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Abstract 
Model-free reinforcement learning (RL) has become a 

promising technique for designing a robust dynamic power 

management (DPM) framework that can cope with 

variations and uncertainties that emanate from hardware and 

application characteristics. Moreover, the potentially 

significant benefit of performing application-level 

scheduling as part of the system-level power management 

should be harnessed. This paper presents an architecture for 

hierarchical DPM in an embedded system composed of a 

processor chip and connected I/O devices (which are called 

system components.) The goal is to facilitate saving in the 

system component power consumption, which tends to 

dominate the total power consumption. The proposed 

(online) adaptive DPM technique consists of two layers: an 

RL-based component-level local power manager (LPM) and 

a system-level global power manager (GPM). The LPM 

performs component power and latency optimization. It 

employs temporal difference learning on semi-Markov 

decision process (SMDP) for model-free RL, and it is 

specifically optimized for an environment in which multiple 

(heterogeneous) types of applications can run in the 

embedded system. The GPM interacts with the CPU 

scheduler to perform effective application-level scheduling, 

thereby, enabling the LPM to do even more component 

power optimizations. In this hierarchical DPM framework, 

power and latency tradeoffs of each type of application can 

be precisely controlled based on a user-defined parameter. 

Experiments show that the amount of average power saving 

is up to 31.1% compared to existing approaches.  

Keywords 
Dynamic power management, reinforcement learning, 

Bayesian classification 

1. Introduction 
Dynamic power management (DPM), which refers to the 

selective shut-off or slow-down of system components that 

are idle or underutilized, has proven to be a particularly 

effective way of reducing power dissipation at system level 

[1]. Bona fide DPM frameworks should consider variations 

that originate from process, voltage, and temperature (PVT) 

variations as well as device aging, current stress, and 

interconnect wear-out in the underlying hardware. They 

should also account for workload type and intensity 

variations. In addition, robust DPM frameworks must also 

cope with sources of uncertainty in the system under their 

control, e.g., inaccuracies in monitoring data about the 

current state of the system. The sources of variability and 

uncertainty tend to cause both the difficulty of determining 

the current state of the system and predicting the next state 

given DPM agent’s action, and the difficulty in determining 

the reward rate of a chosen or contemplated action. 

The DPM methods proposed in the literature [1]-[13] can 

be broadly classified into three categories: ad hoc, 

stochastic, and learning based methods. Ad hoc policies 

[2][3] are based on the idea of predicting whether the next 

idle period length is greater than the break-even time    . 

They perform well only when the requests are highly 

correlated, and do not take system performance into account. 

By modeling the request arrival times and device service 

times as stationary stochastic processes, stochastic DPM 

policies can take into account both power and performance. 

They can also compute the exact solution for the 

performance-constrained power optimization problem. In 

[4], Benini et al. model a power-managed system as a 

discrete-time Markov decision process (MDP) by assuming 

that the service time of a request follows a geometric 

distribution. Qiu et al. in [5] model a similar system by 

using a continuous-time MDP. This in turn enables the 

power manager (PM) to work in an event-driven manner, 

thereby reducing the decision making overhead. Other 

enhancements include time-indexed semi-MDP [6]. In all 

the stochastic DPM approaches, request inter-arrival times 

and system service times are modeled as stationary 

processes that satisfy certain probability distributions. In 

addition, an optimal policy for the given MDP can be found 

only if we have knowledge of the state transition probability 

function and reward function of the MDP. Reinforcement 

learning is primarily concerned with how to obtain the 

optimal policy for a MDP when such a model is not known a 

priori. The DPM agent must interact with environment to 

obtain information which, by means of an appropriate 

algorithm, can be processed to produce an optimal policy. 

Several recent work use machine learning for adaptive 

policy optimization. Compared to ad hoc policies, machine 

learning-based methods can simultaneously consider power 

and performance, and perform well under various workload 

conditions. In [7], an online policy selection algorithm is 

proposed, which generates offline a set of DPM policies to 

choose from. The effectiveness of the learning algorithm 

depends heavily on DPM policy selection. 

Tan et al. in [8] propose to use an enhanced Q-learning 

algorithm for system-level DPM. This is a model-free RL 
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approach since the PM does not require prior knowledge of 

the state transition probability function, while the knowledge 

of the state and action spaces and also the reward function is 

required. The Q-learning based DPM learns a policy online 

by trying to learn which action is the best for a certain 

system state, based on the reward or penalty received. In this 

way the PM does not depend on any pre-designed experts, 

and it can achieve a much wider range of power-latency 

tradeoffs. However, this work is based on discrete-time 

model of the stochastic process, and thus has large decision 

making overhead. Therefore Wang et al. in [9] extend this 

work to enable the PM to work in a continuous-time and 

event-driven manner with fast convergence rate, by 

exploiting the TD(λ) learning framework for semi-MDP 

(SMDP) [14]. Moreover, workload prediction based on a 

Bayesian classifier [16] is also incorporated in this work to 

provide partial information about the state of the service 

request (SR) generation so that the RL algorithm can work 

effectively in a partially observable environment. 

All of the above-mentioned DPM works have focused on 

developing local component-level policies without 

differentiating between the service request characteristics of 

various software applications, and therefore, they have 

ignored the potential benefit of performing application-level 

scheduling as part of the system-level power management 

[10]. Application-level scheduling requires the PM to have a 

global view of the system architecture and work closely with 

the operating system scheduler. These are beyond the 

capabilities of the aforesaid DPM solutions. Therefore we 

define and provide an effective solution for the hierarchical 

power management problem by providing (i) an RL-based 

local power manager (LPM) for the system component, 

which is more effective and robust to variations and 

uncertainties than that proposed in [9], and (ii) a system-

level global power manager (GPM), which performs 

application-level scheduling, thereby enhancing the 

component-level power optimizations. 

A few research results related to the hierarchical power 

management have been reported. Reference [11] uses a 

similar system set-up as this paper, and provides optimal 

solution for a computer system with self power-managed 

components by assuming a continuous-time MDP model 

given in advance for the power management system. 

However, this assumption may not be realistic. Reference 

[12] proposes a hierarchical adaptive DPM, where the term 

“hierarchical” refers to the manner in which the authors 

formulate the DPM policy optimization as a problem of 

seeking an optimal rule that switches policies among a set of 

pre-computed ones. 

The contribution of this paper is twofold. First, we 

enhance the RL-based DPM policy proposed in [9] for the 

local component by improving the state and action spaces of 

the RL algorithm, as well as making other improvements for 

handling multiple types of user applications. Moreover, the 

LPM still offers the following benefits: it is model-free, 

independent of pre-designed policies, performs learning and 

power management in a continuous-time and event-driven 

manner, has fast convergence rate and less reliance on the 

Markovian property, and is capable of performing precise 

power-latency tradeoff based on a user-defined parameter. 

Workload prediction based on online Bayesian classifier is 

also incorporated to provide partial information about the 

service request state for the LPM. The second part of our 

contribution is the development of a GPM that performs 

effective application-level scheduling, thereby, helping the 

LPM achieve more component-level power optimizations. 

The fairness issue related to distributing execution times 

among various software applications is also taken care of by 

the GPM. Experiments on measured data traces demonstrate 

the superior performance of the proposed hierarchical power 

management method compared with prior works [7][9]. 

2. Theoretical Background 

2.1. Temporal Difference Learning for SMDP 
In this section we provide a brief introduction of the 

general RL framework and the RL algorithm proposed for 

the LPM, named the TD( ) learning algorithm for SMDP. 

As illustrated in Figure 1, the general RL model consists of 

an agent, a finite state space  , a set of available actions  , 

and a reward function        . A policy   
                is a set of state-action pairs for all 

states in the RL framework. We use notation        to 

specify the action chosen in state   according to policy  . 

We consider the class of deterministic policies in this work. 

 
Figure 1: Agent-environment interaction model. 

Assume that the agent-environment interaction system is 

continuous in time but has a countable number of events. 

Then there exists a countable set of times 

                 , known as epochs. At epoch   , system 

has just transitioned to state     . The agent selects an 

action      according to some policy  . At time     , the 

agent finds itself in a new state     , and, in the time period 

         , it receives a scalar reward with rate   . 

We define the return   as the discounted integral of 

reward rate, whenever a selection of action is made by the 

agent. Obviously, both the policy and the agent-environment 

interaction model are assumed to be stationary for the 

proper definition of the return  . We define the value of a 

state-action pair       under a policy  , denoted by 

       , as the expected return when starting from state  , 

choosing action   (according to the policy  ), and following 

  thereafter. An optimal policy is the one maximizing the 

value functions         for all state-action       pairs. 

For a realistic RL algorithm, the agent (power manager) 

has no predefined policy or knowledge about state transition 

characteristics (which are essential in the stochastic DPM 

approaches.) Therefore the agent has to simultaneously learn 

the optimal policy, and use that policy to control (make 

decisions.) Traditional value iteration or policy iteration 

methods cannot be applied here. Instead the temporal 



 

 

difference (TD) learning method [15] for SMDP may be 

used. Such method generates an estimate           for each 

state-action pair       at epoch   , which is the estimate of 

the actual value         following policy  . Suppose that 

state    is visited at epoch   , then at that epoch the agent 

chooses an action either with the maximum estimated value 

           for various actions    , or by using other 

semi-greedy policies [15]. Moreover, the TD learning rule 

updates the estimate             at the next epoch     , 

based on the chosen action   , and the next state     . 

Various TD learning algorithm implementations are 

mainly different from one another by their updating 

(evaluating) methods. We choose to use the TD( ) algorithm 

for SMDP [14] due to a joint consideration of effectiveness, 

robustness and convergence rate. More specifically, the 

value update rule for a state-action pair at epoch      in the 

TD( ) algorithm for SMDP is computed as follows: 

                                                 

(
       

 
            

  
                

              ) 
(1) 

In the above expression,            is the time that 

system remains in state   ;         denotes the learning 

rate;   is the discount factor; 
       

 
         is the sample 

discounted reward received in    time units;            
   

is the estimated value of the state-action pair        
   in 

which      is the actually occurring next state. Moreover, in 

Eqn. (1)           denotes the eligibility of each state-action 

pair      , to facilitate the implementation of the TD( ) 

algorithm. Such eligibility reflects the degree to which the 

state-action pair       has been chosen in the recent past. It 

is updated as follows: 

                               (             ) (2) 

where        denotes the delta kronecker function. 

2.2. Online Bayesian Classifier 
Naïve Bayesian classifier is a generative classifying 

technique using the idea of maximum a posteriori (MAP). It 

is selected as the workload predictor in the proposed 

hierarchical DPM framework because of its relatively high 

prediction rate, as well as the fact that the partial 

information it provides contains certain degree of certainty 

due to the use of posterior probability. Given input feature 

              , the classifier’s goal is to assign class 

label   from set   for the output  , by maximizing the 

posterior probability                     : 

           
 

                     

                 
 

                              

                
 

(3) 

where the denominator                  is the same for 

every class assignment of  .         ), which is the prior 

probability that the class of   is  , can be calculated from the 

training set. Hence, we only need                   
  , the conditional probability of seeing the input feature 

vector   given that the class of   is  . 
A fundamental assumption of Bayesian classifier made is 

that all input features are conditionally independent given 

class  , e.g.,                                     . 

We have                      ∏              , 

and we compute the MAP class of   as follows: 

           
 

          ∏             

 

   

 (4) 

In the original algorithm, the prior and conditional 

probabilities are obtained by performing Maximum 

Likelihood estimation on the whole data set. However, in 

this work we have to implement the predictor in an online 

fashion. So when we observe a sequence of features 

                      and output    , we 

update the conditional and prior probabilities as follows: 

              
                                       

                            
(5) 

where           denote the updating rate parameters. 

3. Hierarchical DPM Framework 

 
Figure 2: Block diagram of the hierarchical DPM structure. 

We consider a specific I/O device (component), e.g., 

hard disk, WLAN card, or USB devices, in a uni-processor 

embedded system. Batches of applications keep running on 

the system. When an application is running on the CPU, it 

may send requests to the I/O device for services. It is also 

required that each type of application gets a fair share of 

CPU time over a long period of time. In this paper we shall 

focus on reducing power consumption and finding a near-

optimal power-latency tradeoff of the I/O device in the 

system. The architecture of the proposed hierarchical DPM 

framework is presented in Figure 2. When the CPU is 

running applications, it generates requests through a service 

requestor (SR), and pushes the requests through a service 

queue (SQ) if they have to wait for processing. The exact 

generating time instances of service requests are not known 

a priori. The component or service provider whose power is 

being managed is denoted by SP in this figure. 

Active Idle

Sleep

Transition to sleepTransition to active

 
Figure 3: State diagram of SP. 

The service provider (SP) has three main states as shown 

in Figure 3. It is in the active state while processing services, 

and after it has finished, it becomes idle. The SP can 

autonomously and instantaneously transit to active state as 

soon as any task arrives. Unfortunately, the SP has non-zero 

power consumption in idle state. It can, however, go to the 



 

 

sleep state from the state. A sleeping SP consumes little 

power compared to an idle one, but it suffers from large 

wakeup latencies along with high power consumption 

during the transition to active state. Our goal is to properly 

schedule the sleep time for the SP in order to reach the 

balance between latency and energy consumption. 

 As shown in Figure 2, the proposed DPM framework 

has two levels of PM. In the system level, the GPM acts as 

the central controller which attempts to meet certain 

performance (latency) constraint for the component while 

minimizing the component power consumption. The GPM 

works with the CPU scheduler to select the right 

applications to run so as to reduce the component power 

dissipation, while taking into account the fairness issues 

among different types of applications. This decision is in 

turn made based on the current state of the power 

management system, including the state of the SP, the 

number of requests waiting in the SQ, etc. Note that in this 

architecture, the GPM cannot directly control the state 

transition of the SP, and therefore performing application 

scheduling is the method that the GPM uses to guide the 

local PM policy and improve the power efficiency of the SP.  

In the component level, the SP, i.e., the I/O device, is 

controlled by the LPM. The LPM is based on the one 

proposed in [9] using RL-based DPM algorithm, with both 

enhancements on the state-action spaces of the RL 

algorithm, as well as other enhancements for the hierarchical 

power management framework. The LPM monitors the 

current type of application running in the CPU, the number 

of requests waiting in the SQ, the (estimated) current state of 

SR (i.e., the service request generating rate), the current SP 

state (active, idle, sleep, etc.), and consequently makes 

decisions (adjusts the state of the SP.) There are two 

decision points for the LPM: First, every time the SP transits 

from active to idle state, the LPM will make a decision on 

whether to let the SP go to sleep straightaway or set a 

timeout. If a timeout is set and no requests arrive during this 

period, the device will subsequently go to sleep. Second, 

while SP is in the sleep state, the LPM decides whether or 

not to wake up the SP based on the number of waiting 

requests in the SQ. To be more realistic, we consider in this 

work that the exact SR state cannot be directly obtained by 

the LPM, and the LPM also has no prior knowledge of the 

characteristics of the SR. Therefore, workload prediction has 

to be incorporated to provide partial information 

(estimation) of the SR state to the LPM so that the LPM can 

effectively learn in the observation domain of SR. We adopt 

the aforesaid online Bayesian predictor (BP) for workload 

prediction, as shown in Figure 2. 

4. Hierarchical DPM Algorithm 
In this section, we explain how to extend RL techniques 

to solve the hierarchical power management problem, in 

three aspects: the workload prediction using online Bayesian 

predictor, the LPM, and the GPM. We first introduce several 

definitions and notations. 

Suppose that the whole system begins operating at time 

  , and we are currently at time instance  . Suppose there are 

  types of applications in the hierarchical framework, and 

we let              denote the type of application running 

in the CPU at time  . Furthermore, we use     
  to denote the 

actual generation time (AGT), i.e., the actual time instance 

that such request is generated by the SR, of the j
th

 request of 

the i
th

 type of application. Then the application-specific 

generation time (ASGT) of the j
th

 request of the i
th

 type of 

application, denoted by     
 , is defined by the following: 

    
  ∫                 ]  

    
 

  

 (6) 

where    ] is the indicator function which equals to one if 

the Boolean variable   is true, and otherwise equals to zero. 

Finally, the application-specific inter-arrival time (AIAT) of 

two consecutive service requests, say, the j
th

 and the (j+1)
st
, 

of the i
th

 type of application, is given by       
      

 . 

4.1. Online Bayesian Predictor 
The proposed system relies on workload prediction 

method to provide partial observation of the actual SR state 

for the LPM. Previous work on workload prediction in 

[2][3] assumes that a linear combination of previous idles 

times (or request inter-arrival times) may be used to infer the 

future ones, which is not always true. For example, one very 

long inter-arrival time can ruin a set of subsequent 

predictions. Thus an online naïve Bayesian classifier, which 

can overcome the above effect and result in much higher 

prediction accuracy, is adopted as the workload predictor.  

We use   online Bayesian predictors, each 

corresponding to a specific type of application. Consider a 

specific i
th

 Bayesian predictor corresponding to the i
th

 

application type. We use characteristics of the previous 

request AIATs of the i
th

 type of application as the input 

feature               , in which      if the 

corresponding interval length is greater than the break-even 

time    ; otherwise     . The output is the prediction 

whether or not the next AIAT is greater than    . In real 

implementations, we use three output states “long, short, and 

unknown”. We predict the next AIAT to be “unknown” if 

the difference between the posterior probabilities that the 

next AIAT is long and that it is short is less than a 

predefined parameter  . 

4.2. The Local Power Manager 

 
Figure 4: Component model and local power manager. 

The component whose power is being managed by LPM 

is shown in Figure 4. Suppose that we are currently at time 

 , and the i
th

 type of application is running. We assume that 

    
  ∫                 ]  

 

  

       
  (7) 

Then the state parameters at time   of the power managed 

component monitored by the LPM are the following four: 

 The type of application running in CPU, i.e., 

              . 



 

 

 The SP state      , which is the component power state 

(active, idle, sleep, etc.). 

 The SQ state      , which is the number of requests in 

the SQ. 

 The estimated SR state, which is represented in this 

paper by the estimation (long, short, unknown, etc.) on 

the AIAT       
      

  of the i
th

 type of application from 

the i
th

 online Bayesian predictor. 

To apply RL techniques in the LPM, we define decision 

epochs, i.e., when new decisions can be made and updates 

for RL algorithm can be executed. In our case, the decision 

epochs coincide with one of the following three cases: 

1. The SP entered idle state (      = idle) and       = 0. 

2. The SP has just entered the sleep state and finds that 

      > 0.  

3. The SP is in sleep state and a new request arrives. 

We further denote the k
th

 decision epoch of the i
th

 type of 

application by     
 . There are mainly two types of decision 

epochs. If at decision epoch     
 , we have        

   = idle and 

       
   = 0 (case 1), we call the decision epoch     

  an idle-

state decision epoch, denoted by                
    . On 

the other hand, if at decision epoch     
 , we have        

   = 

sleep (case 2 or case 3), we call decision epoch     
  a sleep-

state decision epoch, denoted by                
    . 

In this work we adopt a more general power management 

framework in which each type of application may have its 

own performance degradation constraint (which implies that 

different types of applications may have different 

constraints), defined as the constraint on the average latency 

per request of that specific type of application. Therefore the 

proposed DPM framework should minimize the average 

component power consumption for each type of application, 

while satisfying its performance degradation constraint. 

Note that this requirement cannot be satisfied in the 

reference machine learning based DPM works [7][8][9]. In 

this paper, we should be able to control the power-latency 

tradeoff of each type of application separately, in order to 

satisfy the requirement. Therefore, it necessitates the 

following constraint on CPU scheduling: Application type 

switch, i.e., the changing of application type running in the 

CPU, can only occur at idle-state decision epochs of the 

RL algorithm used in the LPM.  

Due to the previous CPU scheduling constraint, we “split” 

each decision epoch     
  into two sub-decision epochs     

   

and     
  . We assume that at sub-decision epoch     

  , 

decisions are made by the RL algorithm used in the LPM; 

while at sub-decision epoch     
  , updates in the RL 

algorithm are executed. We have     
       

  , i.e., at each 

decision epoch, updates are performed first and 

subsequently new decisions are made. Due to the previous 

CPU scheduling constraint, no application type switch can 

happen within the time period      
         

   . Or equivalently, 

there are no other sub-decision epochs of any type of 

application within the time period      
         

   . 

Suppose that we are now at sub-decision epoch     
  , and 

the LPM makes a decision and issues a command to execute 

it. Due to the previous assumption of the CPU scheduler, 

there will be no application type switch until the next sub-

decision epoch       
  , which belongs to the same type of 

application (the i
th

 type) as the sub-decision epoch     
  . 

Then at sub-decision epoch       
  , updates in the RL 

algorithm are performed. The CPU scheduler may choose to 

switch the application type at time       
  , if 

                 
    . If no application type switch 

happens at that sub-decision epoch       
  , we have       

   

      
  , and new decisions are made again at sub-decision 

epoch       
  . On the other hand, if application type switch 

happens at sub-decision epoch       
  , and the CPU scheduler 

decides to switch to application type   , then we have 

      
         

  , assuming that the most recent sub-decision 

epoch of application type    is       
   (in fact at that sub-

decision epoch       
   the CPU scheduler switches the 

application type from    to another type.) Note that since 

    
       

   is possible,     
  does not represent an actual time 

instance in the rest of the paper.  

In the TD( ) algorithm used in the LPM, at each decision 

epoch     
  the system (component) should be in one 

particular state (used for making decisions and value 

updating), denoted by       
  . We call it the RL state. Note 

that here we use     
  for convenience in notations, without 

differentiating between sub-decision epochs     
   and     

  . 

This simplification in notation is valid since all component 

state parameters, including the type of application, the SP 

state, the SQ state, and the estimated SR state, are the same 

at sub-decision epochs     
   and     

  . We use 

∫                 ]  
    
 

  
 to denote either 

∫                 ]  
    
  

  
 or ∫                

    
  

  

 ]  , since the latter two values are equal. Obviously the RL 

state can be characterized by the SP power state (idle, active, 

sleep), as well as other system state parameters. We discuss 

about the classification of RL states in detail in the 

following two definitions. 

Definition 1: The 1
st
 class of RL state: 

We define that the RL state at decision epoch     
 , 

denoted by       
  , belongs to the 1

st
 class of RL state if 

               
     (i.e.,     

  is an idle-state decision 

epoch.) We assume that 

    
  ∫                 ]  

    
 

  

       
  (8) 

We know that at that decision epoch     
 ,        

   = idle and 

       
   = 0. Then the RL states belonging to the 1

st
 class 

are further categorized by the estimated SR state from the i
th

 

online Bayesian predictor, which is, in fact, the estimation of 

the AIAT       
      

 . 

Definition 2: The 2
nd

 class of RL state: 

We define that the RL state at decision epoch     
 , 

denoted by       
  , belongs to the 2

nd
 class of RL state if 

               
     (i.e.,     

  is a sleep-state decision 

epoch.) We still make the assumption in Eqn. (8). We know 



 

 

that at decision epoch     
 ,        

   = sleep. Then the RL 

states belonging to the 2
nd

 class are further categorized by (i) 

the estimated SR state from the i
th

 Bayesian predictor, and 

(ii) the        
   value, i.e., the number of requests waiting in 

the SQ at decision epoch     
 .  

We only consider the        
   value in the range 

         
         , where        is a predefined 

maximum        
   value. This is because that if   (    

 )  

      , the only possible action chosen by the LPM at 

decision epoch     
  would be turning the SP on to the active 

state to process requests. On the other hand, if   (    
 )   , 

the only possible action chosen by the LPM would be 

keeping the SP in the sleep state until next request comes.   

The action space for RL states belonging to the 1
st
 class, 

denoted by   , is given by                         
                             , where those actions 

correspond to different timeout values. Among those 

actions,       corresponds to “immediate shut-down”. Note 

that as pointed out in reference [7], the optimal policy when 

the SP is idle for non-Markov environments is often a 

timeout policy, wherein the SP is put to sleep if it is idle for 

more than a specific timeout period. The proposed LPM in 

this work learns to choose the optimal action among action 

set    by using a RL technique. Finally, the action space for 

the RL states belonging to the 2
nd

 class, denoted by   , is 

given by                          , i.e., there are two 

possible actions in these RL states: keeping the SP in the 

sleep state until the next request comes, or going active to 

process the requests buffered in the SQ. 

In this work, we use “cost rate” instead of “reward rate” 

in the RL algorithm, which can be treated in the similar way. 

The cost rate is a linearly-weighted combination of power 

consumption and the number of requests buffered in the SQ. 

It can be proved [5] that this is a reasonable cost rate, in that 

the value function we seek to minimize for each state-action 

pair is equivalent to a linearly-weighted combination of the 

expected average discounted power consumption and 

latency per request. The relative weight between average 

power and per-request latency for each type of application 

may be different, reflecting the (may be) different 

performance degradation constraint for each type of 

application. Furthermore, such relative weight can be 

changed to obtain the Pareto-optimal power-latency tradeoff 

curve. Suppose that the i
th

 type of application is running in 

CPU at time instance  . We use         to denote the cost 

rate at that time, given by                        
     , where    is the relative weight between the power 

consumption and the number of requests buffered in the SQ 

for the i
th

 type of application, and      is the component 

power consumption at time  . 

An outline of the proposed RL-based LPM algorithm is 

given as follows. Suppose that we are now at sub-decision 

epoch     
   (which implies that application type i is running 

in the CPU), and the system (component) is in RL state 

      
  . Then at that sub-decision epoch     

   in the proposed 

algorithm, the LPM maintains value estimates   
   

      for 

each application type i, each RL state  , and each action 

           , in which          denotes which particular 

class of RL states (the 1
st
 or 2

nd
) the RL state   is in. Then at 

sub-decision epoch       
  , the values estimates   

   
      of 

all state-action pairs       are updated, according to the 

TD( ) updating rule given in (1). 

4.3. The Global Power Manager 

time

time

A1 A1A2 A2

0

0

SR trace

SP state

time

time

A1 A1A2 A2

0

0

SR trace

SP state

(a) without application scheduling

(b) with application scheduling

A1

 
Figure 5: An example showing the effectiveness of 

application-level scheduling. 

In this section we begin with a motivation example, 

showing the potential effectiveness of application type 

scheduling, as shown in Figure 5. Let us consider a system 

in which there are two application types A1 and A2. The SP 

can accurately predict the generation time of the next service 

request. When the SP finishes processing requests and enters 

the idle state, it will go to sleep as long as the time until the 

next request is generated is more than    . Otherwise it will 

remain in the idle state waiting for the next request. The SP 

wakes up from the sleep state as soon as a service request is 

generated. Two execution sequences have been considered. 

In the first sequence, there is no application scheduling. 

Each application is alternatively executed for exactly one 

unit of time. In the second sequence, we perform application 

scheduling that as long as one service request of application 

type A1 has been generated and serviced (note that the SP 

becomes idle at this time), we switch to application type A2, 

and we switch back to A1 when the second request of 

application type A2 has been generated and serviced. As 

shown in Figure 5, typically the service time for a request in 

the SP (e.g., HDD, WLAN card) is much shorter than the 

time taken in transitioning to and from the sleep state. It can 

be observed that the service requests are “grouped together” 

when using application-level scheduling, and thus both the 

power efficiency and performance are improved (i.e., the 

component sleeping time is maximized.) The application-

level scheduling technique used in Figure 5 (b), in which 

application type switch can happen only when the 

component is in the idle state, coincides with the CPU 

scheduling constraint stated in Section 4.2 that application 

type switch can only occur at idle-state decision epochs of 

the RL algorithm. It is validated using real traces that the 

application-level scheduling technique can improve both the 



 

 

power efficiency and performance by reducing the number 

of transitions to and from the sleep state. 

We also consider the fairness issues among different 

types of applications in the application scheduling 

algorithm, which could satisfy the requirement of allocating 

a fair share of CPU execution time for each type of 

application. More formally, we impose a fairness constraint 

among different types of applications as follows. We use 

               to denote the whole application type 

pool. For the i
th

 (      ) type of application, we use 

                to denote the total CPU occupying time 

of such type of application starting from time    (i.e., the 

system starting time) until the current time  . The fairness 

constraint states that each i
th

 (      ) type of application 

cannot, on average, occupy more than    percentage of the 

total CPU execution time, i.e.,  

               

    
 

  

   
            (9) 

Algorithm 1 presents the proposed CPU scheduling 

algorithm considering the fairness issue among different 

types of applications. In the proposed algorithm each i
th

 

(       ) type of application maintains and updates a 

value          . Suppose that we are currently at sub-

decision epoch     
   (which implies that the i

th
 type of 

application is currently running in the CPU.) Recall that 

application type switch can only occur at the idle-state sub-

decision epochs. Then the proposed scheduling algorithm 

goes as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental Results 

We present simulation results with the hierarchical DPM 

algorithm on a wireless adapter card (WLAN) card. Table 1 

lists the power and delay characteristics of that device. In 

this table     is the time taken in transitioning to and from 

the sleep state while     is the energy consumption in 

waking up the device.     refers to the break even time. 

Table 1: Power and delay characteristics of WLAN card. 

                                    

1.6 W 1.2 W 0.90 W 0 W* 0.9 J 0.3 s 0.7 s 

*The WLAN card is turned off. 

For the baseline systems we use the RL-based DPM [9], 

as well as the expert-based DPM [7]. Three policies are 

adopted as experts in the expert-based DPM: fixed timeout 

policy, adaptive timeout policy, and exponential predictive 

policy [3], as shown in Table 2. 

Table 2: Characteristics of the expert-based policy. 

Expert Characteristics 

Fixed Timeout Timeout = any value 

Adaptive Timeout Initial Timeout =    , adjustment = ±0.1     
Exponential Predictive                      ,       

For the WLAN card, we have measured several real 

traces using the tcpdump utility in Linux, including a 45-

minute trace for online video watching, a 2-hour trace for 

web surfing, and a 6-hour trace for a combination of web 

surfing, online chatting and server accessing. The correct 

prediction rates of the Bayesian predictor are 99.2% for the 

video trace, 79.8% for the web trace, and 82.8% for the 

combined trace.  

We first compare the effectiveness of the proposed LPM 

(without considering the application-level scheduling issues) 

with the baseline DPM algorithms [7][9]. We conduct 

simulation using only one type of application with service 

request trace given by the 6-hour combined trace, similar to 

the experimental setups in the reference works [7][9]. Figure 

6 gives the power and latency tradeoff curves achieved by 

the proposed LPM, the RL-based DPM proposed in [9], as 

well as three different expert-based DPM algorithms. The 

timeout values of the fixed timeout expert in those three 

algorithms are set to be      ,        , and      , 

respectively. We can see from Figure 6 that the proposed 

RL-based LPM method has a wider power-latency tradeoff 

range, especially when compared with the expert-based 

DPM algorithm. Even with the same latency, the proposed 

RL-based LPM achieves lower power consumption than the 

baseline algorithms (both the RL-based DPM algorithm and 

the expert-based DPM algorithm.) The improvement of the 

proposed RL-based LPM over the baseline RL-based DPM 

method proposed in [9] is mainly on state and action spaces, 

when only one type of application is running in the CPU. 

We further compare the effectiveness of the proposed 

RL-based hierarchical DPM framework with baseline DPM 

algorithms when multiple types of applications can run in 

the embedded system. We consider two types of 

applications, with service request traces given by the 

combined trace and the web surfing trace (we duplicate this 

trace so that it becomes a 4-hour trace), respectively. We 

name them the 1
st
 and the 2

nd
 types of applications, 

respectively. The ratio of the total CPU occupying time of 

these two types of applications should be 3:2. In the baseline 

systems, we use a simple application type switch technique, 

in which we switch from the 1
st
 type to the 2

nd
 type of 

application after the 1
st
 type of application running in the 

CPU for 1 s, and we switch back after 0.67 s. Besides, the 

DPM algorithms in the baseline systems are ignorant of the 

application type information. In the proposed RL-based 

Algorithm 1: The CPU Scheduling Algorithm Considering 

the Fairness Issue. 

At the sub-decision epoch     
  : 

                    (    
         

  )            

    , in which        denotes the delta kronecker function. 

If                
    : 

If           (    
     )  

  

   
    (in which    is a 

predefined threshold value for CPU execution time): 

Find application type         with the minimum 
          

   
 value. 

Perform application type switch from type   to type   . 

Then we arrive at sub-decision epoch       
  , with 

      
       

  , assuming that the most recent sub-

decision epoch of application type    is       
  . 

End 

End 

If no application type switch happens, we arrive at sub-

decision epoch     
  . 



 

 

hierarchical DPM framework, we can use one user-defined 

parameter to control the power-latency tradeoff for each 

type of application, independent of the other type of. In 

contrast, we can only control the power-latency tradeoffs of 

the two types of applications together in the baseline 

systems, without the ability of controlling them separately. 

Figure 7 gives the overall power and latency tradeoff 

curves achieved by the proposed hierarchical DPM 

framework, as well as the baseline systems. We can see 

from Figure 7 that the proposed hierarchical DPM 

framework consistently outperforms baseline systems. The 

maximum power saving with the same average latency is 

31.1%, while the maximum amount of latency reduction 

without any power consumption increase is up to 41.8%, 

compared with the baseline systems. The Pareto superior 

performance of the hierarchical DPM framework compared 

with baseline systems is mainly due to (i) the more robust 

LPM specifically optimized for handling multiple types of 

applications, and (ii) the exploitation of the potential benefit 

of application-level scheduling. 

 
Figure 6: Comparison between the power-latency tradeoff 

curves of the 1
st
 type of application (the combined trace.) 

 
Figure 7: Comparison between overall power-latency 

tradeoff curves of the two types of applications. 

6. Conclusion 
In this paper an architecture for hierarchical DPM to 

facilitate component power minimization in an embedded 

system has been proposed. The proposed (online) adaptive 

hierarchical DPM framework consists of (i) a component-

level LPM which adopts model-free RL to effectively cope 

with variations and uncertainties emanated from hardware 

and application characteristics, and (ii) a system-level GPM 

for exploiting the potentially significant benefit of 

performing application-level scheduling on the component 

power optimization. In the hierarchical DPM framework, 

power and latency tradeoffs of each type of application can 

be precisely controlled based on a user-defined parameter. 

Experimental results demonstrate that the proposed 

hierarchical DPM framework achieves an evenly distributed 

power and latency tradeoff curve, which is Pareto superior 

to the power and latency tradeoff curves achieved by 

baseline DPM algorithms. 
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