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Abstract. In this paper we present a comprehensive energy-based framework for the estimation and the seg-

mentation of the apparent motion in image sequences. The robust cost functions and the associated hierarchical

minimization techniques that we propose mix efficiently non-parametric (dense) representations, local interacting

parametric representations, and global non-interacting parametric representations related to a partition into regions.

Experimental comparisons, both on synthetic and real images, demonstrate the merit of the approach on different

types of photometric and kinematic contents ranging from moving rigid objects to moving fluids.
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1. Introduction

Among early vision problems, the estimation and the

segmentation of the apparent motion from an image se-

quence is particularly intricate. It is a two-fold problem

which lies at the heart of most tasks of video analysis. It

is thus a critical part of a number of computer vision ap-

plications such as motion detection in a scene, 3D mo-

tion and scene structure recovery, obstacle avoidance in

robotics, etc. (see for example, Mitiche and Bouthemy

(1996) for a review on motion analysis issues).

Stemming either from a discrete Markovian frame-

work or from a deterministic continuous one, energy-

based models are very appealing to handle in a

versatile way high-dimensional inverse problems. For

motion analysis purposes, such models have been thor-

oughly investigated. They usually rely on the bright-

ness constancy assumption (i.e., the image irradiance

of a physical point does not change within a certain

time interval) combined with some a priori knowledge

on the displacement field. This prior is either captured

locally by a smoothness term in the cost function

(Horn and Schunck, 1981), or defined more globally

as a parametric representation of the unknown motion

(Adiv, 1985; Ayer and Sawhney, 1995; Bergen et al.,

1992; Bouthemy and Francois, 1993). These two types

of prior have their own advantages and drawbacks.

Contrary to the local smoothing approach, the para-

metric modelization relies on large spatial supports of

estimation. This type of modelization is thus usually

dedicated to motion-based segmentation where areas

with kinematic meanings have to be extracted from the

images (Ayer and Sawhney, 1995; Bergen et al., 1992;

Bouthemy and Francois, 1993; Murray and Buxton,

1987), provided that such regions with consistent mo-

tions exist in the sequence at hand. This type of ap-

proach is also expected to be more reliable, provided

that the selected parameterization makes sense from

a physical point of view. Local non-parametric mod-

els are, in that sense, more versatile since they only
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capture smoothness assumptions on the desire solu-

tion. Besides, they are independent of any partition

of the image, and they can easily handle local fea-

tures of the motion field such as discontinuities (Black

and Rangarajan, 1996). For these reasons, they are

usually involved in dense motion estimation (Black and

Rangarajan, 1996; Cohen and Herlin, 1999; Kornprobst

et al., 1999; Mémin and Pérez, 1998a).

The limitations of each approach can be illustrated in

the case of images involving fluids. In sequences of this

nature, like those encountered in meteorology (atmo-

spheric satellite images) or fluid mechanics (videos of

wind tunnel or water tank experiments), it is common

to observe very low photometric contrasts. Although

the brightness constancy assumption can be turned into

a more appropriate “transport” model (Corpetti et al.,

2000; Schunck, 1986) in this specific context, the data

model will always be plagued by the absence of consis-

tent photometric information to rely on. In that case, the

parametric approach, with its use of extended estima-

tion supports, could seem more appropriate. However,

the physics of the scene makes its use delicate: in fluid

motions there is no real objects or motion regions with

borders, and the involved motions can be much more

complex than those captured by standard parametric

models.

Based on these preliminary remarks, we aim at mix-

ing a local non-parametric smoothing and a more global

parametric representation. We actually present two dif-

ferent (and not exclusive) methods to reach that goal.

The first one concerns a particular constrained mini-

mization technique used with an energy-based dense

motion estimation model. The second method deals

with an energy-based model for the joint estimation-

segmentation of the apparent motion. In both ap-

proaches, whose cost functions are partly the same, ro-

bust penalty functions are used to deal with the various

deviations from the selected models. We also propose

to build on the so-called “semi-quadratic” rewriting of

such robust functions with auxiliary weights, by using

the auxiliary weights as a device to couple the different

variables of the problem.

As already mentioned, energetic formulations can

be viewed either from a continuous angle or from a

discrete one. The former kind of approaches implies

continuous functionals, variational calculus, determin-

istic partial differential equations, and discretization

schemes (finite differences, finite elements), whereas

the latter type of formalism is often related to Markov

random fields and Bayesian inference. The two view-

points provide different insights into a given problem,

as well as different mathematical tools to cope with

the various issues at hand. Despite their differences, it

is known that these two types of approaches often lead

to very similar discrete implementations. Although our

setting relies more on a discrete philosophy, we shall

discuss the connection between the two points of view,

in terms of both models and algorithms.

The paper is divided into three main parts. In

Section 2 we focus on a robust energy-based model

for the incremental dense estimation of the apparent

motion field with preservation of its discontinuities.

To cope with the associated minimization we intro-

duce an efficient tailor-made hierarchical technique

which combines different and varying parameteriza-

tions of the unknown field. The compromise between

local dense methods and global parametric approaches

is thus introduced via the minimization process. In

Section 3 we show how the former energy function

can be extended to estimate at the same time a motion-

based segmentation of the scene. The resulting joint

estimation-segmentation model introduces another mix

between local smoothness and region-wise parameter-

ization. The global minimization is performed with a

natural extension of the hierarchical optimization tech-

nique developed in the previous part. The last part

(Section 4) is devoted to experimental results. The

two approaches are validated qualitatively and quan-

titatively on real world sequences of quite different na-

tures. Systematic comparisons are also provided on a

synthetic benchmark, including an assessment of the

sensitivity of the proposed techniques to the value of

the different parameters.

2. Robust Estimation of Dense Motion

The dense estimation of the apparent motion aims at

recovering a displacement field w = {ws, s ∈ S} over

the rectangular pixel lattice S, based on the luminance

function f (t) = { f (s, t), s ∈ S} at two consecutive

instants t and t + 1. Assuming the temporal constancy

of the brightness for a physical point between the two

images, one gets:

∀s ∈ S, f (s + ws, t + 1) = f (s, t), (1)

which is highly nonlinear w.r.t. the unknown displace-

ment vector ws at location s. A first-order expansion

of the left-hand-side provides the standard optic flow
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constraint equation (ofce):

∇ f (s, t + 1)T ws + f (s, t + 1)− f (s, t) = 0, (2)

where ∇ f stands for the spatial gradient of f . For

this approximation to be valid, the unknown displace-

ment ws should remain in the “domain of linearity”

of the luminance function at location s. This is par-

ticularly unlikely to hold around sharp edges (where

large gradients imply reduced linearity domains), and

for large displacements. These limitations are usually

circumvented by conducting an incremental estima-

tion through a multiresolution hierarchy of sequences

(Black and Anandan, 1996; Enkelmann, 1988). We,

too, stick to that multiresolution setup involving a pyra-

midal decomposition of the images. Even if we do

not make it explicit, we shall assume throughout to be

working at a given resolution of such a multiresolution

structure. One has to keep in mind that all definitions

and derivations are thus meant to be reproduced at each

resolution level according to a coarse-to-fine strategy.

2.1. Incremental Energy-Based Model

The incremental estimation assumes that a preliminary

estimate w = {ws, s ∈ S} of the unknown vector field is

available (e.g., from an estimation at lower resolution or

at previous instant). A refinement is sought in terms of

an increment field dw ∈ � ⊂ (R× R)S . Based on the

linearization of the constancy brightness assumption

(1) with respect to that increment, instead of the total

field as in (2), a robust energy-based refinement can be

defined as:

d̂w = arg min
dw∈�

[H1(dw)+ H2(dw)], (3)

with (Black and Anandan, 1996; Mémin and Pérez,

1998a):

H1(dw)
△
=
∑

s∈S

φ1([∇ f (s + ws, t +1)T
dws

+ ft (s, ws)]
2), (4)

H2(dw)
△
= α

∑

〈s,r〉∈C

φ2(‖(ws + dws)

− (wr + dwr )‖
2). (5)

The first term constitutes the data-model which rules

the dependency between the unknown displacement

field and the data. The second term captures a smooth-

ness prior on the total displacement. It is made up of

a sum of local discrepancy penalties taken over the set

C of all the pairs of neighboring pixels (for a chosen

neighborhood system, which is often of first or sec-

ond order). The parameter α > 0 balances the contri-

butions of the two terms. In the data-model ft (s, ws)
△
=

f (s+ws, t + 1)− f (s, t) denotes the displaced frame

difference, and φ1 and φ2 are two increasing concave

functions that soften the plain quadratic penalties such

as to limit the influence of large residuals. These two

functions make the model robust to large deviations

from the first-order smoothness assumption and from

the brightness constancy assumption respectively.

A so-called semi-quadratic formulation of penal-

ties of the form φ(.2), with φ concave, can be ob-

tained (Black and Rangarajan, 1996; Charbonnier et al.,

1997; Geman and Reynolds, 1992): if lim0+ φ′<∞,

and lim+∞ φ′= 0, there exists an increasing function

ψ such that φ(x2)= minz∈(0,1][τ zx2 + ψ(z)], where

τ
△
= limv→0+ φ′(v), i.e, φ(.2) is the inferior envelope

of a family of parabolas continuously indexed by an

auxiliary variable (or weight) z lying in (0, 1].1 The

minimizer is given by arg minz∈(0,1][τ zx2 + ψ(z)] =
1
τ
φ′(x2).

Using this reformulation result, the minimization

of H1 + H2 can be replaced by the minimization in

(dw, δ, β) of an augmented cost functionH
△
= H1+H2

with:

H1(dw, δ) =
∑

s∈S

[τ1δs[∇ f (s + ws, t + 1)T
dws

+ ft (s, ws)]
2 + ψ1(δs)], (6)

H2(dw, β) = α
∑

〈s,r〉∈C

[τ2βsr‖(ws + dws)

− (wr + dwr )‖
2 + ψ2(βsr )], (7)

where τ1
△
= lim0+ φ′1, τ2

△
= lim0+ φ′2, and δ={δs, s ∈ S}

and β = {βsr , 〈s, r〉 ∈ C} are two sets of auxiliary vari-

ables lying within (0, 1] and respectively attached to the

pixel grid and to the edge grid. This new minimization

can then be led alternatively with respect to dw and

to the weights: the energy H is quadratic in dw and

the corresponding minimization amounts to a standard

weighted least squares problem; conversely, dw being

frozen, the best weights are obtained in closed form

(Mémin and Pérez, 1998a). The convergence of this

alternate scheme is guaranteed, to a global minimum

if φ(.2) is convex (Charbonnier et al., 1997), and to a

local minimum otherwise (Delanay and Bresler, 1998).
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In practice, the displaced frame f (s+ws, t+1) is com-

puted through a backward registration of f (s, t + 1)

associated with a bilinear interpolation. The spatial gra-

dients are then computed on this image with the deriva-

tive filters proposed in Viéville and Faugeras (1992).

This robust energy-based modeling provides a

generic dense estimator which can be applied to image

sequences of various natures provided that they contain

sufficient photometric contrast or texture. Wherever

this condition is not met within large areas, the ro-

bust smoothness term might not be strong enough to

propagate the estimates obtained at the border of these

regions toward inner locations where data cannot be ex-

ploited. However, the experiments reported in Section 4

demonstrate that this problem is effectively tackled by

the hierarchical piece-wise parametric minimization

we now introduce. Other gains will be obtained in terms

of global quality of estimates and computational load.

2.2. Piece-Wise Parametric Constraint

Let us assume that the pixel grid is divided into a col-

lection of patches. Let B
△
= {Bn, n = 1, . . . , N } be

this partition and E the edge set of the associated con-

nectivity graph.2 We consider piece-wise parametric

increment fields for this partition. They are defined as:

∀n = 1 . . . N , ∀s ∈ Bn, dws = �n(θn, s), (8)

where θn is a pn-dimensional parameter vector and

the �n’s are interpolation functions which can be dif-

ferent from one patch to another. The whole incre-

ment field can then be expressed dw=�(θ) with

θT = (θT
1 · · ·θ

T
N ) lying in parameter space Ŵ. The full-

rank function � is the interpolator between the reduced

subspace Ŵ and the original configuration space �. It

is a one-to-one mapping from Ŵ into the constrained

configuration subset Im� ⊂ �.

The constrained minimization of H in Im� is equiv-

alent to a new minimization defined on Ŵ:

min
dw∈Im�

H(dw, δ, β) = min
θ∈Ŵ

H(�(θ), δ, β)︸ ︷︷ ︸
△
=H∗(θ,δ,β)

. (9)

The new energy functionH∗ is readily derived from the

original one (6–7). Denoting Cn
△
= {〈s, r〉 ∈ C : 〈s, r〉 ⊂

Bn} the set of the neighboring pixel pairs included in

patch Bn , and Cnm
△
= {〈s, r〉 ∈ C : s ∈ Bn, r ∈ Bm} the

set of neighboring site pairs straddling adjacent patches

Bn and Bm (see Fig. 1), one can show that this new

Figure 1. Image partitioning and associated notations: Example of

image partition B={B1,B2,B3,B4,B5} (with examples of neigh-

boring pixel pairs belonging to C1, C13, and C24 respectively),

and associated adjacency graph with edge set E ={(1, 2), (1, 3),

(2, 3), (2, 4), (2, 5), (4, 3)}.

energy is similarly composed of two terms,H∗ = H∗
1 +

H∗
2, defined as:

H
∗
1(θ, δ) =

N∑

n=1

∑

s∈Bn

τ1δs[∇ f (s + ws, t + 1)T

×�n(θn, s)+ ft (s, ws)]
2 + ψ1(δs),

H
∗
2(θ, β) = α

[ ∑

〈n,m〉∈E

∑

〈s,r〉∈Cnm

τ2βsr‖(ws +�n(θn, s))

− (wr +�m(θm, r))‖2 + ψ2(βsr )

+
N∑

n=1

∑

〈s,r〉∈Cn

τ2βsr ‖(ws +�n(θn, s))

− (wr +�n(θn, r))‖2 + ψ2(βsr )

]
. (10)

Note that the first term in the definition of H∗
2 is rem-

iniscent of the “skin and bones” model introduced by

Ju et al. (1996).

Minimizing H∗ provides a piece-wise parametric

increment field where different parameterizations are

combined. Note that, contrary to what is done in para-

metric segmentation approaches based on independent

region-wise parametric models, the different parameter

vectors θn’s interact here through the smoothness term

that enforces continuity at patch frontiers. In addition,

contrary to splines based methods (Musse et al., 1999;

Szeliski and Shum, 1996) for which parameters also

interact, the presence of a robust smoothness term al-

lows here to introduce spatial discontinuities between

patches via the variables βsr ’s lying along patches’

frontiers.

In the next section we show how this constrained

optimization can be easily embedded in a hierarchical

optimization framework.
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2.3. Hierarchical Constrained Optimization

We now consider a sequence of partitions. The con-

strained optimization previously described can be suc-

cessively used with each of these partitions, thus pro-

viding a hierarchical optimization scheme: the original

optimization problem of H is replaced by a succession

of constrained minimizations. Let {Bℓ, ℓ = L . . . 0} be

the family of partitions.3 Let Eℓ and Sℓ, ℓ = L . . . 0,

be respectively the edge set and the Nℓ-vertex set of the

associated connectivity graph. The interpolation func-

tions �ℓ associated to the sequence of partitions are

chosen such that the size of �ℓ △
= Im�ℓ decreases as

ℓ increases.4

The constrained optimization in �ℓ is equivalent to

the minimization of the new energy function:

H
ℓ(θℓ, δ, β)

△
= H(�ℓ(θℓ), δ, β), (11)

defined, as concerns the unknown increment field, over

a reduced parameter space Ŵℓ, whereas the unknown

weights δ and β, as well as the data f , and the field

w to be refined remain the same (i.e., defined on the

original grid S). A diagrammatic view of this setting is

given by:

(12)

Based on this family of energy functions Hℓ, we

now define our minimization scheme as a recursive

sequence (from ℓ = L to ℓ = 0) of optimization prob-

lems of reduced complexity:

(θ̂ ℓ, δ̂, β̂) = arg min
θℓ,δ,β

H
ℓ(θℓ, δ, β), ℓ = L . . . 0, (13)

where the field to be refined at level ℓ, wℓ △
= wℓ+1 +

�ℓ+1(θ̂ℓ+1), is deduced from the estimate at level ℓ+ 1,

and the initial field wL comes from an estimation at a

coarser resolution or from a given initialization.

Each of these successive minimizations is processed

in terms of iteratively reweighted least squares initial-

ized byθℓ ≡ 0 and provides the increment field�ℓ(θ̂
ℓ
).

The procedure is repeated until the finest level ℓ= 0

is reached, and the motion field finally recovered is

wL+
∑0

ℓ=L �ℓ(θ̂ℓ), which is not piece-wise parametric

in general. This incremental minimization procedure

can be viewed as a hierarchical Gauss-Newton mini-

mization of
∑

s φ1([ f (s + ws, t + 1) − f (s, t)]2) +

α
∑
〈s,r〉 φ2(‖ws − wr‖

2).5

Gauss-Newton techniques are second-order mini-

mization techniques that resort to an approximation of

the Hessian, which does not rely on the current residu-

als, as opposed to exact Newton technique. As a result,

the speed of convergence is high when the residuals

are small, but the process can be painfully slow, if

not divergent, when the residuals are large (Thisted,

1988). Nevertheless, as it is shown in experimental

Section 4, this latter behavior has not be observed for

the particular Gauss–Newton minimization we use. We

believe this is mainly due to the hierarchical setting

which helps keeping the residuals small by an effi-

cient guidance of the minimization process at the coarse

levels.

2.4. Linear Parameterizations and Energy

Minimization

So far, we let the nature of the parameterizations un-

specified. In practice, the interpolation functions are

chosen linear. The constrained increment field dwℓ =

�ℓ(θℓ) thus obeys

∀n ∈ Sℓ, ∀s ∈ B
ℓ
n, dws = Pn(s)θ

ℓ
n, (14)

where Pn(s) is 2 by pn matrix. The corresponding

parameter spaces are Ŵℓ=�
Nℓ

n=0R
pn . Standard para-

metric models used in motion analysis correspond

to pn = 2, 4, 6 or 8 [1, 5]. In this work we will

consider two possible parameterizations: the constant

model (2 parameters of translation and Pn(s) = [
1 0

0 1])

and the affine model (6 parameters and Pn(s) =
[
1 xs ys 0 0 0

0 0 0 1 xs ys
], where xs and ys stand for the coordi-

nates of pixel s). As reported in Section 4, we have

investigated different combinations of these two pa-

rameterizations. A simplified affine modeling with four

parameters has also been investigated in a previous

work (Mémin and Pérez, 1998b), where it appeared

as less interesting than the two models used here.

Also, as compared to more complex models, such as

the eight or twelve-parameter quadratic models, the

six-parameter affine model is known to provide the

best compromise between computational efficiency,

robustness, and versatility (Bouthemy and Francois,

1993).
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Introducing the linear parameterizations (14) within

the energies (10) yields

H
ℓ
1(θ

ℓ, δ)=
∑

n∈Sℓ

∑

s∈Bℓ
n

τ1δs

[
∇ f

(
s + wℓ

s , t + 1
)T

× Pn(s)θ
ℓ
n + ft

(
s, wℓ

s

)]2
+ ψ1(δs),

H
ℓ
2(θ

ℓ, β)=α

[ ∑

〈n,m〉∈Eℓ

∑

〈s,r〉∈Cℓ
nm

τ2βsr

∥∥(wℓ
s + Pn(s)θ

ℓ
n

)

−
(
wℓ

r + Pm(r)θℓ
m

)∥∥2
+ ψ2(βsr )

+
∑

n∈Sℓ

∑

〈s,r〉∈Cℓ
n

τ2βsr

∥∥(wℓ
s + Pn(s)θ

ℓ
n

)

−
(
wℓ

r + Pn(r)θℓ
n

)∥∥2
+ ψ2(βsr )

]
. (15)

The iteratively reweighted least squares minimiza-

tion applied to this energy function amounts to alter-

nate updates of the weights and of the parameter vec-

tors. The current parameter estimate θℓ being fixed,

we know that the optimal weight values are directly

accessible. These values are:

∀n ∈ Sℓ,∀s ∈ B
ℓ
n, δs

=
1

τ1

φ′1
[(

∇ f
(
s + wℓ

s , t + 1
)T

Pn(s)θ
ℓ
n

+ ft

(
s, wℓ

s

))2]
, (16)

∀〈n, m〉 ∈ Eℓ,∀〈s, r〉 ∈ C
ℓ
nm, βsr

=
1

τ2

φ′2
[∥∥(wℓ

s + Pn(s)θ
ℓ
n

)
−
(
wℓ

r + Pm(r)θℓ
m

)∥∥2]
,

(17)
∀n ∈ Sℓ,∀〈s, r〉 ∈ C

ℓ
n, βsr

=
1

τ2

φ′2
[∥∥wℓ

s − wℓ
r + (Pn(s)− Pn(r))θℓ

n

∥∥2]
. (18)

It is worth noting that according to (18), the discon-

tinuity variables βsr located into patches of Bℓ (i.e.,

〈s, r〉 ∈ Cℓ
n for some n ∈ Sℓ) do not depend on the trans-

lational components of θℓ. Indeed, the unity entries as-

sociated to these components in matrices Pn(s) cancel

themselves out in the matrix difference Pn(s)− Pn(r).

In the piece-wise constant case, the discontinuity vari-

ables therefore depend only on wℓ, and can be computed

right away within the first iteration at the current grid

level.

As soon as the values of all weights are computed and

frozen, the energy function Hℓ(θℓ, δ, β) is quadratic

with respect to θℓ. Its minimization is equivalent to the

resolution of a linear system whose solution is searched

with a block-based Gauss-Seidel solver. Each single

update of this iterative process is obtained by solving

a linear equation in θℓ
n for the current block Bℓ

n . This

is detailed in the Appendix A for the two different pa-

rameterizations on Bℓ
n .

Before explaining how the model can be enriched to

deal with a joint segmentation process, it is worth dis-

cussing the connection between the discrete model we

have presented and its possible continuous counterpart.

2.5. Continuous Formalization

A continuous version of the discrete energy (6–7),

which was derived by Taylor expansion around the cur-

rent displacement field, corresponds to the functional

∫∫

S

(τ1δ(x)[∇ f̃ (x)T
dw(x)+ f̃t (x)]2+ψ1(δ(x))) dx

+α

∫∫

S

(τ2β(x)‖∇(w(x)+dw(x))‖2+ψ2(β(x))) dx,

(19)

where w and dw are, momentarily, two C1-vector fields

over the continuous plane domain S ⊂R
2, δ and β

are two scalar fields on the same domain, and ∇ f̃
△
=

∇ f (.+w, t + 1), f̃t
△
= f (.+w, t + 1)− f (., t). The

problem of minimizing this half-quadratic functional

can be addressed in terms of alternate minimization

(Deriche et al., 1995). For fixed dw, the Euler-Lagrange

equations provide the optimal expression of functions

δ and β (using ψ ′(z) = −τ zφ′
−1

(τ z)):

δ =
1

τ1

φ′1[(∇ f̃ T
dw+ f̃t )

2], and

(20)

β =
1

τ2

φ′2[‖∇(w+ dw)‖2].

The natural discretization of the first equation, which

consists in taking the values of δ, f̃t , and ∇ f̃ at pixel

locations x = s ∈ S, is readily obtained and yields

exactly the same update rule as the one stemming from

the minimization of the discrete energyHw.r.t. {δs}s∈S .

The same discretization scheme can be adopted for the

second equation (as in Nesi, 1993). However, if the

gradients are approximated by finite differences on the

grid, it is simpler to have the function β discretized on

the same edge lattice. The corresponding discretized

update is then the same as the one that minimizes H

w.r.t. {βsr }〈s,t〉.
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The weight functions δ and β being fixed, one has

to deal with the minimization of a quadratic functional

of dw. This can be conducted first by writing down the

Euler-Lagrange equations as a necessary condition of

optimality:

τ1δ∇ f̃ ∇ f̃ T
dw− ατ2div[β∇(w+ dw)]

=−τ1δ f̃t∇ f̃ . (21)

If w, dw, and δ are discretized on S, while β, ∇w, and

∇dw are discretized on the edge grid, and the diver-

gence operator is approximated by first-order central

difference on S, this partial differential equation leads

to a linear system which coincides with the one to be

solved for minimizing H in dw.

We see that a standard discretization based on

finite difference turns the minimization of the conti-

nuous functional into the same problem as the one

issuing from the minimization of the discrete en-

ergy H. The continuous formalism, however, allows

more flexibility in the choice of the discretization

schemes since the discretization step is “delayed”:

whereas the discrete modeling sticks right away to

the pixel grid discretization, the variational approaches

offer other choices, especially when the finite ele-

ment method is used (within Euler-Lagrange formal-

ism (Cohen and Herlin, 1999), or apart from it (Schnorr

et al., 1996)). In many cases, however, the discretiza-

tion of the original continuous model is made as

simple as possible w.r.t. the pixel grid, thus yield-

ing in fine the same discrete problems to be solved

as those associated with the minimization of discrete

energies.

As concerns the constrained minimization scheme

introduced in Section 2 when dealing with the dis-

crete energy H, it can be viewed in the continuous

framework as a Galerkin technique for solving the lin-

ear system that arises from the discretization of (21).

Denote Adw = b this system. Provided that the in-

terpolator � (Eq. (8)) from the reduced configuration

subspace Ŵ into the complete configuration space � is

linear, the standard coarse-to-fine multigrid approach

(Hackbusch, 1985) relies on the resolution in Ŵ of the

so-called Galerkin system �T AT A�θ = �T AT b. The

solution of this equation is obviously the minimizer of

the quadratic energy ‖A�θ − b‖2. In other terms it

corresponds to the minimizer of ‖Adw − b‖2 within

subspace Im�. In the case of the simple discretization

scheme mentioned earlier,H and ‖Adw−b‖2 coincide

up to an additive term independent from dw, and solv-

ing the Galerkin system above provides the minimizer

in θ of the reduced energy H∗.

The whole approach to dense motion estimation

we have introduced in this section could thus have

been equivalently formulated in a continuous fash-

ion, as it is done in related works (Cohen and Herlin,

1999; Deriche et al., 1995; Schnorr et al., 1996). How-

ever, this does not hold for the augmented estimation-

segmentation model to be presented.

3. Joint Estimation-Segmentation

In the previous section we have described a general hi-

erarchical method to estimate dense motion fields. We

shall see with experimental results that this approach

provides a family of hierarchical motion estimators

which give good results on sequences involving a va-

riety of motions. Before reporting these experiments,

we now introduce an extension of the model to couple

the estimation process with a motion-based partition of

the image.

Motion estimation and motion-based segmentation

are two tightly interwoven problems: a good estimation

of the motion field (or at least a sensible approxima-

tion of it) is required to obtain a good segmentation

of the different apparent motions present in the scene;

conversely, a good estimation of the motion field can-

not be obtained without an accurate estimation of the

frontiers of the different moving objects. It is therefore

natural to consider the resolution of these two problems

as a whole.

This has been considered in a number of different

ways and within a variety of methodological frame-

works. Nevertheless, two main classes of estimation-

segmentation approaches can be distinguished. The

first one consists in an unilateral coupling between

some motion estimate (such as sparse matchings, esti-

mate of contour motions, or dense motion estimate)

and a segmentation process (Adiv, 1985; Ayer and

Sawhney, 1995; Bouthemy and Francois, 1993; Huang

et al., 1995; Murray and Buxton, 1987; Oisel et al.,

2000). In this class of methods, the motion cues are first

extracted, and then used as the data on which the seg-

mentation is built. The second class of methods implies

a real coupling between the estimation of the motion

and the extraction of a motion-based partition of the im-

age within a joint procedure. This is usually achieved

using a global energy function depending on both enti-

ties. In this context, different kinds of interactions have

been recently proposed. In Stiller (1997) the frontiers



136 Mémin and Pérez

of the partition capture in a binary way the discontinu-

ities of the dense displacement field under estimation.

The motion field is thus smoothed independently from

one region of the current partition to another. There is

no piece-wise parametric representation on which the

segmentation relies. In Black and Jepson (1996) the

interaction consists in a cooperation between a dense

motion field and a region-wise parametric polynomial

flow. As in our approach, the motion is encouraged to

have some similarity with the piece-wise parametric

field associated with the segmentation. Nevertheless,

the partition results from an early photometric process-

ing, and is kept fixed afterward. The coupled model we

propose is similar to the one proposed in Chang et al.

(1997). In Chang et al. (1997) however, the DFD-based

cost term involves a plain quadratic penalization and no

Gauss-Newton like incremental linearizations are con-

sidered. This results in a huge computation load and

leads sometimes to bad results.

The estimation-segmentation coupling we consider

here thus belongs to the class of joint approaches. We

aim at building, through a global discrete energy func-

tion, a cooperative method to estimate simultaneously

a dense motion field and a motion-based segmentation.

The associated minimization is solved with an exten-

sion of the hierarchical optimization scheme described

in Section 2.

3.1. Compound Energy

Let R
△
={R1 · · ·Rp} be a partition of S into an un-

known number p of connected regions. We shall call

“boundary” between regions Ri and R j the set ∂Ri j
△
=

{〈s, r〉 ∈ C : s ∈ Ri , r ∈ R j }, where we remind that C

is the set of all neighboring pixel pairs within pixel grid

S. The boundary set ∂Ri j is thus the set of the neigh-

boring pairs straddlingRi andR j ; it is non empty ifRi

and R j are adjacent for the graph on S. The set ∂R
△
=

∪〈i, j〉∂Ri j , where 〈i, j〉 denotes all pairs of neighbor-

ing regions of segmentation R, stands therefore for the

total frontier of the segmentation map.

The extension of the energy-based motion estimation

model of previous section is obtained by incorporating

two terms to the global energy function H.6 The first

one, H3, specifies the mode of interaction between the

segmentation and the rest of the estimation model (i.e.,

motion fields, weights, and data). The interaction we

designed involves the total motion field both at the fron-

tiers and inside the regions: the partition will interact

with the estimation process through the discontinuity

weights along these frontiers, and through a parametric

goodness-of-fit criterion inside each region. The sec-

ond energy term, H4, captures the a priori knowledge

about the segmentation configuration.

The energy componentH3 is composed of two terms.

The first term is proportional to the sum of the βsr ’s

averages on the individual boundaries ∂Ri j ’s. This

term favors low values (close to zero) of discontinu-

ity weights along the borders and guides the bound-

aries of the segmentation toward the most significant

motion discontinuities. This constitutes an extension

to an arbitrary partition of the original mechanism we

introduced in Mémin and Pérez (1998a) in the case of

a single closed curve. The second term enforces the

likeness with a parametric representation of the dense

motion field inside each region, via a robust penaliza-

tion of the discrepancies by a third robust function φ3.

Before semi-quadratic rewriting, this new compound

energy term reads:

µ1

∑

〈i, j〉

1

|∂Ri j |

∑

〈s,r〉∈∂Ri j

βsr

︸ ︷︷ ︸
frontiers term

+ µ2

∑

i

∑

s∈Ri

φ3(‖ws + dws − P(s)ϕi‖
2)

︸ ︷︷ ︸
likeness term

, (22)

where µ1 and µ2 are positive parameters, P(s) is the

2× 6 matrix defined in Section 2.4, and ϕi is the six-

component parameter vector of region Ri . Using the

semi-quadratic rewriting described in Section 2.1, we

get:

H3(dw,R,ϕ, β, η)
△
=µ1

∑

〈i, j〉

1

|∂Ri j |

∑

〈s,r〉∈∂Ri j

βsr

+µ2

∑

i

∑

s∈Ri

[τ3ηs‖ws +dws − P(s)ϕi‖
2+ψ3(ηs)]

(23)

with τ3
△
= lim0+ φ′3, ϕ

△
= [ϕ1 · · ·ϕp], and η

△
={ηs,

s ∈ S} is the new set of auxiliary variables which will

be referred to as parametric likeness weights.

The energy termH4 captures a loose geometric prior

based on the Minimum Description Length (mdl) prin-

ciple (Leclerc, 1989):

H4(R)
△
= λ|∂R|, (24)

for some λ > 0. This energy term favors short and

smooth segmentation frontiers.
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The whole energy function H
△
= H1+H2+H3 +

H4 has now to be minimized with respect to all the

unknowns. A direct minimization is obviously a very

intricate problem since the two main sets of unknowns

dw and R are interacting through H3. Nevertheless,

the minimization can be efficiently conducted through

an extension of the hierarchical minimization strategy

used for the motion estimation problem alone.

3.2. Hierarchical Optimization

As in Section 2.3, a family of finer and finer parti-

tions Bℓ, ℓ = L . . . 0, is specified and the optimization

problem is solved through a sequence of constrained

minimizations based on these partitions. At level ℓ, the

problem is the joint estimation of an increment field

dwℓ which is piece-wise parametric w.r.t. Bℓ, and a

partitioning Rℓ of the elements of Bℓ. Note that Bℓ and

Rℓ are two partitions of completely different nature.

As explained in Section 2.3, Bℓ is a grid whose cells

shrinks as ℓ→ 0 and which supports the estimation of

the unknowns (i.e., the increment field dw and the seg-

mentation R) within a top-down scheme. Each region

of the partition Rℓ is composed of one or several cells

of Bℓ. This partition Rℓ is aimed to break up the scene

into individual kinematic components. The precision

of this partition increases as ℓ → 0. Also Bℓ specifies

patches on which the unknown increment is paramet-

ric, with the parameter vectors on neighboring patches

interacting through the smoothness prior, whereas the

regions of Rℓ support independent parametric repre-

sentations of the whole field. Let us also note that, even

if the increment field is constrained to be piece-wise

parametric on Bℓ, the total dense motion field does not

respect this constraint in general.

In the adaptive version of the dense motion estima-

tion alone, the patches of variable sizes constituting Bℓ

are expected to do, partly and temporary, the job of seg-

mentation. Now that the segmentation is explicitly and

properly handled by Rℓ, an adaptive grid partitioning

seems less relevant. Hence, we chose for the Bℓ’s the

simple nested family of 2ℓ × 2ℓ-block partitions. For

the same reason, it is sufficient to use the piece-wise

constancy constraint on the increment field, i.e., at level

ℓ, the increment field over one patch of Bℓ
n is equal to

a constant two-dimension vector denoted dwℓ
n .

At a given grid level ℓ, the joint configuration subset

is denoted �ℓ×ϒℓ (see an instance of such constrained

configurations in Fig. 2). As in Section 2.3, each con-

strained configuration of �ℓ is equivalently described

Figure 2. Multigrid setting and associated notations: (Left) exam-

ple of an increment field dwℓ and a segmentation R
ℓ in five regions,

constrained to lie on a 2× 2 block partition B
ℓ of S; (Right) the

associated increment field and partition on reduced grid Sℓ.

by a reduced increment field, dwℓ ∈ Ŵℓ, lying on the

grid Sℓ, with the one-to-one mapping from Ŵℓ into �ℓ

being denoted �ℓ. In the same way, any constrained

partition of ϒℓ is associated with a partition into con-

nected components of the reduced grid Sℓ. If �ℓ is

the set of such partitions, the corresponding mapping

from �ℓ into ϒℓ is denoted �ℓ, with ϒℓ = Im�ℓ (see

Fig. 2).

The constrained optimization in �ℓ × ϒℓ is then

equivalent to the minimization of the new energy

function:

H
ℓ(dwℓ,Rℓ,ϕ, δ, β, η)
△
=H(�ℓ(dwℓ), �ℓ(Rℓ),ϕ, δ, β, η), (25)

defined over Ŵℓ×�ℓ, whereas the auxiliary variables,

the data, and the field to be refined are still defined

on the original grid S. The new diagram for the joint

setting is:

(26)

We now deal with the cascade of optimization prob-

lems of reduced complexity:

min
dwℓ,Rℓ,ϕ,δ,β,η

H
ℓ(dwℓ,Rℓ, ϕ, δ, β, η), ℓ = L . . . 0.

(27)
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In the same way as in Section 2.3, the field wℓ that

is refined within this minimization process is defined

according to the minimizer at previous level ℓ + 1:

wℓ = wℓ+1 + �ℓ+1(d̂w
ℓ+1

).7 Similarly, the final seg-

mentation R̂ℓ+1 at previous level ℓ + 1 is naturally

used to initialize the segmentation process at level ℓ

through its “projection” [�ℓ]−1 ◦ �ℓ+1(R̂ℓ+1) which

is well defined since the nestedness of the grids Bℓ

implies the nestedness of the segmentation subsets ϒℓ

(ϒℓ+1 = Im�ℓ+1 ⊂ ϒℓ = Im�ℓ).

As with motion estimation alone, the new multigrid

function Hℓ turns out to be composed of four terms

similar to those of H:Hℓ = H
ℓ
1+H

ℓ
2+H

ℓ
3+H

ℓ
4. The

detailed expression of these different terms is provided

in Appendix B.

3.3. Alternate Minimization

The joint minimization defined in Eq. (27) is conducted

in turn w.r.t. the dense motion estimation variables (the

increment dw and the auxiliary weight sets β and δ) and

the segmentation variables (the partition R, the region-

based motion parameters ϕ, and the auxiliary variable

set η). We now review the different minimizations to

be alternated.

3.3.1. Dense Motion Field Update (Free Variables:

dwℓ, β, δ; Fixed Variables:RRℓ, ϕ, η). The reduced

segmentation Rℓ and the parametric likeness weights

η being fixed, one has to solve:

(d̂wℓ, β̂, δ̂) = arg min
(dwℓ,β,δ)

[
H

ℓ
1 +H

ℓ
2 +H

ℓ
3

]
. (28)

Apart from the interaction term H
ℓ
3, this is the same

problem as in Section 2.3, and one can again resort to

iteratively reweighted least squares. The different steps

of this alternate optimization are as follows.

• The increment field dwℓ being fixed, let 〈s, r〉 ∈ C

be a pair of neighboring pixels and denote by m and

n the block numbers (possibly identical) such that

s ∈ Bℓ
m and r ∈ Bℓ

n . From the βsr ’s point of view,

the only change with respect to motion estimation

case (17–18) occurs if 〈s, r〉 straddles two neigh-

boring regions of �ℓ(Rℓ). The optimal value of the

discontinuity weights is given by:

∀i,∀〈s, r〉 ⊂ Ri , βsr

=
1

τ2

φ′2
[∥∥(wℓ

s + dwℓ
n

)
−
(
wℓ

r + dwℓ
m

)∥∥2]
, (29)

∀〈i, j〉,∀〈s, r〉 ∈ ∂Ri j , βsr

=
1

τ2

φ′2

[∥∥(wℓ
s + dwℓ

n

)
−
(
wℓ

r + dwℓ
m

)∥∥2

+
µ1

τ2|∂Ri j |

]
. (30)

For a pixel pair in between two neighboring regions,

(30) implies that the optimal value is decreased as

compared to the segmentation-free case (17–18) due

to the shift by µ1

τ2|∂Ri j |
in the argument of the decreas-

ing function φ′2. The compound energy thus favors

low discontinuity weights along the border of current

segmentation.

• The data weights δ being only involved in H
ℓ
1, the

update rule directly stems from (16) with piece-wise

constant parameterization:

∀n ∈ Sℓ,∀s ∈ B
ℓ
n, δs

=
1

τ1

φ′1
[(

∇ f
(
s + wℓ

s , t + 1
)T

dwℓ
n + ft

(
s, wℓ

s

))2]
.

(31)

• When the weights β and δ are frozen, the energy

functionHℓ is quadratic with respect to dwℓ. Its min-

imization is equivalent to the resolution of a linear

system which is very similar to the one obtained with

the hierarchical estimation of motion alone (with

constant model). The only change comes from the

influence of the segmentation-based parametric field

to which the dense increment field is related within

H
ℓ
3. See Appendix B.

3.3.2. Segmentation Update (Free Variables:RR, ϕ, η;

Fixed Variables: dw, β, δ). The minimization ofHℓ

w.r.t. the unknown segmentation Rℓ and associated pa-

rametersϕ, and w.r.t. the parametric likeness weightsη,

is conducted in the same alternate minimization spirit.

• First the segmentation is fixed, and the weights ηs’s

and the motion parameters ϕi ’s are estimated using

iterated reweighted least squares. For a given region

R
ℓ
i ∈ Rℓ, the update of the motion parameter vector

results from least squares regression

ϕi =

[ ∑

n∈Rℓ
i

∑

s∈Bℓ
n

ηs P(s)T P(s)

]−1

×
∑

n∈Rℓ
i

∑

s∈Bℓ
n

ηs P(s)T
(
wℓ

s + dwℓ
n

)
, (32)
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Figure 3. Local deformation of the segmentation: Example of local update changing segmentation R=�ℓ(Rℓ) into R
′=�ℓ(R′ℓ) (with

ℓ = 2), by passing one boundary block of region Ri in adjacent region R j .

while the parametric likeness weights are updated

according to:

∀n ∈ R
ℓ
i ,∀s ∈ B

ℓ
n, ηs

=
1

τ3

φ′3
(∥∥wℓ

s +dwℓ
n − P(s)ϕi

∥∥2)
. (33)

• Afterwards, the segmentation Rℓ is updated using

a two-step process. First global changes of the seg-

mentation (merging regions and creating new ones)

are conducted and then local changes of the segmen-

tation frontiers are considered.

The local updates consist in moving each point of

the border ∂Rℓ within a small neighborhood such as

to make the energy decrease. Let R′ℓ be the candidate

modified segmentation (Fig. 3). Assuming that the ad-

jacency graph of the segmentation remains the same in

this local deformation, the associated energy variation

is:

H
ℓ(R′ℓ)−H

ℓ(Rℓ) = λ2ℓ(|∂R′ℓ| − |∂Rℓ|)

+
∑

〈i, j〉

[
µ1∣∣∂Rℓ

i j

∣∣
∑

〈s,r〉∈∂Rℓ
i j

βsr−
µ1∣∣∂R′ℓ

i j

∣∣
∑

〈s,r〉∈∂ R′ℓi j

βsr

]

+
∑

i

[ ∑

n∈R′
i\Ri

∑

s∈Bℓ
n

φ3

(∥∥wℓ
s +dwℓ

n − P(s)ϕi

∥∥2)

−
∑

n∈Ri\R
′
i

∑

s∈Bℓ
n

φ3

(∥∥wℓ
s +dwℓ

n − P(s)ϕi

∥∥2)
]
. (34)

This local energy variation is easily computed. In prac-

tice, a new position is considered for each border ele-

ment of the current segmentation Rℓ. If this position

corresponds to an energy decrease it is accepted and

the map is updated. In our experiments, a border ele-

ment is allowed to move one site forward or backward

in the direction perpendicular to the border. Let us note

that these displacements may be quite large since they

actually correspond to 2ℓ pixels. Therefore, the opti-

mal motion parameters associated with the new region

Ri may substantially changed and should be ideally

re-estimated. Instead of such a joint update of region

geometry and parameterization, we chose a cheaper

alternate minimization: we keep all the motion param-

eters fixed during a complete visit (one iteration) of

all the boundary elements; then the different motion

parameters are re-estimated at the same time for the

whole segmentation. Each step makes the global en-

ergy decrease, which guarantees the convergence to a

local minima.

Beside local deformations, global updates allow to

change at once a whole region as well as the topology of

the segmentation (number and connectivity of regions).

In this work we only consider global transformations

based on the creation of new regions and the merging

of adjacent regions.

The merging of two adjacent regions consists in re-

moving their common boundary, when this yields a

global energy decrease. Rℓ being the current segmen-

tation, the energy variation associated with the merg-

ing of two regions i and j is derived in the same way

as for the local deformation step, except that one has

to compute the new parametric model associated with

R
ℓ
i ∪ R

ℓ
j to determine the actual energy of the new

segmentation. This is done for each pair of adjacent

regions. The boundary leading to the greatest energy

decrease is removed and the corresponding regions are

merged. This process is repeated until a complete sta-

bility is reached.

The inclusion of a new region could be done at ran-

dom. It is much more effective to devise a data-driven

mechanism based on a simple assessment of the loca-

tions whose dynamic content is not well explained by

the current segmentation. We propose to conduct this
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search of good candidates for new regions by classi-

fying the parametric likeness weights ηs’s within two

classes (outliers and inliers) according to both their in-

dividual values and those carried by their neighbors.

A classic way of achieving such a contextual image

classification is to minimize w.r.t. labeling xℓ = {xℓ
n ∈

{0, 1}, n ∈ Bℓ} the following cost function:

∑

n∈Sℓ

∑

s∈B
ℓ
n

1

2σ 2
(
xℓ

n

)
[
m
(
xℓ

n

)
− ηs

]2

+ log σ
(
xℓ

n

)
+
∑

〈n,m〉

δ
(
xℓ

n, xℓ
m

)
, (35)

where δ(·) is the delta Kronecker function. The param-

eters σ(0) and m(0) (respectively σ(1) and m(1)) stand

for the standard deviation and the mean of the outlier

class (respectively the inlier class). The values of these

parameters have been learned on typical examples.

Based on this learning, they were fixed to m(0) = 0.05,

m(1) = 0.98, and σ(0) = 0.5, σ(1) = 0.05 in all the

experiments. The minimizer is searched with the deter-

ministic icm algorithm (Besag, 1986). If a sufficiently

large region of connected outliers is recovered (at least

64 pixels in our experiments) and if turning this set into

a new region yields an energy decrease, the new region

is effectively incorporated within the current segmen-

tation.

Global deformations obviously involve far more

computations than local deformations. In practice, we

only use the global transformations at the beginning of

each level ℓ. They provide quickly sensible segmen-

tations which are then only refined through frontiers

updates.

Concerning the global procedure, let us recall that

it is multiresolution (based on a pyramid of images),

and hierarchical within each resolution. As concerns

the initialization at the coarser resolution, the initial

motion field is set to zero and associated with a parti-

tion composed of a unique region (the whole image).

Since we face a non-convex minimization problem,

the results depend on the initialization. Nevertheless

as will be shown in the experiments of Section 4, we

did not observe a strong dependency to the initializa-

tion in practice, and the choice of the simple initial-

ization above turned out to yield consistently satis-

factory results. As for the global convergence of the

method, the dense motion estimation process and the

motion segmentation process that are alternated have

to be discussed separately. Since the computation of

the motion field is performed through the hierarchical

Gauss-Newton minimization presented in Section 2.4,

it exhibits the convergence properties and limitations

already discussed. At fixed motion field, each of the el-

ementary minimizations w.r.t. the different ingredients

of the segmentation, leads to a decrease of the global en-

ergy. This guarantees that this part of the whole proce-

dure converges toward a local minima. Again, although

the complete method may fail to converge due to the

Gauss-Newton nature of the dense motion computa-

tion, we never observed in practice divergent sequences

of iterates, even within the intensive tests conducted on

synthetic data for a wide range of parameter values.

3.4. Continuous Point of View

As opposed to the dense motion estimation alone, the

joint estimation-segmentation is not easy to express

within a continuous formalism. The reason is twofold.

First, it is a complicated issue in its own to simply

specify and manipulate partitions of the continuous im-

age plane. A general and rigorous definition implies

the use of an unknown number of pieces of Jordan

curves, connected at junction points (Mumford and

Shah, 1989). Another way consists in using a known

number of interacting level sets (Samson et al., 1999;

Yezzi et al., 1999). Both approaches are complex and

lack flexibility. Hence, it seems to be no continuous

counterpart to labeling the discrete pixel grid into dif-

ferent regions.

We can nevertheless write down a continuous analog

of the interaction term (23) as:

µ1

∑

〈i, j〉

∫

∂Ri j

β(x(s)) ds + µ2

∑

i

∫∫

Ri

× [τ3η(x)‖w(x)+dw(x)− P(x)ϕi‖
2+ψ3(η(x))︸ ︷︷ ︸

△
=Fi (x)

] dx.

(36)

The Euler-Lagrange equation for the compound func-

tional provides conditions on functions β and η which

are the continuous counterpart of the discrete update

rules (29–30) and (33). Besides, changing the second

surface integral in (36) into a curvilinear one with

Green theorem (as in Zhu and Yuille (1996), shows

that each boundary ∂Ri j evolves as a snake driven by

an internal force which depends on the chosen prior,

and an external force:

−∇β(x)+ (F j (x)− Fi (x))ni j (x), (37)
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where ni j is the normal to the frontier ∂Ri j directed

toward the interior of Ri .

Our interaction mechanism based on the disconti-

nuity auxiliary variables could as well be considered

in case region borders are implicitly defined in terms

of level sets. The mechanism we introduce thus of-

fers a new way to deal with the generic issue of joint

anisotropic diffusion and segmentation, in both discrete

and continuous frameworks.

The second reason for which it seemed more natu-

ral to let our estimation-segmentation approach within

the discrete realm is related to the choice of the

minimization technique. Using segmentations of the

discrete pixel grid enables us to extend in a very sim-

ple way the efficient hierarchical minimization scheme

previously introduced for the estimation alone.

4. Experimental Results

In this section we present results of dense motion es-

timation with and without joint motion-based segmen-

tation. In both cases, quantitative comparisons are pre-

sented on a synthetic sequence. As for experiments on

real data, the segmentation-free motion estimation is

demonstrated on sequences that seem not to admit any

simple region-wise parametric description. The adap-

tive compromise between local dense representation

and more global parametric one which is offered by the

hierarchical minimization allows us to get interesting

results on fluid sequences for instance. At the opposite,

the parametric description used in the joint estimation-

segmentation approach is more suited to scenes that

involve mostly rigid objects.

Note that in both approaches we selected Leclerc

estimator, φ(x2)
△
= 1− exp(−τ−1x2), for the different

robust functions (Leclerc, 1989). Also, in both cases we

chose the following stopping criterion for the iterative

estimation scheme at a given resolution/grid level:

#

{
s ∈ S :

‖dws(n + 1)− dws(n)‖

‖dws(n + 1)‖
< 0.01

}
< ε,

(38)

where dws(n) denotes the iterate at step n and point s.

In the motion estimation experiments ε has been fixed

to 1% of the number of points, whereas for the joint

segmentation-estimation method, a value of 5% was

sufficient to improve the accuracy of the motion field

on a synthetic benchmark.

4.1. Results of Dense Motion Estimation

The experiments have been carried out both on a syn-

thetic sequence—for which a ground truth is known and

comparative quantitative comparisons can be reported

(Barron et al., 1994)—and on real world sequences

(Fig. 4). The synthetic sequence is the well known

Yosemite sequence used in the comparative benchmark

of Barron et al. (1994). The real data are composed

of two particularly challenging sequences which in-

volve the highly deformable motion of fluid media. The

first one, named Depression, is a meteorological video

sequence involving large displacements. It includes a

through of low pressure and different moving clouds.

The second one, named Smoke, comes from fluid me-

chanics experiments with smoke undergoing complex

motion under poor lighting conditions.

The values of the parameters that define the hierar-

chical structure in these experiments were set as fol-

lows: the number of resolution levels was respectively

2 for Yosemite and Smoke, and 3 for Depression. The

number of grid levels was fixed to 6 for Smoke and to

5 for the two others.

As for the hierarchical constrained minimization,

both regular and adaptive partitions into square patches

have been considered. In the regular case, the partition

Bℓ is composed of 2ℓ× 2ℓ square blocks and the as-

sociated adjacency graph is a regular lattice with the

same neighborhood system as the original grid. In the

adaptive case, the partition Bℓ−1 is determined on-

line, based on the previous partition Bℓ and on the

associated final estimate (θ̂ ℓ, β̂ ℓ, δ̂ ℓ). The new par-

tition is obtained by dividing some of the elements of

Bℓ according to a splitting criterion to be defined. It

seems natural to base this criterion upon the agree-

ment of the current motion estimate with the lumi-

nance conservation assumption, measured on block Bℓ
n

by
∑

s∈Bℓ
n
[ f (s + wℓ

s + Pn(s)θ̂
ℓ
n, t + 1) − f (s, t)]2

(sum of squared registration errors), or, in linearized

form:
∑

s∈Bℓ
n
[∇ f (s+wℓ

s , t+1)T Pn(s)θ̂
ℓ
n+ ft (s, wℓ

s)]
2.

Instead of using this quantity which has to be computed,

we use the final data weights δ̂s’s, which are func-

tion of the squares in the sum above according to (16).

Experimental evidence indicated that it is more appro-

priate to consider how uniform (instead of how good)

is the quality of the agreement within considered patch.

A block is thus divided into four sub-blocks if the

standard deviation of {δ̂ ℓ
s , s ∈ Bℓ

n} exceeds a given

threshold. In all the experiments this threshold is set

to 0.05.
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Figure 4. Sequences used in dense motion estimation experiments: (a) frames 0 and 14 of synthetic sequence Yosemite, size 288× 224;

(b) frames 1 and 9 of satellite sequence Depression, size 256× 256; (c) frames 10 and 14 of experimental fluid mechanics sequence Smoke, size

512× 512.

As mentioned in Section 2.4, two different param-

eterizations corresponding respectively to 2 and 6 pa-

rameters are considered. We use them within three dif-

ferent combinations denoted M6, M2, and M62 where

subscripts indicate allowed parameterizations. Models

M6 and M2 deal with a single type of parameteriza-

tion. In these two cases the hierarchical minimization

is stopped when a certain minimal size (8×8, and 1×1

resp.) is reached by the smallest patches of the current

partition. In contrast, model M62 mixes different pa-

rameterizations in the following way: the affine model

is used for all blocks at least as large as 8× 8, and the
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Figure 5. Dense motion estimation on Yosemite with M6 (affine constraint in the hierarchical minimization) and regular partitioning:

(a) histogram of the mean angular discrepancy for 1700 parameter triples; (b) surfaces of the mean angular error for α= 100 and α= 400;

(c) surfaces of the std. dev. of the angular error for α= 100 and α= 400.

constant model is used for blocks of size 4 × 4 and

less.

Following Barron et al. (1994), we provide quan-

titative comparative results on Yosemite. For each es-

timate, the angular deviation with respect to the real

flow is computed at “reliable” locations (the percent-

age of such locations is the “density” of the estimate;

it is 100% in our case). Let us note that in order

to stick to the experimental conditions reported in

the best recent studies on that sequence we consider

only a cropped sequence where the sky was removed.

To assess the performance of our motion estimation

technique on this sequence, we have compared its

three versions M6, M2, and M62, with regular par-

titioning, and for 1700 different parameter triples

(α, τ−1
1 , τ−1

2 ) ∈ [100, 420]× [2, 36]× [0.2, 1.1] with

sampling steps 20, 4, and 0.1, respectively in each

direction.

Figures 5–7(a) show the histograms of the mean an-

gular discrepancies obtained. Beside, we show also

for two extreme values of the smoothness parameter

the surfaces corresponding respectively to the mean

and the standard deviation of the angular discrepancy,

the two other parameters varying according to ranges

previously indicated. The best parameter combina-

tions are then compared with the adaptive partitioning

strategy.

In the case of regular grid partitioning, the M6

model performs less well than the two other versions.

Although slightly less stable the constant model within

M2 yields very good results. For a slightly increased

cpu time, the best results are provided by the mixed

model embedded in M62, as can be seen by com-

paring the three histograms in Figs. 5–7(a) for val-

ues exceeding 3◦ (i.e., last bar). Histogram 7(a) in-

dicates that with M62 almost 60% of the trials fall
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Figure 6. Dense motion estimation on Yosemite with M2 (constant constraint in the hierarchical minimization) and regular partitioning:

(a) histogram of the mean angular discrepancy for 1700 parameter triples; (b) surfaces of the mean angular error for α= 100 and α= 360;

(c) surfaces of the std. dev. of the angular error for α= 100 and α= 360.

below an average angular error of 2 degrees. To out-

line the quality of these results, we superimposed on

the histogram in Fig. 7(a) the best results reported in

the state-of-the-art literature. The proposed method is

able to outperform these other techniques for a wide

range of variations of its three parameters. It is also

interesting to notice in the surface plots in Figs. 5–7(b)

and Figs. 5–7(c) the low sensitivity of the method

Table 1. Best results on Yosemite for the three versions of our approach, along with associated

parameters and cpu times.

Regular partition Adaptive partition

Model Parameters µ σ cpu µ σ cpu

M6 α = 400, τ1 = 3.0, τ2 = 0.3 2.04◦ 1.57◦ 63 s 1.81◦ 1.34◦ 46 s

M2 α = 360, τ1 = 4.5, τ2 = 0.2 1.81◦ 1.33◦ 145 s 2.46◦ 1.74◦ 41 s

M62 α = 360, τ1 = 3.0, τ2 = 0.8 1.73◦ 1.33◦ 199 s 1.93◦ 1.33◦ 65 s

with respect to the parameter τ1 of the data robust

penalty.

For the three different versions of our model,

as well as for the two types of partitioning strate-

gies, the best mean angular error (µ), the associ-

ated standard deviation (σ ), and the set of parameters

for which they have been obtained are gathered

in Table 1. This table also lists the corresponding
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Table 2. Comparative results on Yosemite: the first part of the table

corresponds to results reported by Barron et al. (1994), where ref-

erences to the compared methods are to be found; the second part

gathers results reported more recently in the referenced literature,

on a cropped sequence without sky.

Technique µ σ density

Horn and Schunck (original) 31.69◦ 31.18◦ 100%

Horn and Schunck (modified) 9.78◦ 16.19◦ 100%

Uras et al. 8.94◦ 15.61◦ 100%

Lucas and Kanade 4.28◦ 11.41◦ 35.1%

Fleet and Jepson 4.63◦ 13.42◦ 34.1%

Without sky

Bab-Hadiashar and Suter (1998) 1.97◦ 1.96◦ 100%

Lai and Vemuri (1998) 1.99◦ 1.41◦ 100%

Ju et al. (1996) 2.16◦ 2.0◦ 100%

Black and Jepson (1996) 2.29◦ 2.25◦ 100%

Mémin and Pérez (1998a) 2.34◦ 1.45◦ 100%

Szeliski and Coughlan (1994) 2.45◦ 3.05◦ 100%

Black (1994) 3.52◦ 3.25◦ 100%

Figure 7. Dense motion estimation on Yosemite with M62 (mix of affine and constant constraints in the hierarchical minimization) and regular

partitioning: (a) histogram of the mean angular discrepancy for 1700 parameter triples; (b) surfaces of the mean angular error for α = 100 and

α = 360; (c) surfaces of the std. dev. of the angular error for α = 100 and α = 360.

cpu times measured on a Sun Ultra Sparc

(200 Mhz).

In order to give elements of comparison, Table 2 re-

calls some of the results presented by Barron et al. (see

corresponding references therein). They concern an

adaptation of Horn and Schunck’s algorithm, the best

full-density algorithm (Uras et al.) and the two algo-

rithms yielding the best results, but with reduced densi-

ties (Lucas and Kanade, Fleet and Jepson). In the lower

part of the table, we include the results obtained by

other authors on the same sequence with sky removed.

It appears in Table 1 that the adaptive partition-

ing provides a noticeable speed up as compared to

the regular partitioning. Except for M6, this acceler-

ation is obtained at the cost of a slight loss of qual-

ity, at least on that synthetic sequence and in view

of the angular discrepancy criterion. At that point, we

would like to stress out that this discrepancy measure

used to assess the quality of motion fields should be

interpreted with caution due to its global nature (it

is just a mean). In particular this criterion does not
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Figure 8. Results on satellite sequence Depression: (a) one frame; (b) motion field estimated with M2 and regular partitioning (cpu time:

105 s); (c) motion field estimated with M6 and adaptive partitioning (cpu time: 24 s).

allow to evaluate the critical ability of a particular

method to locate and preserve discontinuities. For in-

stance, the adaptive M6 model, which gives better re-

sults “in average”, is not able to estimate accurately

the motion around spatial discontinuities-due to the

crude partition on which it lies. The mixed model M62

with adaptive grids performs better from that point

of view, which will prove useful in real world cases.

Nevertheless one must keep in mind that the use of

adaptive grids requires the tuning of a supplementary

parameter.

Note that in the case of M2 associated with a regular

subdivision, the results are improved as compared to the

pure top-down multigrid method we had introduced in

Mémin and Pérez (1998a). Hierarchical Gauss-Newton

with its successive inter-level warping performs better

on this particular example.

We now turn to the real world sequences described

at the beginning of the section. Figure 8 presents for

Depression the final motion fields respectively esti-

mated by M2 with the regular division and M6 with

the adaptive division. The two vector fields are dis-

played the same way, namely sub-sampled by 6 and

magnified by 4. We can notice that with the regu-

lar piecewise constant constraint on increments, the

flow is drastically under-estimated and over-smoothed

as compared to the one produced with the adaptive

affine constraint. As a consequence, local features of

interest such as the depression center in the left upper

corner of the image are concealed with M2 whereas,

with M6, this depression center is clearly visible and

may be easily identified in an automatic way. This

real example demonstrates that the use of the model

M6, as well as the use of the adaptive partitioning not
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Figure 9. Results on experimental fluid mechanics video Smoke: (a) one frame; (b) final partition; (c–f) four consecutive motion fields estimated

with M62 and adaptive partitioning.

only reduces the computational load but can also result

in improved results, contrary to what we observed on

Yosemite.

The sequence Smoke is all the more difficult an

example since it implies large displacements (up to

20 pixels) and low photometric gradients. The fi-

nal estimation partition obtained with M62 for one

image of the sequence is given in Fig. 9(b) along

with four consecutive motion fields estimated from

the sequence. Visually, the estimates obtained seem

compliant with the apparent dynamics of the fluid

flow. In addition, the estimation turns out to be quite

stable in time despite the absence of any temporal

link.8

The whole multiresolution/hierarchical algorithm

converges quickly, with only ten or so low cost it-

erations at each level. Also, as thoroughly assessed

with the synthetic data, the technique exhibits a low

sensitiveness to parameter values within large ranges

of variation. This confirms the observations that have

been made in Mémin and Pérez (1998a) for the con-

stant model associated with the pure top-down multi-

grid method and in Hellier et al. (2001) for an extension

of the adaptive M6 model to the registration of volumic

MR brain images (with the adaptive partitioning be-

ing in addition driven by anatomical structures). In the

latter study the dedicated technique proved in addition

capable to deal with complex inter-patient topological

changes.

4.2. Results of Joint Estimation-Segmentation

In the case of the joint estimation-segmentation

approach, we also report comparative results on

Yosemite for comparison purpose. We then consider
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Figure 10. Sequences used in motion estimation-segmentation experiments: (a) frames 1 and 4 of outdoor sequence Parking lot, size 224×224;

(b) frames 1 and 2 of indoor sequence Calendar, size 256× 256.

two real-world sequences (Fig. 10). The first sequence

is a Parking lot sequence which involves two cars mov-

ing in the foreground while the camera pans the scene.

The second one, named Calendar, includes several

moving objects (a calendar moving vertically and a toy

train pushing a ball) and a horizontal panning of the

camera.

As for the parameter values, the number of res-

olution levels was respectively 2 for Calendar and

Yosemite and 1 for Parking lot. The number of grid

levels was fixed to 6 for Calendar and to 5 for the two

others. Most of the energy parameters were kept

the same for the three sequences: α= 100, τ−1
1 = 5,

τ−1
2 = 0.3, τ−1

3 = 0.3, µ1= 30. We only made sequence

dependent the parametric likeness parameter µ2 and the

segmentation a priori parameter λ.

To assess the performances and the stability of the

joint estimation-segmentation method we run it on a set

of 150 values of this couple (µ2, λ) within [10, 100]×

[2, 70]. The sampling step is 10 for µ2 and for λ it is 2

between 2 and 20 and 10 beyond. Figure 11 shows the

surface of the obtained mean angular discrepancy and

the corresponding histogram.

Table 3. Dense motion segmentation vs.

joint estimation-segmentation on Yosemite

with λ = 12 and µ2 = 70.

Model µ σ

Estimation-segmentation

Parametric estimate 1.58◦ 1.21◦

Dense estimate 1.92◦ 1.59◦

Dense estimation only

M2 regular 2.91◦ 3.17◦
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Figure 11. Joint segmentation-estimation on Yosemite for different parameter values: (a) histogram of the mean angular discrepancy for 150

parameter triples (µ2, λ); (b) corresponding surface of the mean angular discrepancy.

Figure 12. Joint motion estimation-segmentation on Yosemite: (a) segmentation initialization at the coarsest level ℓ = 4; (b–d) final segmen-

tations at grid levels ℓ = 4, 2, 0; (e) final dense field estimate; (f) final parametric field estimate (cpu time ∼8 mn).

In Table 3, we compare the best results obtained on

Yosemite by the joint estimation-segmentation method

(λ = 12 and µ2 = 70) to those obtained with the dense

estimation alone. The motion parameters and the con-

vergence criteria (with ε= 5%) were the same. The

final fields obtained by the joint approach, as well as

some successive segmentations are shown in Fig. 12.

Both the parametric and dense motion fields jointly ob-

tained significantly improve the mean angular error, as

compared to the dense estimation alone. A dense field
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Figure 13. Joint motion estimation-segmentation on Parking lot: (a) segmentation initialization at level ℓ = 4, (b–d) final segmentations at

grid levels ℓ = 3, 2, 0; (e) final dense field estimate; (f) final parametric field estimate (cpu time ∼4 mn).

of better quality is thus obtained along with a compact

piecewise parametric field that approximates it very

well. It is worth noting that this piecewise representa-

tion of the motion field further enhances the ability of

the hierarchical dense motion estimator to extrapolate

nicely over large occlusion areas. In Yosemite, the dis-

placement of the region exiting on the left of the image

plane due to the large divergent motion is particularly

well recovered.

As for the segmentation itself, two things can be

noticed. First, although the segmentation process only

interacts indirectly with the data through the dense mo-

tion field under estimation, it is able to split the scene

into pieces that make sense from the tri-dimensional

point of view (i.e., the different image segments corre-

spond to different motions, depths, or orientations). For

instance the partitioning of the mountains in Yosemite

and of the front car in Parking lot are consistent with

the three-dimensional structures of these rigid objects.

Secondly, the boundaries of the segmented regions fit

correctly the discontinuities of the apparent motion.

See for example the crest of both the foreground and

the background mountains in Yosemite, the front car in

Parking lot, and the train engine and the rolling ball in

Calendar.

Finally, let us outline that the joint motion

estimation-segmentation is not very sensitive to the ini-

tialization. As shown in Figs. 12 and 14, it is indeed

able to recover meaningful partitions of the displace-

ment field from rather poor initializations.

Rough estimates of the computation times (code

not hand-optimized) obtained on a 200 Mhz Sun

Ultra Sparc are also given in the captions of

Figs. 12–14.
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Figure 14. Joint motion estimation-segmentation on Calendar: (a) partition initialization at level ℓ = 4; (b–d) final segmentations at grid levels

ℓ = 4, 2, 0; (e) final dense field estimate; (f) parametric field estimate (cpu time ∼8 mn).

5. Conclusion

In this paper, we have presented a comprehensive

energy-based framework for the incremental esti-

mation and segmentation of apparent motion fields.

Using robust cost functions, a dense discontinuity-

preserving motion estimation technique has first been

introduced, and a special care has been dedicated to

its algorithmic implementation: a hierarchical con-

strained minimization framework is proposed which

allows to mix different increment parameterizations

with respect to a regular or an adaptive parti-

tioning of the image. The ability of the resulting

method to recover intricate non-rigid motions has

been especially demonstrated on sequences involving

moving fluids. For situations where a motion-based

segmentation of the sequence makes sense and is

of interest, the previous model has been extended

to simultaneously handle both tasks. A dense esti-

mation as well as a parametric representation of the

same motion field are thus jointly recovered in an

alternate and cooperative way. Of particular inter-

est here, we propose a simple mechanism of inter-

action between a dense discontinuity-preserving esti-

mation process and a segmentation process, through

the auxiliary variables that appear in the half-quadratic

formulation of robust cost functions. We believe that

this mechanism could be used elsewhere (e.g., simul-

taneous restoration-segmentation of still images), and

could probably be considered (and theoretically stud-

ied) from the continuous standpoint of anisotropic

diffusion.

The dense motion estimation technique we pro-

pose constitutes a generic tool whose flexibility allows
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the design of “specialized” versions dedicated to spe-

cific motion estimation (or more generally registra-

tion) problems. It has been, for example, adapted to

the problems of 3D brain image registration Hellier

et al. (2001) and of dense stereo matching (Oisel

et al., 2000). Based on the promising results it al-

ready produced on challenging fluid sequences (as

reported in Section 4), we have also started to in-

vestigate the incorporation of new modeling ingre-

dients related to this very specific kind of dynami-

cal contents (Corpetti et al., 2000; Mémin and Pérez,

1999).

Concerning the joint estimation-segmentation tech-

nique, further research directions include the design

of more sophisticated or complete interaction mech-

anisms (e.g., to take into account photometric dis-

continuities as a useful cue, or to handle explic-

itly the problem of occlusions at borders of motion

regions).

Appendix A

Gauss-Seidel Iteration for Dense Motion Estimation

under Parametric Constraint

For the sake of concision, we shall denote ∇ f̃ (s)
△
=

∇ f (s+wℓ
s , t + 1) the spatial gradient in the second im-

age, displaced according to wℓ, and f̃t (s) = ft (s, wℓ
s)

the displaced frame difference. S is partitioned accord-

ing to Bℓ = {Bℓ
1 . . .Bℓ

Nℓ
}. Let Bℓ

n be the current block

in the iterative visits performed by the Gauss-Seidel

solver. One has simply to minimize Hℓ with respect to

θℓ
n , the total field outside Bℓ

n being frozen. The fraction

of energy actually concerned is:

H
ℓ
n

(
θℓ

n, δ, β
) △
= τ1

∑

s∈Bℓ
n

δs

[
∇ f̃ (s)T Pn(s)θ

ℓ
n + f̃t (s)

]2

+ατ2

∑

〈s,r〉∈Cℓ
∂n

βsr

∥∥wℓ
s + Pn(s)θ

ℓ
n −wr

∥∥2

+ατ2

∑

〈s,r〉∈Cℓ
n

βsr

∥∥(wℓ
s + Pn(s)θ

ℓ
n

)

−
(
wℓ

r + Pn(r)θℓ
n

)∥∥2
, (39)

where C
ℓ
∂n

△
= ∪mC

ℓ
nm is the set of pairs in C straddling

the border of Bℓ
n . The increment field in the neigh-

borhood of Bℓ
n is a mix of various parameterizations

relative to the different parts of the (possibly irregular)

grid Sℓ. However, the only thing of actual interest when

updating θℓ
n is the total field wr

△
= wℓ

r+Pm(r)θℓ
m at any

location r in any neighboring block Bℓ
m . As a conse-

quence, in the following computations, the neighboring

parameterizations do not appear explicitly in the regu-

larization part of the update. Their are simply hidden

within the total field on the neighboring patches. Let-

ting the partial derivative of this piece of energy vanish

yields:

∂Hℓ
n

(
θℓ

n, β, δ
)

∂θℓ
n

= τ1

∑

s∈Bℓ
n

δs Pn(s)
T
∇ f̃ (s)

[
∇ f̃ (s)T Pn(s)θ

ℓ
n + f̃t (s)

]

+ατ2

∑

〈s,r〉∈Cℓ
∂n

βsr Pn(s)
T
[
wℓ

s + Pn(s)θ
ℓ
n − wr

]

+ατ2

∑

〈s,r〉∈Cℓ
n

βsr (Pn(s)− Pn(r))T

×
[
wℓ

s − wℓ
r + (Pn(s)− Pn(r))θℓ

n

]
= 0. (40)

A compact vector formulation of this equation can be

achieved by introducing the following matrices and

vectors indexed respectively by the pixels of block Bℓ
n ,

the neighbor pairs inside the block, and those straddling

the border of the block:

An
△
=




...

∇ f̃ (s)T Pn(s)

...




s∈Bℓ
n

, Fn
△
=




...

f̃t (s)

...




s∈Bℓ
n

,

�n
△
= diag(. . . , δs, . . .)s∈Bℓ

n
,

Cn
△
=




...

Pn(s)− Pn(r)

...



〈s,r〉∈Cℓ

n

,

Bn
△
= diag(. . . , βsr I2, . . .)〈s,r〉∈Cℓ

n
,

C∂n
△
=




...

Pn(s)

...



〈s,r〉∈Cℓ

∂n

, and

B∂n
△
= diag(. . . , βsr I2, . . .)〈s,r〉∈Cℓ

∂m
,
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where I2
△
= [ 1 0

0 1 ], as well as the following block-wise

and border-wise averages:

θ̄
ℓ

∂n

△
=

1

b∂n

∑

〈s,r〉∈Cℓ
∂n

βsr Pn(s)
T
(
wr − wℓ

s

)
,

with b∂n
△
=

∑

〈s,r〉∈Cℓ
∂n

βsr

θ̄
ℓ

n

△
=

1

bn

∑

〈s,r〉∈Cℓ
n

βsr (Pn(s)− Pn(r))T
(
wℓ

r −wℓ
s

)
,

with bn
△
=

∑

〈s,r〉∈Cℓ
n

βsr .

Linear Eq. (40) then reads:

[
τ1 AT

n �n An + ατ2CT
∂n B∂nC∂n + ατ3CT

n BnCn

]
θℓ

n

= −τ1 AT
n �nFn + ατ2b∂nθ̄

ℓ

∂n + ατ3bnθ̄
ℓ

n. (41)

The direct resolution of this linear system provides

the updated value of parameter vector θℓ
n . In this equa-

tion, matrices An , Cn and C∂n , and vectors θ̄
ℓ

n and θ̄
ℓ

∂n

depend on the type of parameterization associated with

blockBℓ
n . Let us give their expressions (when simplified

forms are available) for the two different parameteri-

zations.

For constant model, Pn ≡ I2, yielding AT
n = [· · ·

∇ f̃ (s) · · ·]s∈Bℓ
n
, CT

∂n = [· · · I2 · · ·], Cn = 0, θ̄
ℓ

n = 0, and

θ̄
ℓ

∂n =
1

b∂n

∑
〈s,r〉∈Cℓ

∂n
βsr (wr − wℓ

s). Equation (41) sim-

plifies as follows:

(41) ⇔
(
τ1 AT

n �n An + ατ2b∂nI2

)
θℓ

n

= −τ1 AT
n �nFn + ατ2b∂n θ̄

ℓ

∂n

⇔

(
1

γ
AT

n �n An + I2

)
θℓ

n

= θ̄
ℓ

∂n −
1

γ
AT

n �nFn, with γ
△
=

ατ2b∂n

τ1

⇔ θℓ
n = θ̄

ℓ

∂n

−
γ AT

n �n

(
An θ̄

ℓ

∂n + Fn

)
+ detAn θ̄

ℓ

∂n + comAn AT
n �nFn

γ (γ + traceAn)+ detAn

,

(42)

with An
△
= AT

n �n An .

For affine model, Pn(s) = I2 ⊗ e(s)T , with e(s)T △
=

[1 xs ys], yielding the following expressions for the

matrices and vectors involved in Eq. (41):

AT
n �n An =

∑

s∈Bℓ
n

δs(∇ f̃ (s)∇ f̃ (s)T )⊗ (e(s)e(s)T )

CT
∂n B∂nC∂n = I2 ⊗

∑

〈s,r〉∈Cℓ
∂n

βsr e(s)e(s)T

CT
n BnCn = I2 ⊗

∑

〈s,r〉∈Cℓ
n

βsr (e(s)− e(r))(e(s)− e(r))T

= I2 ⊗ diag


0,

∑

〈s,r〉∈Cℓ
n(•|•)

βsr ,
∑

〈s,r〉∈Cℓ
n(•−•)

βsr




AT
n �nFn =

∑

s∈Bℓ
n

δs ft (s)∇ f̃ (s)⊗ e(s)

b∂nθ̄
ℓ

∂n =
∑

〈s,r〉∈Cℓ
∂n

βsr

(
wr − wℓ

s

)
⊗ e(s)

bnθ̄
ℓ

n =
∑

〈s,r〉∈Cℓ
n

βsr

(
wℓ

r − wℓ
s

)
⊗ (e(s)− e(r))

=
∑

〈s,r〉∈Cℓ
n(•|•)

βsr

(
wℓ

r − wℓ
s

)
⊗ [0 1 0]T

+
∑

〈s,r〉∈Cℓ
n(•−•)

βsr

(
wℓ

r − wℓ
s

)
⊗ [0 0 1]T .

where Cℓ
n(

•|•) (resp. Cℓ
n(•−•)) contains pixel pairs of Cℓ

n

lying along the x-direction (resp. y-direction).

Appendix B

Constrained Estimation-Segmentation at Grid Level ℓ

Data term: Using the same block-wise notations as in

Appendix A, it is easy to get the following compact

expression:

H
ℓ
1(dwℓ, δ) =

∑

n∈Sℓ

[
τ1

(
Andwℓ

n + Fn

)T

×�n

(
Andwℓ

n + Fn

)
+
∑

s∈Bℓ
n

ψ1(δs)

]
.

(43)

For each site of Sℓ, one gets a sort of block-wise optical

flow expression involving aggregated observations.

Smoothing term: Considering the piece-wise con-

stant constraint on the increment field, the prior energy

can be written as Mémin and Pérez (1998a):

H
ℓ
2(dwℓ, β) = H2(0, β)+ τ2

∑

〈n,m〉

[
βnm

∥∥dwℓ
n − dwℓ

m

∥∥2

+ 2
(
dwℓ

n − dwℓ
m

)T
�w

ℓ

nm

]
, (44)

with βnm
△
=
∑
〈s,r〉∈Cℓ

nm
βsr and �w

ℓ

nm

△
=
∑
〈s,r〉∈Cℓ

nm

βsr (w
ℓ
s − wℓ

r ).
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Parametric likeness term: Rℓ ∈�ℓ being the cur-

rent partition of Sℓ with associated parameter vector

ϕ = (ϕi ), we denote R = �(Rℓ) the associated con-

strained partition of S and ∂Ri j the pieces of frontiers

between adjacent regions Ri and R j of R. We have:

H
ℓ
3(dwℓ,Rℓ,ϕ, β, η)

=µ1

∑

〈i, j〉

1

|∂Ri j |

∑

〈s,r〉∈∂Ri j

βsr +µ2

∑

i

∑

n∈Rℓ
i

∑

s∈Bℓ
n

×
[
τ3ηs

∥∥wℓ
s +dwℓ

n − P(s)ϕi

∥∥2
+ψ3(ηs)

]
, (45)

which, like previously, reduces to:

H3(dwℓ,Rℓ,ϕ, β, η)

=H
ℓ
3(0,Rℓ,ϕ, β, η)+µ2

∑

i

∑

n∈Ri

[
znτ3

∥∥dwℓ
n

∥∥2

+ 2
(
dwℓ

n

)T
�w

ℓ

n(ϕi )
]
, (46)

where zn
△
=
∑

s∈Bℓ
n
ηs and �w

ℓ

n(ϕi )
△
=
∑

s∈Bℓ
n
ηs(w

ℓ
s −

P(s)ϕi ).

Segmentation a priori term: The reduced expression

of this term is:

H4(R
ℓ) = H

ℓ
4(Ψ

ℓ(Rℓ)) = λ2ℓ|∂Rℓ|. (47)

Gauss-Seidel iteration w.r.t. dwℓ
n: Setting to zero the

derivative of Hℓ w.r.t. to dwℓ
n , one gets the same update

equation as in (42) (with dwℓ
n = θℓ

n , for it is the constant

model), but with slightly modified definitions:

θ̄
ℓ

∂n

△
=

∑
m:Cℓ

mn !=∅

(
βnmdwℓ

m −�w
ℓ

nm

)
− µ2τ3

ατ1
�w

ℓ

n(ϕi )

b∂n +
µ2τ3

ατ1
zn

,

(48)

γ
△
=

ατ2b∂n + µ2τ3zn

τ1

,

where now appears the parametric field of the region

Ri to whom block n belongs. For η ≡ 0 (which implies

zn = 0 and �w
ℓ

n(ϕi ) ≡ 0), the expression coincides

with (42), as expected, since this amounts to removing

parametric goodness-of-fit energy term.

Notes

1. Function ψ is defined as ψ(z)
△
= φ ◦ φ′

−1
(τ z) − τ zφ′

−1
(τ z)

(Charbonnier et al., 1997; Geman and Reynolds, 1992; Mémin

and Pérez, 1998a). It is strictly decreasing since ψ ′(z)=

−τφ′
−1

(τ z) < 0.

2. In case B is a regular partition into square patches, the adjacency

graph is the N -site rectangular lattice with same neighborhood

system as the original lattice.

3. By reference to the standard multigrid techniques from numerical

analysis (Hackbusch, 1985) to which our hierarchical minimiza-

tion scheme is related we will say that ℓ indexes grid levels. These

grid levels are not to be confused with the resolution levels: at each

level of resolution a complete sequence of grid levels from ℓ = L

to 0 is deployed to conduct the minimization.

4. A natural way of building this hierarchy of parametric represen-

tations is to consider nested partitions where B ℓ is made up from

the subdivision of elements of B ℓ+1. This nested structure is eas-

ily obtained with regular subdivision schemes (based on square

or triangle tiling). It is more difficult to design irregular subdivi-

sion strategies. In Section 4, we shall introduce an adaptive way

to build square-based nested partitions.

5. When the constrained subsets are nested, i.e., �ℓ+1 ⊂ �ℓ, the

succession of minimizations can be conducted in a slightly dif-

ferent way: the final estimate at a given level is not directly inte-

grated in the main field to be refined at the next level, but simply

used as an initialization for the iterative minimization process.

More precisely, all wℓ fields in (13) are the same, equal to some

field w, while θ̂ ℓ+1 is now used to define the initial increment

configuration at level ℓ through (�ℓ)−1 ◦ �ℓ+1(θ̂ ℓ+1), which

makes sense since Im�ℓ+1 ⊂ Im�ℓ. In this version, described in

Mémin and Pérez (1998a), the spatio-temporal luminance deriva-

tives remain the same, i.e., computed with respect to f (s, t) and

f (s + ws , t + 1). In other terms, a single linearization of the

brightness constancy assumption is considered (for a given reso-

lution level), and the coarse-to-fine minimization turns out to be

a standard multigrid scheme (Hackbusch, 1985).

6. We still consider in the coming developments that an arbitrary

resolution level of the multiresolution setting is concerned.

7. As mentioned in Section 2.3, this hierarchical Gauss-Newton

minimization can be replaced by a classic multigrid minimization

when the constrained configuration subsets are nested, which is

the case here (�ℓ+1×ϒℓ+1 ⊂ �ℓ×ϒℓ): in this variant the final

estimate at level ℓ+1 is projected at level ℓ through [�ℓ]−1◦�ℓ+1

(resp. [�ℓ]−1 ◦�ℓ+1) and used as an initial configuration at that

level ℓ.

8. The sequence and the estimated vector fields can be seen

at http://www.irisa.fr/vista/Demos/Demos.english.

html.
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Corpetti, T., Mémin, E., and Pérez, P. 2000. Dense fluid flow estima-

tion. IRISA, Technical Report No. 1352.

Delanay, A. and Bresler, Y. 1998. Globally convergent edge-

preserving regularized reconstruction: An application to limited-

angle tomography. IEEE Trans. Image Processing, 7(2):204–

221.

Deriche, R., Kornprobst, P., and Aubert, G. 1995. Optical flow es-

timation while preserving its discontinuities: A variational ap-

proach. In Proc. Asian Conf. Computer Vision, Singapore, vol. 1,

pp. 290–295.

Enkelmann, W. 1988. Investigation of multigrid algorithms for the

estimation of optical flow fields in image sequences. Comp. Vision

Graph. and Image Proces., 43:150–177.

Geman, D. and Reynolds, G. 1992. Constrained restoration and the

recovery of discontinuities. IEEE Trans. Pattern Anal. Machine

Intell., 14(3):367–383.

Hackbusch, W. 1985. Multi-Grid Methods and Applications.

Springer-Verlag: Berlin.
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