut-off or slow-down of system components that

are idle or underutilized, has proven to be a particularly

effective way of reducing power dissipation at system level

[1]. Bona fide DPM frameworks should consider variations

that originate from process, voltage, and temperature (PVT)

variations as well as device aging, current stress, and

interconnect wear-out in the underlying hardware. They

should also account for workload type and intensity

variations. In addition, robust DPM frameworks must also

cope with sources of uncertainty in the system under their

control, e.g., inaccuracies in monitoring data about the

current state of the system. The sources of variability and

uncertainty tend to cause both the difficulty of determining

the current state of the system and predicting the next state

given DPM agent’s action, and the difficulty in determining

the reward rate of a chosen or contemplated action.

The DPM methods proposed in the literature [1]-[13] can

be broadly classified into three categories: ad hoc,

stochastic, and learning based methods. Ad hoc policies

[2][3] are based on the idea of predicting whether the next

idle period length is greater than the break-even time .

They perform well only when the requests are highly

correlated, and do not take system performance into account.

By modeling the request arrival times and device service

times as stationary stochastic processes, stochastic DPM

policies can take into account both power and performance.

They can also compute the exact solution for the

performance-constrained power optimization problem. In

[4], Benini et al. model a power-managed system as a

discrete-time Markov decision process (MDP) by assuming

that the service time of a request follows a geometric

distribution. Qiu et al. in [5] model a similar system by

using a continuous-time MDP. This in turn enables the

power manager (PM) to work in an event-driven manner,

thereby reducing the decision making overhead. Other

enhancements include time-indexed semi-MDP [6]. In all

the stochastic DPM approaches, request inter-arrival times

and system service times are modeled as stationary

processes that satisfy certain probability distributions. In

addition, an optimal policy for the given MDP can be found

only if we have knowledge of the state transition probability

function and reward function of the MDP. Reinforcement

learning is primarily concerned with how to obtain the

optimal policy for a MDP when such a model is not known a

priori. The DPM agent must interact with environment to

obtain information which, by means of an appropriate

algorithm, can be processed to produce an optimal policy.

Several recent work use machine learning for adaptive

policy optimization. Compared to ad hoc policies, machine

learning-based methods can simultaneously consider power

and performance, and perform well under various workload

conditions. In [7], an online policy selection algorithm is

proposed, which generates offline a set of DPM policies to

choose from. The effectiveness of the learning algorithm

depends heavily on DPM policy selection.

Tan et al. in [8] propose to use an enhanced Q-learning

algorithm for system-level DPM. This is a model-free RL

*This research is sponsored in part by a grant from the National
Science Foundation.

approach since the PM does not require prior knowledge of

the state transition probability function, while the knowledge

of the state and action spaces and also the reward function is

required. The Q-learning based DPM learns a policy online

by trying to learn which action is the best for a certain

system state, based on the reward or penalty received. In this

way the PM does not depend on any pre-designed experts,

and it can achieve a much wider range of power-latency

tradeoffs. However, this work is based on discrete-time

model of the stochastic process, and thus has large decision

making overhead. Therefore Wang et al. in [9] extend this

work to enable the PM to work in a continuous-time and

event-driven manner with fast convergence rate, by

exploiting the TD(λ) learning framework for semi-MDP

(SMDP) [14]. Moreover, workload prediction based on a

Bayesian classifier [16] is also incorporated in this work to

provide partial information about the state of the service

request (SR) generation so that the RL algorithm can work

effectively in a partially observable environment.

All of the above-mentioned DPM works have focused on

developing local component-level policies without

differentiating between the service request characteristics of

various software applications, and therefore, they have

ignored the potential benefit of performing application-level

scheduling as part of the system-level power management

[10]. Application-level scheduling requires the PM to have a

global view of the system architecture and work closely with

the operating system scheduler. These are beyond the

capabilities of the aforesaid DPM solutions. Therefore we

define and provide an effective solution for the hierarchical

power management problem by providing (i) an RL-based

local power manager (LPM) for the system component,

which is more effective and robust to variations and

uncertainties than that proposed in [9], and (ii) a system-

level global power manager (GPM), which performs

application-level scheduling, thereby enhancing the

component-level power optimizations.

A few research results related to the hierarchical power

management have been reported. Reference [11] uses a

similar system set-up as this paper, and provides optimal

solution for a computer system with self power-managed

components by assuming a continuous-time MDP model

given in advance for the power management system.

However, this assumption may not be realistic. Reference

[12] proposes a hierarchical adaptive DPM, where the term

“hierarchical” refers to the manner in which the authors

formulate the DPM policy optimization as a problem of

seeking an optimal rule that switches policies among a set of

pre-computed ones.

The contribution of this paper is twofold. First, we

enhance the RL-based DPM policy proposed in [9] for the

local component by improving the state and action spaces of

the RL algorithm, as well as making other improvements for

handling multiple types of user applications. Moreover, the

LPM still offers the following benefits: it is model-free,

independent of pre-designed policies, performs learning and

power management in a continuous-time and event-driven

manner, has fast convergence rate and less reliance on the

Markovian property, and is capable of performing precise

power-latency tradeoff based on a user-defined parameter.

Workload prediction based on online Bayesian classifier is

also incorporated to provide partial information about the

service request state for the LPM. The second part of our

contribution is the development of a GPM that performs

effective application-level scheduling, thereby, helping the

LPM achieve more component-level power optimizations.

The fairness issue related to distributing execution times

among various software applications is also taken care of by

the GPM. Experiments on measured data traces demonstrate

the superior performance of the proposed hierarchical power

management method compared with prior works [7][9].

2. Theoretical Background

2.1. Temporal Difference Learning for SMDP
In this section we provide a brief introduction of the

general RL framework and the RL algorithm proposed for

the LPM, named the TD() learning algorithm for SMDP.

As illustrated in Figure 1, the general RL model consists of

an agent, a finite state space , a set of available actions ,

and a reward function . A policy
 is a set of state-action pairs for all

states in the RL framework. We use notation to

specify the action chosen in state according to policy .

We consider the class of deterministic policies in this work.

Figure 1: Agent-environment interaction model.

Assume that the agent-environment interaction system is

continuous in time but has a countable number of events.

Then there exists a countable set of times

 , known as epochs. At epoch , system

has just transitioned to state . The agent selects an

action according to some policy . At time , the

agent finds itself in a new state , and, in the time period

 , it receives a scalar reward with rate .

We define the return as the discounted integral of

reward rate, whenever a selection of action is made by the

agent. Obviously, both the policy and the agent-environment

interaction model are assumed to be stationary for the

proper definition of the return . We define the value of a

state-action pair under a policy , denoted by

 , as the expected return when starting from state ,

choosing action (according to the policy), and following

 thereafter. An optimal policy is the one maximizing the

value functions for all state-action pairs.

For a realistic RL algorithm, the agent (power manager)

has no predefined policy or knowledge about state transition

characteristics (which are essential in the stochastic DPM

approaches.) Therefore the agent has to simultaneously learn

the optimal policy, and use that policy to control (make

decisions.) Traditional value iteration or policy iteration

methods cannot be applied here. Instead the temporal

difference (TD) learning method [15] for SMDP may be

used. Such method generates an estimate for each

state-action pair at epoch , which is the estimate of

the actual value following policy . Suppose that

state is visited at epoch , then at that epoch the agent

chooses an action either with the maximum estimated value

 for various actions , or by using other

semi-greedy policies [15]. Moreover, the TD learning rule

updates the estimate at the next epoch ,

based on the chosen action , and the next state .

Various TD learning algorithm implementations are

mainly different from one another by their updating

(evaluating) methods. We choose to use the TD() algorithm

for SMDP [14] due to a joint consideration of effectiveness,

robustness and convergence rate. More specifically, the

value update rule for a state-action pair at epoch in the

TD() algorithm for SMDP is computed as follows:

(

)
(1)

In the above expression, is the time that

system remains in state ; denotes the learning

rate; is the discount factor;

 is the sample

discounted reward received in time units;

is the estimated value of the state-action pair
 in

which is the actually occurring next state. Moreover, in

Eqn. (1) denotes the eligibility of each state-action

pair , to facilitate the implementation of the TD()

algorithm. Such eligibility reflects the degree to which the

state-action pair has been chosen in the recent past. It

is updated as follows:

 () (2)

where denotes the delta kronecker function.

2.2. Online Bayesian Classifier
Naïve Bayesian classifier is a generative classifying

technique using the idea of maximum a posteriori (MAP). It

is selected as the workload predictor in the proposed

hierarchical DPM framework because of its relatively high

prediction rate, as well as the fact that the partial

information it provides contains certain degree of certainty

due to the use of posterior probability. Given input feature

 , the classifier’s goal is to assign class

label from set for the output , by maximizing the

posterior probability :

(3)

where the denominator is the same for

every class assignment of .), which is the prior

probability that the class of is , can be calculated from the

training set. Hence, we only need
 , the conditional probability of seeing the input feature

vector given that the class of is .
A fundamental assumption of Bayesian classifier made is

that all input features are conditionally independent given

class , e.g., .

We have ∏ ,

and we compute the MAP class of as follows:

 ∏

 (4)

In the original algorithm, the prior and conditional

probabilities are obtained by performing Maximum

Likelihood estimation on the whole data set. However, in

this work we have to implement the predictor in an online

fashion. So when we observe a sequence of features

 and output , we

update the conditional and prior probabilities as follows:

(5)

where denote the updating rate parameters.

3. Hierarchical DPM Framework

Figure 2: Block diagram of the hierarchical DPM structure.

We consider a specific I/O device (component), e.g.,

hard disk, WLAN card, or USB devices, in a uni-processor

embedded system. Batches of applications keep running on

the system. When an application is running on the CPU, it

may send requests to the I/O device for services. It is also

required that each type of application gets a fair share of

CPU time over a long period of time. In this paper we shall

focus on reducing power consumption and finding a near-

optimal power-latency tradeoff of the I/O device in the

system. The architecture of the proposed hierarchical DPM

framework is presented in Figure 2. When the CPU is

running applications, it generates requests through a service

requestor (SR), and pushes the requests through a service

queue (SQ) if they have to wait for processing. The exact

generating time instances of service requests are not known

a priori. The component or service provider whose power is

being managed is denoted by SP in this figure.

Active Idle

Sleep

Transition to sleepTransition to active

Figure 3: State diagram of SP.

The service provider (SP) has three main states as shown

in Figure 3. It is in the active state while processing services,

and after it has finished, it becomes idle. The SP can

autonomously and instantaneously transit to active state as

soon as any task arrives. Unfortunately, the SP has non-zero

power consumption in idle state. It can, however, go to the

sleep state from the state. A sleeping SP consumes little

power compared to an idle one, but it suffers from large

wakeup latencies along with high power consumption

during the transition to active state. Our goal is to properly

schedule the sleep time for the SP in order to reach the

balance between latency and energy consumption.

 As shown in Figure 2, the proposed DPM framework

has two levels of PM. In the system level, the GPM acts as

the central controller which attempts to meet certain

performance (latency) constraint for the component while

minimizing the component power consumption. The GPM

works with the CPU scheduler to select the right

applications to run so as to reduce the component power

dissipation, while taking into account the fairness issues

among different types of applications. This decision is in

turn made based on the current state of the power

management system, including the state of the SP, the

number of requests waiting in the SQ, etc. Note that in this

architecture, the GPM cannot directly control the state

transition of the SP, and therefore performing application

scheduling is the method that the GPM uses to guide the

local PM policy and improve the power efficiency of the SP.

In the component level, the SP, i.e., the I/O device, is

controlled by the LPM. The LPM is based on the one

proposed in [9] using RL-based DPM algorithm, with both

enhancements on the state-action spaces of the RL

algorithm, as well as other enhancements for the hierarchical

power management framework. The LPM monitors the

current type of application running in the CPU, the number

of requests waiting in the SQ, the (estimated) current state of

SR (i.e., the service request generating rate), the current SP

state (active, idle, sleep, etc.), and consequently makes

decisions (adjusts the state of the SP.) There are two

decision points for the LPM: First, every time the SP transits

from active to idle state, the LPM will make a decision on

whether to let the SP go to sleep straightaway or set a

timeout. If a timeout is set and no requests arrive during this

period, the device will subsequently go to sleep. Second,

while SP is in the sleep state, the LPM decides whether or

not to wake up the SP based on the number of waiting

requests in the SQ. To be more realistic, we consider in this

work that the exact SR state cannot be directly obtained by

the LPM, and the LPM also has no prior knowledge of the

characteristics of the SR. Therefore, workload prediction has

to be incorporated to provide partial information

(estimation) of the SR state to the LPM so that the LPM can

effectively learn in the observation domain of SR. We adopt

the aforesaid online Bayesian predictor (BP) for workload

prediction, as shown in Figure 2.

4. Hierarchical DPM Algorithm
In this section, we explain how to extend RL techniques

to solve the hierarchical power management problem, in

three aspects: the workload prediction using online Bayesian

predictor, the LPM, and the GPM. We first introduce several

definitions and notations.

Suppose that the whole system begins operating at time

 , and we are currently at time instance . Suppose there are

 types of applications in the hierarchical framework, and

we let denote the type of application running

in the CPU at time . Furthermore, we use
 to denote the

actual generation time (AGT), i.e., the actual time instance

that such request is generated by the SR, of the j
th

 request of

the i
th

 type of application. Then the application-specific

generation time (ASGT) of the j
th

 request of the i
th

 type of

application, denoted by
 , is defined by the following:

 ∫]

 (6)

where] is the indicator function which equals to one if

the Boolean variable is true, and otherwise equals to zero.

Finally, the application-specific inter-arrival time (AIAT) of

two consecutive service requests, say, the j
th

 and the (j+1)
st
,

of the i
th

 type of application, is given by

 .

4.1. Online Bayesian Predictor
The proposed system relies on workload prediction

method to provide partial observation of the actual SR state

for the LPM. Previous work on workload prediction in

[2][3] assumes that a linear combination of previous idles

times (or request inter-arrival times) may be used to infer the

future ones, which is not always true. For example, one very

long inter-arrival time can ruin a set of subsequent

predictions. Thus an online naïve Bayesian classifier, which

can overcome the above effect and result in much higher

prediction accuracy, is adopted as the workload predictor.

We use online Bayesian predictors, each

corresponding to a specific type of application. Consider a

specific i
th

 Bayesian predictor corresponding to the i
th

application type. We use characteristics of the previous

request AIATs of the i
th

 type of application as the input

feature , in which if the

corresponding interval length is greater than the break-even

time ; otherwise . The output is the prediction

whether or not the next AIAT is greater than . In real

implementations, we use three output states “long, short, and

unknown”. We predict the next AIAT to be “unknown” if

the difference between the posterior probabilities that the

next AIAT is long and that it is short is less than a

predefined parameter .

4.2. The Local Power Manager

Figure 4: Component model and local power manager.

The component whose power is being managed by LPM

is shown in Figure 4. Suppose that we are currently at time

 , and the i
th

 type of application is running. We assume that

 ∫]

 (7)

Then the state parameters at time of the power managed

component monitored by the LPM are the following four:

 The type of application running in CPU, i.e.,

 .

 The SP state , which is the component power state

(active, idle, sleep, etc.).

 The SQ state , which is the number of requests in

the SQ.

 The estimated SR state, which is represented in this

paper by the estimation (long, short, unknown, etc.) on

the AIAT

 of the i
th

 type of application from

the i
th

 online Bayesian predictor.

To apply RL techniques in the LPM, we define decision

epochs, i.e., when new decisions can be made and updates

for RL algorithm can be executed. In our case, the decision

epochs coincide with one of the following three cases:

1. The SP entered idle state (= idle) and = 0.

2. The SP has just entered the sleep state and finds that

 > 0.

3. The SP is in sleep state and a new request arrives.

We further denote the k
th

 decision epoch of the i
th

 type of

application by
 . There are mainly two types of decision

epochs. If at decision epoch
 , we have

 = idle and

 = 0 (case 1), we call the decision epoch

 an idle-

state decision epoch, denoted by
 . On

the other hand, if at decision epoch
 , we have

 =

sleep (case 2 or case 3), we call decision epoch
 a sleep-

state decision epoch, denoted by
 .

In this work we adopt a more general power management

framework in which each type of application may have its

own performance degradation constraint (which implies that

different types of applications may have different

constraints), defined as the constraint on the average latency

per request of that specific type of application. Therefore the

proposed DPM framework should minimize the average

component power consumption for each type of application,

while satisfying its performance degradation constraint.

Note that this requirement cannot be satisfied in the

reference machine learning based DPM works [7][8][9]. In

this paper, we should be able to control the power-latency

tradeoff of each type of application separately, in order to

satisfy the requirement. Therefore, it necessitates the

following constraint on CPU scheduling: Application type

switch, i.e., the changing of application type running in the

CPU, can only occur at idle-state decision epochs of the

RL algorithm used in the LPM.

Due to the previous CPU scheduling constraint, we “split”

each decision epoch
 into two sub-decision epochs

and
 . We assume that at sub-decision epoch

 ,

decisions are made by the RL algorithm used in the LPM;

while at sub-decision epoch
 , updates in the RL

algorithm are executed. We have

 , i.e., at each

decision epoch, updates are performed first and

subsequently new decisions are made. Due to the previous

CPU scheduling constraint, no application type switch can

happen within the time period

 . Or equivalently,

there are no other sub-decision epochs of any type of

application within the time period

 .

Suppose that we are now at sub-decision epoch
 , and

the LPM makes a decision and issues a command to execute

it. Due to the previous assumption of the CPU scheduler,

there will be no application type switch until the next sub-

decision epoch
 , which belongs to the same type of

application (the i
th

 type) as the sub-decision epoch
 .

Then at sub-decision epoch
 , updates in the RL

algorithm are performed. The CPU scheduler may choose to

switch the application type at time
 , if

 . If no application type switch

happens at that sub-decision epoch
 , we have

 , and new decisions are made again at sub-decision

epoch
 . On the other hand, if application type switch

happens at sub-decision epoch
 , and the CPU scheduler

decides to switch to application type , then we have

 , assuming that the most recent sub-decision

epoch of application type is
 (in fact at that sub-

decision epoch
 the CPU scheduler switches the

application type from to another type.) Note that since

 is possible,
 does not represent an actual time

instance in the rest of the paper.

In the TD() algorithm used in the LPM, at each decision

epoch
 the system (component) should be in one

particular state (used for making decisions and value

updating), denoted by
 . We call it the RL state. Note

that here we use
 for convenience in notations, without

differentiating between sub-decision epochs
 and

 .

This simplification in notation is valid since all component

state parameters, including the type of application, the SP

state, the SQ state, and the estimated SR state, are the same

at sub-decision epochs
 and

 . We use

∫]

 to denote either

∫]

 or ∫

] , since the latter two values are equal. Obviously the RL

state can be characterized by the SP power state (idle, active,

sleep), as well as other system state parameters. We discuss

about the classification of RL states in detail in the

following two definitions.

Definition 1: The 1
st
 class of RL state:

We define that the RL state at decision epoch
 ,

denoted by
 , belongs to the 1

st
 class of RL state if

 (i.e.,

 is an idle-state decision

epoch.) We assume that

 ∫]

 (8)

We know that at that decision epoch
 ,

 = idle and

 = 0. Then the RL states belonging to the 1

st
 class

are further categorized by the estimated SR state from the i
th

online Bayesian predictor, which is, in fact, the estimation of

the AIAT

 .

Definition 2: The 2
nd

 class of RL state:

We define that the RL state at decision epoch
 ,

denoted by
 , belongs to the 2

nd
 class of RL state if

 (i.e.,

 is a sleep-state decision

epoch.) We still make the assumption in Eqn. (8). We know

that at decision epoch
 ,

 = sleep. Then the RL

states belonging to the 2
nd

 class are further categorized by (i)

the estimated SR state from the i
th

 Bayesian predictor, and

(ii) the
 value, i.e., the number of requests waiting in

the SQ at decision epoch
 .

We only consider the
 value in the range

 , where is a predefined

maximum
 value. This is because that if (

)

 , the only possible action chosen by the LPM at

decision epoch
 would be turning the SP on to the active

state to process requests. On the other hand, if (
) ,

the only possible action chosen by the LPM would be

keeping the SP in the sleep state until next request comes.

The action space for RL states belonging to the 1
st
 class,

denoted by , is given by
 , where those actions

correspond to different timeout values. Among those

actions, corresponds to “immediate shut-down”. Note

that as pointed out in reference [7], the optimal policy when

the SP is idle for non-Markov environments is often a

timeout policy, wherein the SP is put to sleep if it is idle for

more than a specific timeout period. The proposed LPM in

this work learns to choose the optimal action among action

set by using a RL technique. Finally, the action space for

the RL states belonging to the 2
nd

 class, denoted by , is

given by , i.e., there are two

possible actions in these RL states: keeping the SP in the

sleep state until the next request comes, or going active to

process the requests buffered in the SQ.

In this work, we use “cost rate” instead of “reward rate”

in the RL algorithm, which can be treated in the similar way.

The cost rate is a linearly-weighted combination of power

consumption and the number of requests buffered in the SQ.

It can be proved [5] that this is a reasonable cost rate, in that

the value function we seek to minimize for each state-action

pair is equivalent to a linearly-weighted combination of the

expected average discounted power consumption and

latency per request. The relative weight between average

power and per-request latency for each type of application

may be different, reflecting the (may be) different

performance degradation constraint for each type of

application. Furthermore, such relative weight can be

changed to obtain the Pareto-optimal power-latency tradeoff

curve. Suppose that the i
th

 type of application is running in

CPU at time instance . We use to denote the cost

rate at that time, given by
 , where is the relative weight between the power

consumption and the number of requests buffered in the SQ

for the i
th

 type of application, and is the component

power consumption at time .

An outline of the proposed RL-based LPM algorithm is

given as follows. Suppose that we are now at sub-decision

epoch
 (which implies that application type i is running

in the CPU), and the system (component) is in RL state

 . Then at that sub-decision epoch

 in the proposed

algorithm, the LPM maintains value estimates

 for

each application type i, each RL state , and each action

 , in which denotes which particular

class of RL states (the 1
st
 or 2

nd
) the RL state is in. Then at

sub-decision epoch
 , the values estimates

 of

all state-action pairs are updated, according to the

TD() updating rule given in (1).

4.3. The Global Power Manager

time

time

A1 A1A2 A2

0

0

SR trace

SP state

time

time

A1 A1A2 A2

0

0

SR trace

SP state

(a) without application scheduling

(b) with application scheduling

A1

Figure 5: An example showing the effectiveness of

application-level scheduling.

In this section we begin with a motivation example,

showing the potential effectiveness of application type

scheduling, as shown in Figure 5. Let us consider a system

in which there are two application types A1 and A2. The SP

can accurately predict the generation time of the next service

request. When the SP finishes processing requests and enters

the idle state, it will go to sleep as long as the time until the

next request is generated is more than . Otherwise it will

remain in the idle state waiting for the next request. The SP

wakes up from the sleep state as soon as a service request is

generated. Two execution sequences have been considered.

In the first sequence, there is no application scheduling.

Each application is alternatively executed for exactly one

unit of time. In the second sequence, we perform application

scheduling that as long as one service request of application

type A1 has been generated and serviced (note that the SP

becomes idle at this time), we switch to application type A2,

and we switch back to A1 when the second request of

application type A2 has been generated and serviced. As

shown in Figure 5, typically the service time for a request in

the SP (e.g., HDD, WLAN card) is much shorter than the

time taken in transitioning to and from the sleep state. It can

be observed that the service requests are “grouped together”

when using application-level scheduling, and thus both the

power efficiency and performance are improved (i.e., the

component sleeping time is maximized.) The application-

level scheduling technique used in Figure 5 (b), in which

application type switch can happen only when the

component is in the idle state, coincides with the CPU

scheduling constraint stated in Section 4.2 that application

type switch can only occur at idle-state decision epochs of

the RL algorithm. It is validated using real traces that the

application-level scheduling technique can improve both the

power efficiency and performance by reducing the number

of transitions to and from the sleep state.

We also consider the fairness issues among different

types of applications in the application scheduling

algorithm, which could satisfy the requirement of allocating

a fair share of CPU execution time for each type of

application. More formally, we impose a fairness constraint

among different types of applications as follows. We use

 to denote the whole application type

pool. For the i
th

 () type of application, we use

 to denote the total CPU occupying time

of such type of application starting from time (i.e., the

system starting time) until the current time . The fairness

constraint states that each i
th

 () type of application

cannot, on average, occupy more than percentage of the

total CPU execution time, i.e.,

 (9)

Algorithm 1 presents the proposed CPU scheduling

algorithm considering the fairness issue among different

types of applications. In the proposed algorithm each i
th

() type of application maintains and updates a

value . Suppose that we are currently at sub-

decision epoch
 (which implies that the i

th
 type of

application is currently running in the CPU.) Recall that

application type switch can only occur at the idle-state sub-

decision epochs. Then the proposed scheduling algorithm

goes as follows:

5. Experimental Results

We present simulation results with the hierarchical DPM

algorithm on a wireless adapter card (WLAN) card. Table 1

lists the power and delay characteristics of that device. In

this table is the time taken in transitioning to and from

the sleep state while is the energy consumption in

waking up the device. refers to the break even time.

Table 1: Power and delay characteristics of WLAN card.

1.6 W 1.2 W 0.90 W 0 W* 0.9 J 0.3 s 0.7 s

*The WLAN card is turned off.

For the baseline systems we use the RL-based DPM [9],

as well as the expert-based DPM [7]. Three policies are

adopted as experts in the expert-based DPM: fixed timeout

policy, adaptive timeout policy, and exponential predictive

policy [3], as shown in Table 2.

Table 2: Characteristics of the expert-based policy.

Expert Characteristics

Fixed Timeout Timeout = any value

Adaptive Timeout Initial Timeout = , adjustment = ±0.1
Exponential Predictive ,

For the WLAN card, we have measured several real

traces using the tcpdump utility in Linux, including a 45-

minute trace for online video watching, a 2-hour trace for

web surfing, and a 6-hour trace for a combination of web

surfing, online chatting and server accessing. The correct

prediction rates of the Bayesian predictor are 99.2% for the

video trace, 79.8% for the web trace, and 82.8% for the

combined trace.

We first compare the effectiveness of the proposed LPM

(without considering the application-level scheduling issues)

with the baseline DPM algorithms [7][9]. We conduct

simulation using only one type of application with service

request trace given by the 6-hour combined trace, similar to

the experimental setups in the reference works [7][9]. Figure

6 gives the power and latency tradeoff curves achieved by

the proposed LPM, the RL-based DPM proposed in [9], as

well as three different expert-based DPM algorithms. The

timeout values of the fixed timeout expert in those three

algorithms are set to be , , and ,

respectively. We can see from Figure 6 that the proposed

RL-based LPM method has a wider power-latency tradeoff

range, especially when compared with the expert-based

DPM algorithm. Even with the same latency, the proposed

RL-based LPM achieves lower power consumption than the

baseline algorithms (both the RL-based DPM algorithm and

the expert-based DPM algorithm.) The improvement of the

proposed RL-based LPM over the baseline RL-based DPM

method proposed in [9] is mainly on state and action spaces,

when only one type of application is running in the CPU.

We further compare the effectiveness of the proposed

RL-based hierarchical DPM framework with baseline DPM

algorithms when multiple types of applications can run in

the embedded system. We consider two types of

applications, with service request traces given by the

combined trace and the web surfing trace (we duplicate this

trace so that it becomes a 4-hour trace), respectively. We

name them the 1
st
 and the 2

nd
 types of applications,

respectively. The ratio of the total CPU occupying time of

these two types of applications should be 3:2. In the baseline

systems, we use a simple application type switch technique,

in which we switch from the 1
st
 type to the 2

nd
 type of

application after the 1
st
 type of application running in the

CPU for 1 s, and we switch back after 0.67 s. Besides, the

DPM algorithms in the baseline systems are ignorant of the

application type information. In the proposed RL-based

Algorithm 1: The CPU Scheduling Algorithm Considering

the Fairness Issue.

At the sub-decision epoch
 :

 (

)

 , in which denotes the delta kronecker function.

If
 :

If (
)

 (in which is a

predefined threshold value for CPU execution time):

Find application type with the minimum

 value.

Perform application type switch from type to type .

Then we arrive at sub-decision epoch
 , with

 , assuming that the most recent sub-

decision epoch of application type is
 .

End

End

If no application type switch happens, we arrive at sub-

decision epoch
 .

hierarchical DPM framework, we can use one user-defined

parameter to control the power-latency tradeoff for each

type of application, independent of the other type of. In

contrast, we can only control the power-latency tradeoffs of

the two types of applications together in the baseline

systems, without the ability of controlling them separately.

Figure 7 gives the overall power and latency tradeoff

curves achieved by the proposed hierarchical DPM

framework, as well as the baseline systems. We can see

from Figure 7 that the proposed hierarchical DPM

framework consistently outperforms baseline systems. The

maximum power saving with the same average latency is

31.1%, while the maximum amount of latency reduction

without any power consumption increase is up to 41.8%,

compared with the baseline systems. The Pareto superior

performance of the hierarchical DPM framework compared

with baseline systems is mainly due to (i) the more robust

LPM specifically optimized for handling multiple types of

applications, and (ii) the exploitation of the potential benefit

of application-level scheduling.

Figure 6: Comparison between the power-latency tradeoff

curves of the 1
st
 type of application (the combined trace.)

Figure 7: Comparison between overall power-latency

tradeoff curves of the two types of applications.

6. Conclusion
In this paper an architecture for hierarchical DPM to

facilitate component power minimization in an embedded

system has been proposed. The proposed (online) adaptive

hierarchical DPM framework consists of (i) a component-

level LPM which adopts model-free RL to effectively cope

with variations and uncertainties emanated from hardware

and application characteristics, and (ii) a system-level GPM

for exploiting the potentially significant benefit of

performing application-level scheduling on the component

power optimization. In the hierarchical DPM framework,

power and latency tradeoffs of each type of application can

be precisely controlled based on a user-defined parameter.

Experimental results demonstrate that the proposed

hierarchical DPM framework achieves an evenly distributed

power and latency tradeoff curve, which is Pareto superior

to the power and latency tradeoff curves achieved by

baseline DPM algorithms.

7. References
[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey

of design techniques for system level dynamic power

management,” IEEE Trans. on VLSI Systems, 2000.

[2] M. Srivastava, A. Chandrakasan, and R. Brodersen,

“Predictive system shutdown and other architectural

techniques for energy efficient programmable

computation,” IEEE Trans. on VLSI, 1996.

[3] C. H. Hwang and A. C. Wu, “A predictive system

shutdown method for energy saving of event-driven

computation,” in ICCAD ’97.

[4] L. Benini, G. Paleologo, A. Bogliolo, and G. De

Micheli, “Policy optimization for dynamic power

management,” IEEE Trans. on CAD, Vol. 18, pp. 813-

833, Jun. 1999.

[5] Q. Qiu and M. Pedram, “Dynamic power management

based on continuous-time Markov decision process,”

in DAC ’99.

[6] T. Simunic, L. Benini, P. Glynn, and G. De Micheli,

“Event-driven power management,” IEEE Trans. on

CAD, 2001.

[7] G. Dhiman and T. Simunic Rosing, “Dynamic power

management using machine learning,” in ICCAD ’06,

pp. 747-754, Nov. 2006.

 [8] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power

management using reinforcement learning,” in

ICCAD ’09, pp. 461-467, Nov. 2009.

[9] Y. Wang, Q. Xie, A. Ammari, and M. Pedram,

“Deriving a near-optimal power management policy

using model-free reinforcement learning and Bayesian

classification,” in DAC ’11, pp. 875-878, Jun. 2011.

[10] Y-H. Lu, L. Benini, and G. De Micheli, “Power-aware

operating systems for interactive systems,” IEEE

Trans. VLSI System, Apr. 2002.

[11] P. Rong and M. Pedram, “Hierarchical power

management with application to scheduling,” in

ISLPED ’05, pp. 269-274, Aug. 2005.

[12] Z. Ren, B. H. Krogh, and R. Marculescu, “Hierarchical

adaptive dynamic power management,” DATE ’03.

[13] T. Simunic and S. Boyd, “Managing power

consumption in networks on chips,” in DATE ’02.

[14] S. Bradtke and M. Duff, “Reinforcement learning

methods for continuous-time Markov decision

problems,” in Advances in Neural Information

Processing Systems 7, pp. 393-400, MIT Press, 1995.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, MIT Press, Cambridge, MA, 1998.

[16] C. M. Bishop, Pattern Recognition and Machine

Learning, Springer, August 2006.

