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ABSTRACT This paper proposed a configurable sub-connected architecture with a framework that dynam-

ically activates the near-optimal subset of antennas and RF chains to implement energy-efficient hybrid pre-

coding in millimeter wave multiple-input multiple-output system. Since the exhaust search is computational 

intractable, we propose a two-stage hybrid precoding algorithm, where the digital precoder is designed to 

eliminate the inter-user interference by zero-forcing rule. Specifically, in the first stage, we introduce an 

extended cross-entropy algorithm that adaptively updates the probability distribution of potential states in the 

analog precoder matrix, which can generate a solution that is close to the optimal with a sufficiently high 

probability. In the second stage, a QR-based subset selection algorithm is proposed to pick the near-optimal 

subset of the RF chains to further cut down on the energy cost. Simulation results show that proposed extend-

CE algorithm gets favorable performance in terms of energy efficiency, and QR-based RF chain selection 

can achieve a near-optimal performance. Other hybrid precoding algorithms can also be incorporated into the 

proposed RF chain selection algorithm.  

INDEX TERMS Cross Entropy, Energy Efficiency, Hybrid Precoding, mmWave, MU-MIMO  

I. INTRODUCTION 

Millimeter-wave (mmWave) massive multiple-input multi-

ple-output (MIMO) has been regarded as a key technology 

to meet the increasing traffic and critical energy efficiency 

demand in cellular network [1][2]. The sub-6 GHz micro-

wave frequency spectrum is very crowd for mobile commu-

nication [3]. MmWave frequency band is considered as a 

promising spectrum resource to meet the demand of 5G 

wireless communication and beyond, which provides larger 

capacity, higher data rate, and more reliability [4]. It also 

faces challenges like severe path loss, unconventional fading 

channel, hardware complexity and high energy consumption. 

In the large-scale MIMO transmission scenario, the array gain 

is reaped to combat severe path loss by massive antennas at an 

order of a hundred or more [5].    

Base station (BS) equipped with a large number of anten-

nas is able to serve multiple users simultaneously. Precoding 

schemes can be categorized into three types, namely, fully-

digital structure, fully-analog structure, and hybrid structure. 

In the fully-digital system, it requires a dedicated radio fre-

quency (RF) chain consisting of digital-to-analog converter 

(DAC), mixer, filter, power amplifier to serve each antenna 

[6]. This leads to unacceptable hardware cost as well as high 

power consumption when plenty of transmit antennas are 

adopted in the MIMO scenario. Hybrid precoding involves a 

low-dimension digital precoder but preserves the high-dimen-

sion analog array at the same time [7-9]. It provides more con-

current data streams than the fully-analog scheme, and avoid 

a large number of RF chains when compared with fully-digital 

structure. Two typical precoding architectures are generally 

used to realize the hybrid precoding, i.e., fully-connected (FC) 

and sub-connected (SC) structure. Numerical results show that 

SC structure achieves comparable spectral efficiency perfor-

mance with its counterpart but saves a lot of hardware com-

plexity and power consumption [10].  

In the hybrid process, analog beamformer is designed to 

harvest the array gain to improve the spectral efficiency while 

digital baseband precoder is aimed at eliminating the inter-

chain interference [11]. Analog precoding design has been 

studied in many literatures. Utilizing the spatial sparsity, hy-

brid precoding based on orthogonal matching pursuit (OMP) 

is proposed in [6], however, the pre-defined codebook limits 

the performance of analog beamformer. By factorizing the 

equivalent channel matrix, near-optimal hybrid precoding al-

gorithms for both FC and SC structure are proposed based on 

alternating minimization and then extended to mmWave 

multi-carrier system in [12]. In [13], a deep neural network 

(DNN) is introduced as a framework to train the precoder and  
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FIGURE 1.  System model for an mmWave A/D hybrid MIMO system with configurable sub-connect structure.   

 

combiner which achieves substantial performance than con-

ventional codebook-based block diagonalization (BD). Hy-

brid precoding in terahertz communications is investigated in 

[14], where ultra-massive antennas are deployed to overcome 

the huge propagation loss. Then a dynamic subarray hybrid 

precoding scheme is proposed to balance the spectral effi-

ciency and power consumption.  

Matrix theory demonstrates that linear digital processing 

schemes, such as match filter (MF) [15], zero forcing (ZF) 

[16] or BD [17], can help promote the system throughput and 

simplify the precoding and combining design for multiuser 

communication. ZF precoding, which cancels the inter-user 

interference through simple matrix inversion, is a practical 

scheme for implementation. Due to the significantly simpli-

fied receiver design, the mobile stations (MSs) no longer re-

quire any combining process [18]. When the MSs equip extra 

antennas to promote their array gain, a hybrid precoding and 

combining scheme should be designed to cope with the cross-

stream interference as well as inter-user interference. BD can 

be viewed as a generalization of the ZF to deal with this situ-

ation which uses singular value decomposition (SVD) as the 

matrix tool to eliminate the inter-chain interference, and pro-

vides a close-form solution to calculate the digital precoding 

and combining matrix [19]. The traditional BD achieves a sub-

optimal capacity performance by selecting from DFT set as 

the RF combiner, and using equal gain transmission (EGT) as 

the RF precoder design criterion. The spectral and energy ef-

ficiency comparison of MU-MIMO systems with different lin-

ear processing schemes can be found in [20].  

Energy efficiency is another issue when designing the hy-

brid precoding system. User can scale down its transmitted 

power proportional to the number of antennas at the BS [21], 

but equipping massive antennas results in a higher power con-

sumption. It requires a tradeoff between achieving higher data 

rates and power consumption [22-24]. Owing to the increase 

in both ecological and economic concerns, EE optimization as 

a fractional programming problem for wireless 

communications has received extensive interest recent years 

[25-27]. Although both academia and industry have already 

focused on the EE of cellular networks [28], existing architec-

tures cannot face the increasing complexity of future networks 

towards new frequency bands, new radio, new service and ap-

plications. For this reason, innovative architectures are re-

quired to address the crucial demanding green specifications 

and other considerations in next-generation communications. 

The use of a SC structure can naturally reduce the power con-

sumption than the FC structure [29]. The power consumption 

can be reduced by implementing low resolution quantization 

for both precoder and combiner [30]. With 1-bit sampling res-

olution, optimizing the number of RF chains also shows better 

energy efficiency than the conventional hybrid beamforming 

architecture [31]. The power consumption model investigated 

in [32] has been widely used for analyzing the energy effi-

ciency optimization problem. Based on this model, many en-

ergy-efficient hybrid precoding schemes have been proposed 

in mmWave MIMO cellular communications [33-43]. How-

ever, the major drawback of these works is that they adopt a 

fixed architecture. A better energy efficiency performance can 

be achieved if the system has a dynamic architecture in ac-

cordance with variable clients or channel conditions [44].  

In this paper, we consider the downlink transmission of the 

sub-connected MU-MIMO system. As shown in Fig. 1, a dy-

namic RF precoding structure is adopted with configurable 

connections. The nature of “dynamic” lies in the fact that the 

RF chains and antennas can be closed to save energy con-

sumption which enables this structure to activate the near-op-

timal subset of antennas and RF chains to implement energy-

efficient hybrid precoding. The hybrid precoding algorithm is 

designed hierarchically. Inspired by cross-entropy (CE) [35], 

we propose an analog precoding algorithm where the candi-

date precoding matrices are generated according to equiprob-

able distribution, and then the elite candidates are selected to 

update the distribution in each iteration. After several itera-

tions, the distribution will finally converge to a stable state, 
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and the obtained precoder can be sufficiently near the optimal. 

CE has shown potential sum-rate performance in recent stud-

ies [36], but its searching space is significantly reduced than 

the exhaust search. The baseband channel matrix should have 

a sufficient rank to transmit enough streams to support all the 

clients, while at the same time, the number of active RF chains 

should be as less as possible to save energy consumption. This 

problem can be derived as identifying the most representative 

columns of the equivalent analog channel matrix. In [45], au-

thor provides a rule to increase the ratio of determinants by 

permutating the columns. Base on this rule, we develop an it-

erative algorithm to systematically pick the subset that repre-

sents the entire channel well. The contribution of this paper 

can be summarized as follows:   

• A configurable sub-connected hybrid precoding structure 

is proposed. By adjusting the states of the network, this dy-

namic architecture can achieve a balance between spectral ef-

ficiency and power consumption.   

• We develop a framework utilizing the extend-CE minimi-

zation to generate the analog precoding matrix in an iterative 

way. Energy efficiency is optimized by calculating the an-

tenna activity and phase of each shifter at the same time.  

• Based on the QR decomposition, we formulate how to dis-

card the unnecessary columns in the equivalent analog chan-

nel matrix, and accordingly turn off the RF chain to further 

save the power consumption.   

To the best of our knowledge, there is no prior work on en-

ergy efficiency optimization considering this dynamic archi-

tecture, which is still an open problem and the focus of our 

work. The rest of this paper is organized as follows. Section II 

presents the system model of downlink mmWave MU-MIMO 

system. Energy efficient hybrid precoding is studied in Sec-

tion III. Section IV provides the simulation results and perfor-

mance comparison. Finally, the conclusion is drawn in Section 

V.   

Notation: Upper- and lower-case boldface denotes matrices 

and vectors, respectively. [·] denotes the expectation and  

denotes the ensemble of complex numbers. XH, and X−1 rep-

resent the conjugate transpose and inversion. ||·||F and det(·) 
denote the Frobenius norm and determinant of matrix X. Fi-

nally, IN is the N×N identity matrix, and 0 is the all-zero matrix.   

II. SYSTEM MODEL 

A. A/D Hybrid MIMO System Model 

We consider the downlink transmission of the MU-MIMO 

system. BS is equipped with N antennas and M RF chains, 

and K single-antenna MSs are active simultaneously, so 

there are totally K data streams to be scheduled at the BS. To 

guarantee the effectiveness of communications, and maxim-

ize the system throughput with limited hardware resources, 

the number of RF chains should be constrained by K ≤ M ≤ 

N.   
At the BS, the transmitted symbol vector s is addressed by 

a digital baseband precoder B of M ×K and then an N ×M RF 

precoder F. Baseband precoder allows both amplitude and 

phase modification on the signal, while only phase shift can 

be realized by RF precoder via analog circuit. We assume 

each entry of F has unit amplitude and B is designed to meet 

the transmitted power limitation, i.e., ||FB||
2 

F  = K. We assume 

a non-frequency selective fading channel, the signal arrived 

at the kth MS is  

                                  ,= +k k ky nh FBs   (1) 

where s = [s1, s2, …, sK]T∈CK×1 is the vector contains the 

signal of all the MSs. The signal vector satisfies [ssH] = P 

/K IK, where P is the average transmit power. h
 

k∈1×N is the 

channel matrix of the kth MS, and n
 

k is the i.i.d additive noise 

vector obeying (0, σ2). To simplify the analysis, the 

equivalent analog channel coefficient of kth MS is defined as  

                         .=k kh h F        (2) 

Then the signal at the kth MS can be written as  

1,

noiseinterference

ˆ
= 

= + +
K

k k k k k i i

i i k

ks s s nh b h b   (3) 

in which bk is the digital baseband precoding matrix corre-

sponding to the kth MS, i.e., the kth columns of B. Assuming 

the modulated symbols are Gaussian, the sum spectral effi-

ciency can be expressed as  

( )2

1

log 1 SINR ,
=

= +
K

k

k

R                    (4) 

where SINRk is the signal-to-interference-plus-noise ratio of 

the kth MS as 

1,

SINR = .

= 

+

k k k

k K

k i i

i i k

k

s

s n

h b

h b

   (5) 

B.  MmWave Channel Model  

MmWave channel no longer obeys the conventional Ray-

leigh fading, and it has different propagation characteristics 

when compared with low-frequency channels [37]. Clus-

tered mmWave channel model characterizes the limited scat-

tering feature of the mmWave channel. The normalized 

mmWave downlink channel for the kth MS is modelled as the 

sum of all the propagation paths which are scattered in NC 

clusters where each cluster involves total NP paths. It can be 

expresses as   

                    ( )
pc

, BS ,

1 1C P

1 NN
k k

k c p c p

c p

g
N N


= =

= h a   (6) 

in which g
k 

c, p corresponds to the complex channel gain of the 

pth path of the cth cluster. φ
k 

c, p is the azimuth angle of the depar-

ture (AoD). aBS(φ
k 

c, p) is the transmit array response vector 

while the elevation dimension is ignored. In each cluster, we 

assume φ
k 

c, p is distributed within a specified range which is 

generated by truncated Laplacian distribution.   

Without loss of generality, we chose the uniform linear ar-

ray (ULA) to model the BS and MSs array in this study. For a 

N antenna array, the response vector can be given as  
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( ) , ,

T
2 sin( ) 2 ( 1) sin( )

BS ,

1
1, , ..., ,

     


− =
  

k k
c p c pj d j N dk

c p e e
N

a  (7) 

where λ is the wavelength of the carrier frequency and d is the 

distance between the adjacent antennas. Assuming a half 

wavelength antenna spacing in this study, the array response 

can be calculated from (7). Other antenna array patterns can 

also be adopted, and proposed scheme can be directly applied 

to arbitrary antenna arrays. Due to the sparse nature of the 

mmWave, the channel coefficients can be effectively esti-

mated via compressing sensing algorithms [38][39], and we 

assume that BS has full knowledge of hk.   

C.  Hybrid Precoder 

The broadly discussed FC hybrid precoder, where each RF 

chain is connected to all antennas through variable-degree 

phase shifters (PSs) and RF adders, is able to approach the 

performance of the unconstrained maximization [40]. Hybrid 

precoding adds constraints to the RF precoder where only B-

bit quantized shift can be applied to each element, i.e.,  
2 2 (2 1)

( , ) 2 21, , ... ,

B

B B
j j

p qf e e

  −  
 
  

，              (8) 

where f
  (p,q)

 is the (p, q)th entry of F. It has been considered 

in many studies to achieve full precoding gain [9-20] [29-

41]. Most of these algorithms decompose the problem into 

analog and digital precoder design separately. Specifically, 

the analog precoder F is first generated or selected from a 

predefined codebook to maximize the sum rate according to 

the channel matrix hk. After that, the digital precoder B is 

designed to eliminate the inter-chain interference.  

To reduce the hardware complexity, one feasible solution 

is to replace the FC RF network with SC structure [41] where 

each RF chain is only connected to Q variable-degree PSs 

where Q =N /M. The format of this RF precoding matrix can 

be written in a block-diagonal form as 

1

2
,

M

 
 
 =
 
 
 

f 0 0

0 f 0
F

0 0 f

                     (9) 

where fm denotes the analog precoding vector of the mth RF 

chain with size Q×1 and each non-zero element should be in 

the set of (8). A further simplification is to replace the PSs 

by only one inverter and RF switches [33] [41]. However, 

due to the elementary on-off connection, this switch-based 

structure fails to realize the full array gain.  

In typical design procedure, the optimization on precoder 

should be an essential method to achieve maximal energy 

efficiency or minimal distance to optimal precoder. Finding 

the energy efficient precoding matrix are non-coherent com-

bining optimization problems [42], and the large-scale pre-

coding matrix makes it almost intractable to find the global 

optimum through exhaust search while maintaining the con-

straints imposed on the precoder [6]. Even in the fully-digital 

MU-MIMO systems, it still requires enormous efforts to find 

a local optimum of energy efficiency [43].   

III. ENERGY-EFFICIENT HYBRID PRECODING  

With a large number of antennas deployed in the considered 

scenario, array gain should be cultivated through appropriate 

designed hybrid precoding. Two conditions should be met at 

the same time: one is that the equivalent channel should be 

well-conditioned enough to support reliable transmission of 

totally K streams; another is that after closing nonessential RF 

chains and antennas, energy efficiency should be as larger as 

possible.  

We formulate how to design the hybrid precoder in this sec-

tion. The parameters of power consumption model are defined 

in subsection A. Then, the overall framework of proposed al-

gorithm and the procedure of generating the RF precoder are 

provided in subsection B. Subsection C gives the active RF 

chain selection algorithm to calculate the baseband precoder 

B from the equivalent baseband channel matrix, which is a 

necessary step in the algorithm 1 framework.  

A. Energy Efficiency  

In terms of achievable sum rate R and consumed power P, 

the energy efficient is defined as the ratio  

( )
( )

( )
( )

,
, bits/Hz/J ,

,

R
E

P

F B
F B

F B
  (10) 

where R(·) represents the information rate in bits/s/Hz and 

P(·) is the required power in watt. We adopt the power con-

sumption model in [33], where the power consumption can 

be expressed as   

( ) ( )BS PA PS RFC DAC BBsN P P N P P PP  + +  + +=   (11) 

in which NBS and NS are the number of active antennas and 

RF chains. PPA, PPS, PRFC and PDAC are the power of the 

power amplifier, PS, RF chain, and DAC respectively. PBB 

denotes the power of the digital signal processing. It can be 

observed from (11) that SC structure requires less power on 

PPS than the FC structure which contains N×M PSs and 

power of RF adders is omitted. The values of each parameter 

employed in this work are as follows: PPA = 20mW, PPS = 

30mW, PRFC = 30mW, PDAC = 200mW, and PBB = 4 [41].  

B. CE-based Analog Precoding   

In the first stage, we optimize the energy efficiency by 

turning off nonessential antennas (and corresponding PSs 

and amplifiers) which contribute little to the total energy ef-

ficiency. To better explain the antenna selection mechanism, 

we introduce an extra state, i.e., 0, that indicates the off 

switch of the antenna, while the non-zero values still deter-

mine the phase of the corresponding active antenna. Clearly, 

increasing the number of active antennas, we might have a 

higher information rate but there is also a higher power con-

sumption. The possible value of the entries of F can be ex-

tended as  
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Based on the SC structure, the purpose of energy efficient 

hybrid precoding is to maximize energy efficiency with re-

spect to F and B as  

  ( )
( )

( )
21

, ,

2

F

log 1
, arg max , arg max

,

subject to 

.

K

kkE
P

K


=

+
= =



=


F B F B

F B F B
F B

F

FB

,
(13) 

in which  is the set of all the possible analog precoding ma-

trix satisfying (9) and (12). We define the equivalent base-

band channel as  

                               
T T T

eq 1[ , ..., ] .K=H h h F   (14) 

For ZF digital precoder, the SINR of the kth user γk can be 

calculated as  
2

T

F

2
2 T

F

,




=
+

k k

k

k k ii k

h Fb

h Fb
  (15) 

where bk is the kth column of the digital baseband precoder 

B and the detail procedure of designing B is provided in next 

subsection. The core of hybrid-ZF precoding is to design F 

under given constraints. One solution is the exhaustion 

search: F has up to N non-zero elements and each element 

have 2B+1 potential values, so there are (2B+1)N possibilities. 

However, in the massive MIMO configuration, N is usually 

very large, so finding the global optimum while maintaining 

the constraints imposed on the RF precoder is often compu-

tational intractable. In the proposed algorithm, we resort to 

iteratively generating near-optimal tests and optimizing the 

distribution by minimizing the cost function in a close form. 

Specific steps are detailed as follows:    

Step I, initializing the equal-probable matrix P1 whose    

element p
1 

l,n indicates the possibility of the lth phase of the nth 

non-zero element in F where 1≤l≤2B+1 and 1≤n≤N.   

Step II, according to Pm, where m represents the iteration 

index, randomly generating S individuals Fs, where 1≤s≤
S, and computing the corresponding Bs whose detail proce-

dure is given in next subsection.  

Step III, calculating the energy efficiency Es by (10) be-

fore sorting {Es} in a decent order as {E1, E2, …, ES}. Then 

we pick the T largest as the elite-batch.   

Step IV, the extend-CE using with weighted log-proba-

bility distribution is  

( )
2 1

, , ,1 1 1
ln ,

+

= = =
=  

BT N m m

t t n l n lt n l

m w pP   (16) 

where δt,n,l is the binary activity indicator. Only when the lth 

phase candidate of the nth antenna is selected at tth test, δt,n,l 

is active. wt is the weight of the elite-batch defined by  

( )
1

1 .
t T

t T

t T

t

R R

R R
w t T

=

= 
−


−

  (17) 

Step V, updating the probability matrix following  

( )1 arg min .
m

mm+ =
P

P P   (18) 

The problem can be formulated as  

( )
2 1

,1

minimize

subject to 1, for 1,..., .
B

m

n ll

m

p n N
+

=
= =

P
  (19) 

We introduce multipliers εn where n=1,…,N, the Lagrange 

function can be constructed as  

( )

( )

2 1

1 , , ,1 1 1

2

1 ,

1

1

, ,..., ln

1 ,

B

B

T N m m

N t t n l n lt n l

N

rr l

m

l np

w p 




+

= = =

+

= =

= −

−

  

 

P
 (20) 

and solving totally N×(2B+1) equations  

( )
,

1,
, ,..., 0,

where 1 2 1,1 ,1 .

m
n l r

Np

B

m

l n N r N


  =
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P
 (21) 

Finally, we have  

, ,+1 1

, 2 1

, ,1 1

, for 1 2 1,1 .
B

T m

t e n lm Bt

n l T m

t t n lt l

w
p l n N

w





=

+

= =
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

 
 (22) 

Step VI, let m←m+1 and restart the loop from step II until 

wt = 0 for all t or reaches the maximum number of iterations. 

Finally, we output Fopt and Bopt which have the largest Eopt.  

The complete process of proposed algorithm is listed in 

Algorithm 1. In the proposed algorithm, wt in (17) creates the 

unfairness for each elite to accelerate the convergency and 

provides a simple ending criterion in Step VI. 

 

 Algorithm 1 Proposed hybrid precoding algorithm 

Input: H, σ2 

1: Loop:  

2:    for s in 1…S do  

3:       Generate Fs according to Pm;  

4:       Calculate Bs by (26); 

5:       Calculate Es by (10);  

6:    end for 

7:    for t in 1…T do  

8:        Calculate wt by (17);    

9:    end for  

10:    Check convergency;    

11:    for n in 1…N do   

12:        for l in 1…2B+1 do   

13:            Update p
m+1 

l, n  by (22);   

14:       end for 

15:    end for 

16:    m←m+1; 

17: end loop 

18: return Fopt , Bopt and Eopt.   

C.  Active RF Chain Selection  

In this subsection, we show how to calculate the baseband 

precoder B through active RF chain selection. From (14), we 

have an equivalent baseband channel matrix Heq of K×M.  
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Algorithm 2 Near-optimal RF Chain Selection  

Input: Heq  

1: Initialize Π = IN, H = HeqΠi, j+K 

2: Decomposition: H = QR where R = [RK C]  

3: while: exist i, j such that | R
-1 

K C|i, j > 1 

4:    Update H: H = HΠi, j+K 

5:    Decomposition: H = QR where R = [RK C] 

6: end while  

7: Calculate B by (26) where H = [H1 H2]; 

8: return B. 

 

The problem of RF chain selection can be expressed as find-

ing a permutation matrix Π such that  

 eq 1 2=H Π H H   (23) 

where H1 contains the K most linearly independent columns 

in Heq (condition 1), or equivalently the best linear combina-

tion of H1 is close to H2 such that minz‖H1z− H2‖2 is suffi-

ciently small (condition 2). Identifying the most important 

columns in a matrix has been studied in solving rank-defi-

cient least square (LS) problems [47], information retrieval 

[48], genetics [49], and wireless communication [50].  

The concept of rank-deficiency is important in subset     

selection where the singular value is considered as the metric 

to check if a matrix is or close to rank-deficient. Our near-

optimal RF chain selection is based on QR decomposition 

[47] as  

 eq = = ,KQRH Q R C   (24) 

where RK ∈K×K and C∈K×(M-K). To gauge the linear in-

dependence of a set of columns and find the most representa-

tive columns. We pivot the columns of R with the goal of 

increasing the singular value of RK. Based on the fact that 

|det(Heq)| = |det(R)| = |det(RK)| × |det(C)|, the permutation 

moves the selected columns towards satisfying the condi-

tions 1 or 2 by increasing the singular values of RK as large 

as possible.  

In [46], a useful conclusion is drawn to detect the increase 

of the singular value before really performing a permutation. 

Define R̃ = RΠi,j , the ratio of two determinants can be         

expressed as  

( )
( )

1

,

det
.

det
K i j

−=
R

R C
R

  (25) 

We only permutate the the ith and jth column of R if (25) is 

greater than threshold. In our algorithm, the loop runs as long 

as the determinant increases in magnitude, i.e., |det(𝐑̃)| / 

|det(R)| > 1.Finally, the baseband precoder can be calculated 

by  

( ) ( )( )

( ) ( )( )

1
H H

1 1 1

2
1

H H

1 1 1

F

.
K

−

−
=

H H H
B

F H H H

    (26) 

The procedure of near-optimal RF chain selection is pro-

vided in Algorithm 2. Note that proposed algorithms do not 

rely on any precondition of the channel matrix. It can be 

adopted in the mmWave sparse scattering channel as well as 

the typical i.i.d Rayleigh channel as long as the channel ma-

trix is available.  

IV. SIMULATION RESULTS  

In this section, the performance of our proposed precoding al-

gorithm is evaluated in the downlink mmWave MIMO sys-

tems. The number of antennas at the BS are 64, and 16 RF 

chains are employed to serve 8 users. The SNR is defined as 

P / σ2. We model the mmWave propagation channel with NC 

= 8 clusters and each cluster involves NP = 10 paths. The angle 

spread of θk and φk are both equal to 7.5°, and each path factor 

follows a complex Gaussian distribution with zero mean and 

unit variance. Other parameters of proposed algorithm are set 

as follows: S = 500, E = 0.15S, and the maximum number of 

iterations is 20.   
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FIGURE 2. Energy efficiency comparison of different schemes.  

In Fig. 2, we compare the achieved energy efficiency 

against SNR of proposed algorithm with state-of-art solu-

tions where B = 2. Dinkelbach Method (DM) [51] is an effi-

cient algorithm which replaces the fractional cost function of 

(10) by iteratively solving a sequence of difference-based 

problems. Iterative optimization (IO) [43] is performed to 

maximize the spectral efficiency after exhaust searching (ES) 

the most energy efficient antenna pattern. Both full-rank and 

QR-based RF chain selection are presented for comparison. 

As observed from the figure, fully-digital approach provides 

the lower bound for all algorithms, because it consumes 

much more power than others. For all the schemes, QR-

based RF chain selection shows superior performance than 

the full-rank matrix inversion. DM-CE and ES-IO have com-

parable performance and proposed extend-CE outperforms 

both over a wide range of SNR.  

Fig. 3 plots the achievable energy efficiency cumulative 

distribution function (CDF) curve of proposed algorithm 

with different phase resolution when SNR = 20 dB. Simula-

tions start from similar initial population. The multi-phase 

superiority helps proposed algorithm promote performance 
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FIGURE 3. CDF of the achieved energy efficiency. 
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FIGURE 4. PMF plots of the number of active antennas at different SNR  

faster than the binary phase condition after the first 15 loops. 

As the generation evolves, the range of achievable energy 

efficiency continues narrowing and the curve becomes 

steeper. After 20 loops, both the algorithms achieve their 

convergency because the weight wt decreases to zero, i.e., Rt 

= RT for 1 ≤ t ≤ T, and the probability evolution terminated. 

Finally, proposed algorithm with B = 2 advances the curve 

where B = 1 about 0.2 bits/Hz/J.  
In Fig. 4, the comparison is made to the proposed algo-

rithm with different SNR, in terms of the probability mass 

function (PMF) for the number of active antennas. The PMF 

plots indicate the histogram that for how many realizations a 

particular value of the variable defined on the x-axis is 

achieved. In this figure, we show the PMF of the distribution 

of proposed extend-CE method over the number of antennas, 

i.e., NBS. For example, at SNR = 0dB, proposed algorithm 

chooses NBS = 43 for 260 different realizations. We also ob-

serve that at a lower SNR, it prefers to activate more anten-

nas to maximize energy efficiency, while at a higher SNR, it 

prefers to turn off nonessential antennas to save power con-

sumption. Because calculating the object function in Eq. (13)  
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FIGURE 5. Energy efficiency comparison of different phase resolution. 
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FIGURE 6. Comparison of achieved energy efficiency with different RF 
chain selection schemes.  

is non-convex and hard to tackle directly [52], we can relax 

the constrain by finding the optimal number of active anten-

nas instead of calculating the optimal precoder. The figure 

gives an idea on how close the proposed algorithm is near 

the optimal in terms of the number of active antennas. Be-

cause CE is a global random search procedure, it can find an 

optimal solution with a probability arbitrarily close to 1 [53]. 

It is sure that our results fall around the optimal number of 

antennas. The probability distribution is more concentrated 

and the results are more reliable at a high SNR.  

In Fig. 5, we compare the performance of proposed algo-

rithm with different RF antennas as a function of quantizing 

resolution of the variable-degree PS. The parameters are set as 

follows: K = 8, M = 16 and SNR = 10 dB. It can be observed 

that doubling the number of RF antennas promotes the energy 

efficiency by about 3 bits/Hz/J. Increasing the phase candi-

dates can also improve the performance. When N = 32, the 

promotion is not significant, but with more than 128 antennas, 

increasing the resolution will remarkably improves the energy 

efficiency. However, as the number of potential states in-

creases, the size of population becomes the major limitation. 

Comparing the curves where N = 256, potential improvement 
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can be achieved when we tenfold the population. System with 

N = 256 and S = 5000 promotes about 3 bits/Hz/J than S = 500, 

almost the same performance of doubling the number of RF 

antennas.    

In Fig.6, we compare the achievable energy efficiency 

performance of different RF chain selection schemes, 

namely, full-rank which keeps all the RF chains at service, 

random-pick which randomly picks K RF chains and turn off 

others, proposed QR-based RF chain selection scheme, and 

brute-force which searches over all the possible combination. 

64 antennas and 16 RF chains are employed to serve 8 users 

in the simulation. Because the full-rank scheme consumes 

the most energy, its energy efficiency is way from the opti-

mal especially at a high SNR. From the figure, we can see 

that proposed QR-based RF chain selection scheme achieves 

similar performance with the brute-force, and more than 7 

dB advances the random-pick over a wide range of SNR alt-

hough they have identical baseband power consumption. Be-

cause our method is not deterministic, we measure the con-

vergency performance of above methods in terms of their 

running-time on my laptop (with AMD 4800u processor). 

Averaging 105 realizations at 10dB, the time consumption of 

brute-force, QR-based, full-rank and random-pick are 7.13 × 

10-2s (using parfor), 3.20×10-3s, 2.97×10-5s and 2.81×10-5s, 

respectively. From above results, we observe that full-rank 

and random-pick show comparable running time. QR-based 

subset selection is about 102 time consuming that random-

pick on average, but still far less than the brute-force.   

V. CONCLUSIONS  

In this paper, a sub-connected hybrid precoding structure 

with configurable digital and analog connections has been 

proposed for the mmWave MU-MIMO downlink transmis-

sion. This structure adopts a dynamic connection to achieve a 

balance between spectral efficiency and power consumption. 

The design of the precoder is formulated as a non-convex op-

timization problem, and we solve the problem in two stages. 

In the first stage, we adopt the extend-CE with weighted log-

probability distribution as the metric to solve the CE minimi-

zation problem, and a close-form solution is derived to update 

the probability matrix in each iteration. In the second stage, a 

QR-based subset selection algorithm is proposed to pick the 

active RF chains to further cut down on the power consump-

tion, thus a near-optimal baseband precoding matrix is ob-

tained. The performance of proposed framework is examined 

with different configurations, and simulation results indicate 

that proposed algorithm is able to match the channel to im-

prove the system’s energy efficiency. Further study will be ex-

plored to minimize the population size and achieve faster con-

vergency in the future work.  
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