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Abstract—The battery energy storage systems (BESSs) have
been increasingly installed in the power system, especially
with the growing penetration rate of the renewable energy
sources. However, it is difficult for BESSs to be profitable
due to high capital costs. In order to boost the economic
value of BESSs, this paper proposes a hierarchical energy
management system (HiEMS) to aggregate multiple BESSs,
and to achieve multi-market business operations. The proposed
HiEMS optimizes the multi-market bids considering a realistic
BESS performance model, and coordinates the BESSs and
manages their state of charge (SOC) values, according to their
price penalties based on dynamically generated annualized cost.
By taking part in the energy market and regulation market at
the same time, the cost-performance index (CPI) of the BESS
aggregation is greatly improved. The impact of photovoltaic
generation (PV) on system performance and CPI is also studied.

Index Terms—Battery energy storage system (BESS), energy
management system (EMS), electricity market, regulation market

NOMENCLATURE

A. Indices

i, ij BESS group index and individual BESS

index in the ith group.

t, t′ Time step index for the schedule optimizer

and dispatch optimizer.

s Scenario index.

m Segment index for piecewise linearization.

B. Parameters

Hp, H
′

p Prediction horizon of schedule optimizer

and dispatch optimizer.

Pmin
i , Pmin

ij Minimum power set point for the ith BESS

group and the ijth BESS (MW).

Emax
i , Emax

ij Maximum energy stored for the ith BESS

group and the ijth BESS (MWh).

cse,t Energy price at time t in scenario s.

cbat,i, cbat,ij Battery cost for the ith group and the ijth

BESS ($/MWh).

cpst , pp
s
t Regulation capacity/performance clearing

price at time t in scenario s.

ps Statistic probability for scenario s.

PPV
t ,P̄PV

t PV real-time power output and the

averaged per hour output (MW) at time t.
P load
t ,P̄ load

t Real-time load consumption and the

averaged per hour consumption (MW) at

time t.

P reg
t Real-time regulation signal from the

regulation market at time t.
he, hr Time interval in markets (hour) and time

duration for regulation signals (seconds).

C. Variables

P e,d
i,t , P

e,c
i,t Dispatched group discharge and charge for

the ith BESS group at time t (MW).

P r
i,t Power bid for group i at time t in

regulation market (MW).

P d
ij,t, P

c
ij,t Real-time discharge and charge for each

BESS (MW) at time t.
P̄ grid
t ,P grid

t Scheduled hourly power consumption from

the energy market and the real-time

consumption (MW).

Ei,t, Eij,t Energy stored at time t for the ith BESS

group and the ijth BESS (MWh).

ht, hm,t Regulation energy scheduled at time t and

scheduled regulation energy at time t when

it falls to segment m (MWh/MW).

Um,t Binary variable to represent whether the

BESSs operate in the mth segment.

I. INTRODUCTION

BATTERY energy storage systems (BESSs) are

gaining increasing research interests in power system

applications, for their fast-response ability and control

flexibility. Nonetheless, some recent BESS studies state that

it is difficult for BESSs to be profitable due to high battery

costs [1], even with the proposed optimal sizing scheme [2].

In order to promote the economic value of BESSs, BESSs

are maneuvered to participate in market operations. Reference

[3] provides a thorough optimal bidding framework for

BESS’s energy market participation. However, for BESS’s

multiple-market participation, there are mainly two issues

described in the following two paragraphs.

Firstly, an optimal coordination between multiple-market

operations is required. A number of papers have studied the

optimization formulations based on multiple available markets.

Reference [4] optimizes the BESS bidding in the day-ahead

energy and spinning reserve markets, and reference [5] further

includes the ramp-up and ramp-down frequency regulation

service in the revenue. Moreover, a more financially rewarding

performance-based regulation service is considered by [6]. In

[6], the amount of energy consumed by regulation is set as a

constant with a large margin (15 minutes or 0.25 MWh/MW)
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to ensure the high performance (above 0.9 out of 1), while the

actual energy requirement remains uncertain. In real market

revenue accounting, the final regulation revenue is proportional

to the performance as well as the power bids. Therefore,

when scheduling the energy capacity of BESS, keeping a

large energy margin will limit the amount of power that BESS

can bid into the markets; in other words, there is a trade-off

between the performance and the bids. A constant regulation

energy schedule cannot fully utilize the BESS capacity and

will fail to get the optimal reward.

Secondly, due to the minimum capacity requirement from

the market regulator, several BESSs need to be aggregated

to reach the minimum threshold to enter the market.

When multiple BESSs are connected in the same network,

coordination between the units helps to fully exploit the

aggregation storage capacity, and optimize the real-time

operation. In the current literature, the coordination of multiple

BESSs is not sufficiently addressed. In [7], conventional

“master-slave” logic is used to coordinate different BESSs in

the aggregation. This method will result in premature aging of

the “master” battery, and might introduce an extra replacement

cost during the project. As such, the boost of capital return

cannot be attained. A second method is proposed by [8], where

the control signal distributed to each BESS is proportional to

the ratio of its rated power to the overall power of multiple

BESSs. This method does not consider the respective state

of charge (SOC), hence resulting in non-response time from

some of the BESSs.

To deal with the two issues stated above, this paper proposes

a hierarchical energy management system (HiEMS) for a

network with multi-use BESSs, taking part in both energy

and regulation markets. For such systems involving control

signals on different time schemes, a hierarchical structure

is advantageous as claimed by previous research studies

[9, 10, 11]. The operational objectives are separated into

sub-controllers by their execution periods. Each sub-controller

may have its own control algorithm, and exchanges the

required information with each other.

In this paper, the optimal schedule optimizer includes an

innovative realistic BESS performance model with regard to

the regulation energy schedule, to characterize the trade-off

between the performance and the power bids. The schedule

optimizer also models the pricing uncertainties in both markets

according to their respective statistic characteristics. The

cost-effectiveness of BESSs is analyzed for optimizations with

and without the performance model. The cost-performance

index (CPI) values provide a reference for BESS entities to

decide the optimal sizing and market participation to maximize

the income of the multi-use BESSs. The impact of PV

integration is also studied.

The proposed HiEMS attempts to coordinate BESSs of

different battery types, various SOC, and power and energy

capacity. The SOC values will be regulated around the

expected average SOC to prevent individual saturation or

depletion. Price penalties derived from the dynamic annualized

cost (DAC) are utilized to dispatch the BESSs, thus increasing

the average battery lifetime.

The rest of this paper is organized as follows: Section II

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

1

Time (s)

R
eg

u
la

ti
o

n
 S

ig
n

al
 (

p
.u

.)

Traditional regulation

Dynamic regulation

Fig. 1. Regulation signal samples for one hour.
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Fig. 2. Proposed HiEMS integration and its working time scheme.

introduces the HiEMS work flow and major functionalities.

Section III presents the algorithm details in the optimizers.

Section IV presents simulation studies, including optimality

analysis and a complete analysis of results and their

comparisons. Section V concludes the highlights of this paper.

II. PROPOSED HIEMS CONFIGURATION

A. Market Mechanism and HiEMS Participation

The National Energy Market of Singapore comprises a

wholesale market and a retail market. To introduce competition

in both markets, energy producers or consumers (prosumers)

above a certain size threshold can sell or purchase electricity

subject to the real-time pricing scheme. In the real-time

market, the market clearing engine generates energy, reserve,

and regulation prices every 30 minutes. Currently, regulation

providers in the Singapore market are paid monthly based on

the uniform regulation price, without performance standards.

However, with the increase penetration rate of intermittent

renewable energy sources, the grid requires faster and larger

amount of regulation capacity. In North America, PJM has

introduced a performance-based regulation market, where

participants can choose to respond to the slower-varying

traditional regulation signal or the dynamic regulation signal.

The signals shown in Fig. 1 are derived from the area control

error (ACE) [12] in (1):

ACE = (Ptie − Ptie,sched) +Bf (f − 50) (1)
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Fig. 3. Major function modules and data exchanges in the proposed HiEMS.

where Ptie is the real tie-line power; Ptie,sched is the scheduled

value provided by the system operator; Bf is the frequency

bias factor of the control area, which is an estimation of

the system response characteristic in MW/Hz; and f is the

measured grid frequency.

The dynamic regulation signal is distributed to very fast

responding units, and these units will be rewarded with

higher payments [8]. Participating in the performance-based

regulation is very profitable for BESS units, compared to

participating in the energy market only [6, 13].

The HiEMS intends to incorporate energy market and

performance-based regulation market participation. Although

market clearing processes generate prices at the same time,

the regulation market is sending real-time commands every

few seconds. Therefore, the HiEMS works at two levels to

comply with different control time schemes: 30 minutes or 1

hour for the market schedules and 2 seconds for the dynamic

regulation.

The proposed HiEMS integration and its working time

scheme are illustrated in Fig. 2. In the HiEMS, several BESSs

in a nearby region are aggregated to participate in the markets

as one participant. The coordination is conducted by the

HiEMS, and thus no communication among the individual

BESSs is required. The 1st level generates regulation bids

P r
i and energy set points P e,c

i and P e,d
i for the aggregators

following the market time scheme; and the 2nd level distributes

individual set points P c
ij and P d

ij optimally according to

real-time regulation commands and fluctuation in PV and

loads.

This section introduces the work flow and the major

functionalities of the proposed HiEMS illustrated in Fig. 3.

The details of the optimizers are introduced in Section III.

B. Schedule level

The schedule level (1st level) consists of four modules. The

key module is the schedule optimizer, which is responsible

for assessing the cost and revenue of the whole entity, and

scheduling the network to achieve a greater economic value

during the prediction horizon from time t to t+Hp. The other

three modules provide essential information for the decision

making in the optimizer.

1) Prediction module: The Prediction module predicts PV

and load levels, future market prices, and generates scenarios

of possible realizations of the pricing information.

2) Regulation Assessment module: Regulation Assessment

module is responsible for generating the BESS performance

model. The frequency regulation units are not forced to

perform strictly and rigidly, as long as a certain level of

compliance is achieved. Therefore, simulation tests based on

historical data are conducted to estimate the amount of energy

needed to secure a certain level of performance over the long

term. The simulation procedure is described in Fig. 4.

In this paper, the performance is evaluated using the PJM

criteria [14]. The unit responses are measured on a 10-second

basis, and the performance scores are averaged in every

5-minute period. The final hourly average performance score

S consists of three sub-scores considering different aspects:

precision sub-score SP , delay sub-score SD, and correlation

sub-score SC . SP measures the average errors between the

regulation signal and the unit response. SC is the maximum

value of the statistical correlations σt between the 5-minute

regulation signals and multiple sets of responses each with

a 10-second incremental shifting over 5 minutes. SD is

calculated with the time tσ when the maximum correlation

happens. S is a weighted average of SP , SC and SD. The

formulations provided by [14] are listed in (6):

SP = 1−
1

N

N∑

t=1

∣
∣
∣
∣

y(t)− u(t)

uh

∣
∣
∣
∣

(2)

σt =

∑t+300s
i=t (ui − uh)(yi − yh)

√
∑t+300s

i=t (ui − uh)2
∑t+300s

i=t (yi − yh)
2

(3)

SC = max(σt) t = [0, 10s, 20s, ..., 300s] (4)
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SD =

∣
∣
∣
∣

tσ − 300s

300s

∣
∣
∣
∣

(5)

S = A · SP +B · SC + C · SD (6)

where y(t) is the actual unit response; u(t) is the regulation

signal; uh is the rolling hourly average value of the regulation

signal, and periods with uh = 0 will not be included in

the hourly average S calculation; N is the total number of

sampled data, which is 360 in each hour; σt is the correlation

between the regulation signal and the unit response with t
seconds shifting; and parameters A, B, and C are decided by

the market governance. In most cases, their values are equal,

i.e. A = B = C = 1/3.

3) BESS Cost Estimation module: The schedule optimizer

also considers the cost of BESS usage, which is derived

from the dynamic annualized cost (DAC). The BESS DAC

represents the annualized total BESS capital investment in

relation to the on-line estimated battery lifetime (LT ). In this

paper, the battery lifetime is estimated given the accumulated

usage cycles and predefined depth-of-discharge (DOD).

The BESS Cost Estimation module stores the battery life

cycle model, with life cycle data and varying DOD. After

reading the DOD measurement, the expected life cycle can

be determined from the model. At the same time, the usage

cycles during time t can be updated using the battery output

P c and P d measured with a time step of ∆t, based on the

rated energy capacity EBESS as in (7). The average battery

lifetime (years) for each group (LT ) can be estimated in (8)

using total usage cycles.

Usage cycle =
∑

t

∆t

2 · EBESS

(P c + P d) (7)

LT = Life cycle/Usage cycle (8)

The BESS capital cost data is also stored in this module. For

BESSs with rated power PBESS and rate energy EBESS , the

cost consists of power investment cMW ($/MW) and energy

investment cMWh ($/MWh) as in (9). The DAC equals the

total cost multiplying the capital recovery factor CRF in (10)

and (11), where the interest rate r is set as 0.06. The DACi

and DACij is proportionally downscaled to get the cbat,i and

cbat,ij .

Total cost = ckW · PBESS + ckWh · EBESS (9)

CRF =
r · (1 + r)LT

(1 + r)LT − 1
(10)

DAC = Total cost · CRF (11)

C. Dynamic dispatch level

The dynamic dispatch level (2nd level) deals with set point

distribution. After receiving P e,d
i,t , P e,c

i,t , and P r
i,t from the 1st

level, the dispatch optimizer in the 2nd level aims to distribute

P d
ij and P c

ij to each BESS in the groups.
The objective of the dispatch optimizer includes three parts:

minimizing the BESS cost using the DACij from the 1st level,

managing the stored energy to avoid saturation or depletion

of any BESSs, and responds to the real-time PV and load

fluctuations, as well as operator’s regulation command P reg
t

during the prediction horizon from time t′ to t′ +H ′

p.

III. OPTIMIZER FORMULATIONS

In this section, the optimizers in the 1st and 2nd levels are

described in details. As necessities for energy and regulation

market participation, appropriate telecommunication and

control devices will be installed, and provide access to

up-to-date measurements. Therefore, the optimizers can be

implemented using the predictive control scheme to provide

better real-time performance.

A. 1st Level Schedule Optimizer

As presented in Section II.B, the scheduling objective

function V1 aims to schedule the BESS aggregators to

maximize the overall profit, which consists of the three parts:

electricity bill from the energy market, revenue from the

regulation market, and the BESS usage costs. The objective

function is defined as follows:

V1 := min
P

e,d

i,t
,P

e,c

i,t
,P r

i,t

Hp∑

t

{
∑

s

ps
[
cse,tP̄

grid
t he

︸ ︷︷ ︸

Energy market bill

− Incomesreg,t
︸ ︷︷ ︸

Regulation revenue

]

+
n∑

i

[

cbat,i(
P e,c
i,t + P e,d

i,t

2
he + P r

i,th̄)
]

︸ ︷︷ ︸

Battery cost

}

(12)

where Incomesreg,t represents the regulation income at time t

in scenario s,
P

e,c

i,t
+P

e,d

i,t

2
he stands for the planned equivalent

usage cycle for each group, and h̄ represents the hourly

average energy consumption (0.13 MWh/MW) by dynamic

regulation service.
The regulation income has two components as shown in

(13) and (14): RC and RP . RC is the capacity revenue for

reserving the capacity, and RP is the performance revenue.

Incomesreg,t = RCs
t +RP s

t (13)
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{

RCs
t = cpst · S(ht) ·

∑

i P
r
i,t

RP s
t = ppst · S(ht) · MR ·

∑

i P
r
i,t

(14)

where S(ht) is the performance model, and MR represents the

ratio between the requested mileage for the assigned resource

(traditional or dynamic) to that of the traditional resources.

MR further awards the dynamic resource for tracking longer

mileage.

While BESS performance is usually assumed to be

constantly high, the energy consumption by regulation service

actually has an effect on the BESS score. This paper

formulates a dynamic performance S(ht) with regard to the

regulation energy ht for the regulation market.

The dynamic performance of BESS can be represented by

a piecewise-linear function as in (15).

S(ht) =
∑

m

(am · hm,t + bm · Um,t) (15)

where ht =
∑

m hm,t, and am, bm are piecewise linearized

coefficients for segment m.

The objective function is subject to the following

constraints.

1) BESS Power rating and bid constraints:

Pmin
i + P r

i,t ≤ P e,c
i,t + P e,d

i,t ≤ Pmax
i − P r

i,t ∀i, t (16)

P r
i,t ≥ 0 ∀i, t (17)

2) Power balance constraint:

P̄ grid
t = P̄ load

t − P̄PV
t −

∑

i

(P e,d
i,t − P e,c

i,t ) (18)

3) Energy constraints: The average amount of stored

energy of each group is predicted by coulomb-counting

method [15] shown in (19), considering different charging and

discharging efficiencies ηdi and ηci for various battery groups.

Ei,t = Ei,t−1 −
he

ηdi
· P e,d

i,t + ηci · he · P
e,c
i,t

︸ ︷︷ ︸

Energy arbitrage

−
h̄

ηdi
· P r

i,t + ηci · h̄ · P r
i,t

︸ ︷︷ ︸

Regulation energy consumption

(19)

For each hour, the remained energy should be sufficient

to maintain the schedule performance for providing both

regulation up and down.

Emin
i +P r

i,t

∑

m

hm,t ≤ Ei,t ≤ Emax
i −P r

i,t

∑

m

hm,t ∀i, t

(20)

To ensure continuous normal operation, the final energy

stored is constrained to a certain value (50% at the 24th hour).

Ei,24 = 0.5Emax
i ∀i (21)

4) Discharge cycle constraints: The daily equivalent

discharge cycle can be constrained to limit the usage of the

battery as in (22) [3], where γ is the number of allowed

discharge cycles. A larger γ allows more market participations,

while a lower γ restricts BESS bids. A proper γ value can

balance the economic profit and the BESS degradation.

24∑

t

[P e,c
i,t + P e,d

i,t

2
he+P r

i,t

∑

m

hm,t

]

≤ γ(Emax
i −Emin

i ) (22)

5) Binary variable constraints:
∑

m

Um,t = 1 ∀t (23)

B. 2nd level Dispatch Optimizer

In the dispatch optimizer, the objective function includes

three terms as shown in (24). The first term minimizes the

battery DAC. The second term manages the stored energy

levels by minimizing the squared absolute difference between

the individual energy level and the scheduled group average

level. The third term adjusts the real-time power output, by

minimizing the deviation from the scheduled output caused

by the load and PV fluctuations. The three objectives are

combined by DAC, electricity price, and a weighting factors

α1.

V2 := min
P c

ij,t
,Pd

ij,t

H′

p∑

t

{∑

i

∑

j

[
cbat,ij(P

c
ij,t + P d

ij,t)hr

︸ ︷︷ ︸

ith group battery cost

]

+ α1

∑

i

∑

j

|Eij,t − Ei|
2

︸ ︷︷ ︸

Stored energy management

+ cse,t (P
grid
t − P̄ grid

t )hr
︸ ︷︷ ︸

Real-time fluctuations

}

(24)

subject to

1) Power balance constraint: The BESSs in each group are

dispatched to satisfy the energy arbitrage goal as well as the

required regulation power P reg
t .

P grid
t −P reg

t = P load
t −PPV

t −
∑

i

∑

j

(P d
ij,t−P c

ij,t) (25)

2) Power rating constraints:

Pmin
ij ≤ P c

ij,t + P d
ij,t ≤ Pmax

ij ∀i, j (26)

3) Energy Constraints: The stored energy is updated in the

same formula in (19) given a different time scheme.

Emin
ij ≤ Eij,t ≤ Emax

ij ∀i (27)

IV. SIMULATION STUDIES

A. Simulation environment

The proposed HiEMS is simulated based on a 14-bus

Singaporean distribution system shown in Fig. 5. Bus 6 to

bus 14 are load buses connected to residential buildings. The

peak load of the distribution system is 1 MW. Each building
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Fig. 5. A Singaporean 14-bus radial distribution network.

TABLE I
SETTINGS OF BESSS

Vanadium group (V) Lithium group (L)
BESS index 1 4 5 6 2 3 7 8 9
Bus number 6 9 10 11 7 8 12 13 14
Power (kW) 120 80 100 80 40 20 40 20 20

Energy (kWh) 360 400 600 320 120 100 160 120 200
SOC0 (%) 40 60 80 20 38 48 34 71 32

Efficiency
ηd 0.88 0.9
ηc 0.8 0.85

Investment
$/kW 600 1200

$/kWh 100 600

is equipped with a 75-kWp PV energy system accompanied

by BESSs. Historical PV and load data is used in the case

studies. The Uniform Singapore Energy Price (USEP) is used

as the real-time buying and selling price, which applies to

prosumers for all energy injections or withdrawals that occur

in the Singapore power system. The market clearing engine

generates the USEP half-hourly [16].

The BESSs are grouped by two widely used battery types:

Vanadium (V group) and Lithium-ion (L group). Detailed

BESS settings are listed in Table I. The discharge cycle

constraint γ is chosen as 2.5 for the V group and 1.4 for

the L group. The dynamic performance is studied based on

historical database. The piecewise-linear function parameters

are obtained based on test results through curve fitting shown

in Fig. 6.

The optimizers are modeled in General Algebraic Modeling

System (GAMS), and the binary nonlinear optimizations can

be solved by the KNITRO solver. The work flow and system

simulation of HiEMS are built in Matlab. The optimizers and

the simulation platform are interfaced using GDXMRW [17].

Prediction horizon Hp and H ′

p values are 24 hours and 2

seconds respectively.

B. Scenario generation

The uncertainty of energy and regulation prices is

represented by a set of scenarios and their respective

probabilities of realization. PV power and load consumption

are considered deterministic in the analysis, and thus not

included in the scenario generation.
1) Probability distribution: Regulation capacity and

performance prices are highly unpredictable. Therefore,

the scenarios are generated based on historical data. The

distributions are plotted in Fig. 7(a) and Fig. 7(b). Average

prices among all scenarios are plotted in Fig. 7(c).

For the USEP, future prices can be predicted by an artificial

neural network trained using historical data. These point
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Fig. 6. Dynamic performance and piecewise linear fitting results.
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Fig. 7. Regulation price distributions of a 638-day database.

forecast results can be expanded to probability forecast using

quantile regression [18]. A sample of daily USEP probabilistic

forecast is shown in Fig. 7(d). The USEP is averaged to a

24-hour time scheme in the optimizer.

2) Scenario generation and reduction: The Monte Carlo

method is utilized to generate a large number of scenarios [19].

For each parameter at each time interval, a random number

between [0, 1] is generated, and used to decided the parameter

value according to the cumulative distribution generated above.

After generating the desired number of scenarios, the

probability of each scenario is normalized so that the sum of

all probabilities equals to 1. To further lower the calculation

burden, the numbers of scenarios can be reduced using a

scenario reduction package SCENRED in GAMS.

C. Optimality Analysis

The optimization models proposed in (12) and (24) are

multi-objective optimizations scalarized into single-objective

ones. In the first level, the three objectives (electricity bill,

regulation revenue, and battery cost), are commeasurable and

are converted into a single-objective optimization problem
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Fig. 8. Regulation price distributions of a 638-day database.

weighted by their prices. To further enhance the economic

gain from the markets, the battery cost has to be increased

as a result of resulting more frequent BESS utilization; and

to decrease battery cost, the BESS has to reduce market

operations. In other words, The HiEMS cannot make more

profit from the markets and decrease the DAC at the same

time. Therefore, Pareto efficiency can be obtained in the

optimization.

However, in the 2nd level optimizer, the SOC management

objective is not measurable by economic values. The

respective weighting usually complies with a preference

decided by the HiEMS operator. In the parametric studies

recorded in Fig. 8(a), the standard deviation of the SOC values

can be reduced greatly with α1 larger than 0.2. The α1 values

are used in the optimality tests, and the equilibrium is shown in

Fig. 8(b). A reduction of regulation penalty and DAC is traded

off for an increase in SOC deviations from the expected value.

In the simulations, α1 is chosen as 0.2.

D. Schedule optimizer studies

1) Base case and comparisons: The 1st level schedule

optimizer results are shown in Fig. 9. The result in Fig. 9(a)

is compared with the result of a constant optimizer using a

constant regulation energy h = 0.25 and score S = 0.92,

as shown in Fig. 9(b). The estimated state of charge curves

are also recorded in Fig. 9(a) and Fig. 9(b). The dynamic

regulation energy schedule ht and the respective expected

scores S are plotted in Fig. 9(c).

For both optimizers, the HiEMS bids most of its power

into regulation market for most of the time. Charging activity

is minimized only to maintain a sufficient SOC level. Lithium

batteries are generally used less due to their high cost.

When compared to Fig. 9(b), the proposed dynamic

optimizer in Fig. 9(a) manages to bid more power into

regulation market, resulting from a more realistic and flexible

regulation energy schedule. There are many hours when the

dynamic optimizer is able to bid full power, while the constant

optimizer can no longer provide power bidding because of

stricter energy constraints such as hour 16 and 17.

In some intervals in Fig. 9(c), the regulation energy ht is less

than the typical value of 0.25. Although the resulting expected

S will be lower than the optimal value of 0.92, the dynamic

optimizer manages to boost the regulation income from more

power bids, such as in hour 6, 7, and 8. Conversely, in hour
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Fig. 10. 24-hour simulation SOC results.

3, 4, and 5, the optimizer makes up for small power bids by

reserving more ht.

The SOC curves from a 24-hour test are plotted in Fig. 10.

In the particular tested day, the actual regulation energy is even

smaller than the dynamically scheduled regulation energy. As

a result, the V group is already sufficient in responding the

regulation signal, while the L group is often not utilized.
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TABLE II
COMPARISONS BETWEEN DYNAMIC AND CONSTANT SCORE

Dynamic Constant
Energy income ($/day) -34.56 -30.02

Regulation Capacity 342.13 280.79
income ($/day) Performance 114.11 93.81

Total daily income ($/day) 421.68 344.57

Total DAC ($/year) 383,155 394,710

CPI 40.17% 31.88%

TABLE III
COMPARISONS BETWEEN DIFFERENT SCENARIO NUMBERS FOR A

238-DAY PERIOD

Price information Actual income ($) Regret ($)
Perfect prediction 81,609 N.A.

Number of scenarios
10 75,888 -5,721
50 75,954 -5,655

100 78,383 -3,226

2) Income analysis: A detailed income breakdown is shown

in Table II. While the dynamic optimizer pays more electricity

bill for charging, it earns more revenue from the regulation

market, and ends up with a higher overall daily income.

To further study the cost-effectiveness, cost-performance

index (CPI) is calculated in Table II. The CPI represents the

economic benefit returns from the investment as in (28).

CPI =
Earned Value

Actual Cost
=

Total annual income
∑

i

DACi
(28)

The total earned value is estimated by multiplying the daily

income by 365 days. The total actual cost for the BESSs is

calculated based on the general pricing information from the

literature [20, 21, 22] is summarized in Table I.

By participating in the regulation market, BESS entities

can greatly increase the CPI, while their CPI ranges from

4% to 15% when only providing energy arbitrage [4]. By

dynamically adjusting the regulation energy schedule, the CPI

can be further boosted to 40.17%.

3) Impacts of scenario numbers: To study the long term

effect of the scenario-based optimization, scheduling tests are

carried out for a 238-day period with varying numbers of

scenarios. For each day, required price scenarios are generated

and used in the schedule optimizer. The real income of the

calculated schedules are assessed with the actual price on

a certain day. As a comparison, the perfect prediction case

uses the actual prices in the optimizer, indicating that no

forecast error is involved. The regret value is defined as the

difference between the actual income and the income with

perfect prediction.

According to the results summarized in Table III,

optimization with more scenarios has a better representation

of the possible price distribution, which is more robust in

gaining a better income over a long period of time. However,

more scenarios will greatly increase the computation burden.

Therefore, a proper number of scenarios can be chosen

considering the allowed computation time and the entity’s risk

tolerance.

TABLE IV
COMPARISONS BETWEEN THREE CONTROL METHODS

Criteria
Controller schemes

HiEMS PF M-S
Average performance score 0.92 0.90 0.82

Average equivalent V group 1.98 1.42 1.46
usage cycles L group 0.23 1.20 1.22

Time of first replacement (years) 8.92 3.06 1.18

BESS index
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Fig. 11. Individual BESS equivalent usage cycles for three controllers.

E. Dispatch optimizer performance and comparisons

In this subsection, the HiEMS real time performance is

compared with the participation factor method (PF) and the

master-slave method (M-S). The test signal is the summation

of the overall BESS set points taken from the base case study

in Section IV.C.

The PF method [8] distributes the test signal to each BESS

through its participation factor. Each participation factor is

defined as the ratio of the individual BESS power rating to

the total BESS power rating.

In the M-S method [7], the master BESS handles most of

the commands, and the slave BESSs will only respond when

the master reaches its SOC limit. The BESSs with the largest

power ratings in group V and L are set as the masters in each

group. The priority sequence in the V group is BESS 1 >
5 > 4 > 6, with BESS 1 as the master; and the sequence in

the L group is BESS 2 > 7 > 3 > 8 > 9, with BESS 2 as the

master. In all the controllers, one BESS will cease to respond

when its SOC exceeds the permitted range.

1) Real-time performance: As recorded in Table IV, the

average performance score of HiEMS is 0.92, 1.02 times

higher than 0.9 by PF, and 1.12 times higher than 0.82 by

M-S.

2) BESS usage and lifetime: The equivalent usage cycles

(UC) of the BESSs during the simulated time period is

calculated by the formula in (8). The results are plotted in

Fig. 11.

In general, HiEMS uses cheaper BESSs more frequently,

and thus limiting the L group usage due to their high costs.

The average UC of the L group is 0.192 times that of PF group

and 0.189 times that of M-S group; while the average UC of

the V group increases to 1.4 times that of PF group and 1.35

times that of M-S group.

In comparison to HiEMS, PF uses larger BESSs more often.

For instance, the UC values of BESS 2 and 7, which have the

largest power rating (40 kW) in the L group, are around 6

and 8 times larger than those of HiEMS. The UC of BESS

2 increases from 0.32 to 1.79 cycles, and that of BESS 7

increases from 0.17 to 1.39 cycles.
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Fig. 12. CPI and score for different PV penetration settings.

For M-S, the master BESSs are over-burdened. The

equivalent UC for BESS 1 is 4.73 cycles, while that of

HiEMS and PF is 1.0 and 1.9 cycles respectively. Similarly,

the equivalent UC for BESS 2 is 4.64 cycles, which is 14.5

times larger than 0.32 cycles by HiEMS and 2.59 times larger

than 1.79 cycles by PF.

In practice, the minimum lifetime represents the first time

when replacement is needed. The lifetime is estimated using

the formulation in (8). The battery life cycle is chosen as

13,000 for the V group and 2,000 for the L group [22]. The

capacity loss caused by self-discharge and internal leakage is

ignored. As recorded in Table IV, the first replacement time

with HiEMS is 2.92 times longer than that of PF, and 7.56

times longer than that of M-S.

F. Impact of PV penetration

The impact of PV integration is simulated with different

penetration settings. The original setting refers to 67.5% of

the peak load power. The resulting CPI and score values are

plotted in Fig. 12. With increased PV penetration, the CPI will

be improved due to the PV power output. However, when the

penetration rate grows to 1.6 times the original setting, the

BESSs are not able to deal with the fluctuations. The system

frequency regulation performance drops to 0.1427. According

to market rules, the entity will not be rewarded for that hour

when the hourly score is lower than 0.25 [23]. Furthermore, the

regulation entity will be disqualified if its 100-hour historical

score drops below 40% [14]. Therefore, the maximum CPI for

this system can be boosted to no larger than 51.11% with PV

generation.

V. CONCLUSIONS

This paper proposes a HiEMS for multi-use BESSs

to improve their cost-effectiveness. Several BESSs can be

aggregated and coordinated to participate in both the energy

market and the regulation market. Multiple objectives are

incorporated into two optimizers. Both can be implemented

utilizing the predictive control strategy.

Realistic regulation performance is modeled to guarantee

the optimal regulation energy schedule, and thus gaining

maximum profit. After bringing in multi-market participation

and considering the trade-off between the performance

and power bids, the proposed HiEMS boosts the CPI to

40.17%, compared to around 10% from only energy market

participation, and 31.88% with constant score assumption.

In terms of real-time performance, the dispatch optimizer

coordinates the BESSs and manages the SOC. The HiEMS

scores 0.92, outperforms PF by 1.02 times and M-S by 1.12

times.

Cost awareness of the BESSs helps HiEMS manage BESS

usage, and postpone the replacement investment. DAC is

included as a part of the costs in both optimizers. This ensures

that the control commands are sent to BESSs considering their

specific battery characteristics. As a result, the time of first

replacement for HiEMS is 2.92 times larger than that of the

PF method and 7.56 times larger than that of the master-slave

method.

Lastly, the CPI can be further improved by integration

PV generation. However, the PV fluctuations will bring

more challenge to the BESSs in maintaining an acceptable

performance. In the tested system, the CPI maximum value

can be no larger than 51.11% with increased PV generation.
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