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Fig. 1. Left: Keyframes from a 3 minute snooker video segment consisting of 6 shots taken from a complete match of 67 shots. Right:
Visualization created from the video data. The visualization displays each shot from the video, whilst introducing event importance
shown by ball trajectory emphasis, and event ordering shown by numbered ball icons. Table annotations represent ball pots, player
scores, points remaining and the position in the full video where this sequence of events occurs.

Abstract—Video storyboard, which is a form of video visualization, summarizes the major events in a video using illustrative visu-
alization. There are three main technical challenges in creating a video storyboard, (a) event classification, (b) event selection and
(c) event illustration. Among these challenges, (a) is highly application-dependent and requires a significant amount of application-
specific semantics to be encoded in a system or manually specified by users. This paper focuses on challenges (b) and (c). In
particular, we present a framework for hierarchical event representation, and an importance-based selection algorithm for supporting
the creation of a video storyboard from a video. We consider the storyboard to be an event summarization for the whole video, whilst
each individual illustration on the board is also an event summarization but for a smaller time window. We utilized a 3D visualization
template for depicting and annotating events in illustrations. To demonstrate the concepts and algorithms developed, we use Snooker
video visualization as a case study, because it has a concrete and agreeable set of semantic definitions for events and can make
use of existing techniques of event detection and 3D reconstruction in a reliable manner. Nevertheless, most of our concepts and
algorithms developed for challenges (b) and (c) can be applied to other application areas.

Index Terms—Multimedia visualization, Time series data, Illustrative visualization.

1 INTRODUCTION

Video visualization is concerned with the creation of a new visual rep-
resentation from an input video to reveal important features and events
in the video [2]. A video storyboard, which is a form of video vi-
sualization, typically summarizes a video using a small sequence of
keyframes and composite images that are often enhanced by additional
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illustrative annotations. Unlike those storyboards used in movie mak-
ing as a pre-visualization of the planned actions, here we focus on
video storyboards as a post-visualization of the events in a video. It
helps users primarily as a visual medium to aid discussions and com-
parison, facilitating memory externalization while removing the bur-
den of viewing videos repeatedly.

Video storyboards have been proposed in the literature (e.g., [9]).
However, the technical advances have been largely limited to annotat-
ing motions, such as an actor moving from one place to another [9].
The difficulties reside in the pipeline for creating a storyboard from
a video, which typically consists of (a) event detection and classifica-
tion, (b) event prioritization and selection, and (c) event depiction and
annotation. One of the major obstacles is the need for encoding some
application-specific semantics at some stages of the pipeline, fogging
generic approaches with application-specific algorithms. Among the
three stages, (a) depends heavily on application-specific semantics and
algorithmic encoding (e.g., object and event classification is usually
difficult to port from one application to another). Techniques for (c)
may require some application-specific specification such as visual de-



signs and mappings, but are generally more portable as they rarely
involve machine learning. Techniques for (b) are potentially more
generic and can have many applications. It is necessary to note that
although the creation of video storyboard requires the input and en-
coding of application-specific semantics, this does not undermine its
potential as a vital tool for video visualization because many applica-
tions, such as sports, have the needs and resources to build such an
application-specific pipeline.

In this work, we focus on (b), examining a generic scheme for rep-
resenting events hierarchically and a recursive algorithm for selecting
events for creating storyboards (Section 3). To demonstrate the us-
ability of this scheme, we present a case study of snooker video vi-
sualization, where the hierarchical selection approach is particularized
(Section 4). The reason to choose this case study is that the defini-
tion and importance of events in snooker games are reasonably well-
defined and agreeable by most experts and audience. As the filming
takes place indoor under a controlled environment, this makes object
and event detection and classification more reliable (Section 5), allow-
ing us to focus on (b) without being distracted by application-specific
difficulties. We utilized a form of 3D perspective view of a snooker
table as the basic template for our visualization, because this is consis-
tent with what users would commonly see on the television. We show
that the hierarchical event prioritization and selection can be integrated
directly with algorithms for visual mappings (Section 6).

2 RELATED WORKS

Whilst the topic of event visualization is still relatively new, event de-
tection has been studied for many years in the computer vision com-
munity. It is widely adopted in surveillance work, as shown in the
survey by Hu et al. [12]. In particular, it is often used for traffic
monitoring [17] or for human behaviour analysis [29]. Another pop-
ular application of event detection has been sports broadcasting. Li
and Sezan [16] propose to use a Hidden Markov Model to classify
events in sports videos (e.g., for American football, baseball and sumo
wrestling) into four basic states: start-of-play, in-play, end-of-play and
non-play. Sadlier and O’Connor [21] use both audio and visual fea-
tures to detect events in sports video by using a Support Vector Ma-
chine. Pan et al. [18] perform event detection based on detecting slow-
motion replays that are likely to correspond to major event highlights
in broadcast footage.

Video visualization compliments automated video analysis, espe-
cially in situations where accurate detection and classification can-
not be achieved. Borgo et al. [2] conduct a comprehensive survey
on this topic. Daniel and Chen [4] use video visualization to sum-
marize CCTV footage. Chen et al. [3] propose to improve visualiza-
tion using both volume (change) and flow (motion) signatures. Their
study show that ordinary people can learn to recognise events based
on event signatures in static visualization rather than having to view
the entire video content. Romero et al. [20] use video visualization to
add human behavioral analysis. Yeo and Yeung [27] implement a sys-
tem that uses keyframes to summarize video. Since using keyframes
is common practice, this is not a new idea, but a new implementa-
tion. Takahashi et al. [24] propose to summarize video footage using
a ‘video poster’ created from the keyframes and meta-data of sports
video. Dony et al. [6] and Goldman et al. [9] propose to summarize
videos using storyboards, which accompany keyframes with annota-
tions (such as motion arrows). Assa et al. [1] extract a selection of
poses from a short sports video and compose them into a single illus-
tration.

In the context of event-based visualization, Kapler and Wright de-
veloped a prototype system ‘GeoTime’ that displays military events
in a combined temporal and geo-spatial visualization [13]. They use
the 2D x-y space for the geographic space, and the third dimension
(z) to represent time in the future and past. Gatalsky et al. use the
similar concept of the ‘space-time cube’ to visualize spatio-temporal
information relating to earthquake events [8]. Wang et al. [25] use 3D
environment models to contextualize spatially-related videos. Yu et
al. [28] propose to organize identified events into an event graph to aid
the creation of animation of different event sequences.

Finally, for snooker videos, Höferlin et al. [11] present a study on
using video visualization in snooker coaching and skill training. Rea et
al. [19] perform video analysis for classifying snooker events, in par-
ticular: shot-to-nothing, break building, conservative play and snooker
escapes. Denman et al. [5] make use of table geometry in process-
ing snooker broadcast videos, and propose to detect the disappear-
ance of objects using histogram analysis at pocket regions. Guo and
Namee [10] perform 3D reconstruction using a smallscale toy snooker
table with a camera placed directly above. Shen and Wu [22] carry out
3D reconstruction from a camera placed above the centre of the table.
They acknowledge the difficulty to capture the entire table because of
the altitude of the camera.

3 FACETS OF EVENTS

An event can be described as a significant occurrence or happening,
which typically has some application-specific meaning in the context
where it occurs. A conceptual framework of events may feature several
major facets of events. These may include:

• Hierarchy — Events may have a hierarchical relationship, that
is, an event may be defined as an abstraction or a composition of
a series of more elemental events.

• Importance — Events may have different levels of importance.
Such a quantity can be defined by a group of experts for a specific
application.

• State — Events may act as a transition, or one of the causes of a
transition, from one state to another [23].

It may appear that the specification of events and their above-
mentioned facets could be rather arbitrary and might be judged by
different individuals in different circumstances. However, in many ap-
plications, such as sports games and road traffic, there exists a common
understanding. It is such a common understanding that makes event
detection and classification possible. On the other hand, the personal
and circumstantial variance makes event summarization a challenging
task. In comparison with a textual summarization, event visualiza-
tion has the potential to convey a summary of major events, and their
temporal and spatial context in a more effective and efficient manner,
while supporting industrials’ reasoning and judgment.

3.1 Event Hierarchy

Let e
q
w denote an event at a time window w in a semantic context q.

Without losing generality, we treat a specific point of time t and an or-
dinal number i as two special cases of w. In the following discussions,
we also assume that semantic contexts are organized into a hierarchy.

Thus, eh
t implies that it is a level h event occurring at time t. When dis-

cussing events at a particular hierarchical level, we may use a specific
letter (e.g., a, b) to denote all events at that level.

For example, consider all image frames in a snooker video:

E1 = F = ⟨ f1, f2, . . . , ft , . . .⟩.

F can be considered as the most elementary level of events. All ball
motions and contacts with cues, cushions and pockets form a sequence
of events at a higher level,

E2 =C = ⟨c1,c2, . . . ,ci, . . .⟩.

All shots, from the first contact between the cue and ball to the time
when all balls become stationary, fall into the 3rd level,

E3 =W = ⟨w1,w2, . . . ,w j, . . .⟩.

A collection of consecutive shots that are related forms an event at the
4th level, and all such events belong to the sequence of

E4 = P = ⟨p1, p2, . . . , pk, . . .⟩.

All game frames becomes a sequence at the 5th level,

E5 = R = ⟨r1,r2, . . . ,rl , . . .⟩.



This framework can be extended to include even higher levels such
as games, tournaments or seasons. We use symbol ≺ to denote the
hierarchical order, e.g.,

F ≺C ≺W ≺ P ≺ R ≺ . . . .

Conceptually, events at each level are interleaved with a sequence
of states at the same level. Each state is unique, and can be determined
based on a set of attributes. In practice, it is usually more meaningful
and efficient to represent states explicitly only at higher levels. We
use s

q
w to denote a state at a time window w in a semantic context q.

Similar to event definitions, we can have special cases for a specific
point in time, order and hierarchy.

3.2 Event Classification

Classification is a process to assign a semantic meaning to an event
or state. This is highly application-dependent. For example, in soccer
video annotation, it is common for a video analyst to observe an event
in a video, create an event mark, and select a type from a list of pre-
defined keywords. For snooker videos, it is more feasible to determine
a low level event by an automatic classification algorithm.

When considering an event as a record in the computer, we can
call an event classification function Ψ(e) to determine the type of the
event. For example, events in sequence C may be classified as (i)
no collision, (ii) ball-to-ball, (iii) cue-to-ball, (iv) ball-to-cushion, (v)
ball-near-pocket, and (vi) ball-in-pocket. Events in sequence W may
be classified as (i) break building, (ii) conservative play, (iii) snooker
escape and (iv) shot to nothing. Similarly, states are classified by a
function Φ(s), such that Ψ and Φ are level dependent.

In general, a higher level event is an abstraction or composition of
some lower level events. For instance, a motion event m is determined
by examining several consecutive image frames . . . , ft−2, ft−1, ft . A
more complex classification scheme may involve processing both
events and states at lower levels. In our work, we restrict the clas-
sification process only to the level immediately below the current
level. Note that this is only a convenient implementation, not a lim-
itation, since one can always ‘copy’ an event from a lower level to a
higher level. Hence, given three event sequences at different levels,
X ≺ Y ≺ Z, if the definition of an event z ∈ Z depends on some events
in X and some in Y , we can always add new events in Y to mirror those
relevant events in X .

We thereby have the following classification dependency:

Ψ : (Eh)d × (Sh)d 7→ Eh+1 Φ : (Eh)d × (Sh)d 7→ Sh+1

where d is the small constant representing the number of events and
states in a sequence of transitions that a classification scheme will con-
sider. As almost all events and states are type-defined by Ψ or Φ (ex-
cept the image frames in F), event detection and classification conform
to the general problem of pattern recognition in text strings [14].

For instance, given a sequence of event-state transition, A =
⟨e1,s1,e2,s2, . . . ,ed ,sd⟩, we can compute a corresponding string of
types as:

TA = ⟨Ψ(e1),Φ(s1),Ψ(e2), . . . ,Ψ(ed),Φ(sd)⟩

We then search for a particular type-signature sequence in TA.

3.3 Event Importance and Selection

Given an event record e, we can also determine the importance of
the event by using an importance function Γ(e). Unlike event and
state classification functions, Γ(e) operates on the events and states at
the same level. A simple importance function can simply be a map-
ping from event type to a scalar value representing the importance. A
slightly sophisticated function may take the preceding state and suc-
ceeding state into account. A more complex function may be a func-
tion of a sequence of event-state transitions in a manner similar to the
processing of TA in Section 3.2.

In any form of event summarization, including video storyboarding,
we need to select a set of events to be communicated to the users. The

Fig. 2. Example to show event importance and selection. Events to
be selected for video storyboard at level k and k− 1 are shown by the
blue ‘tick’ icon. This illustrates how the Gaussian function introduces a
temporal measure into the moderated importance criteria.

importance of a higher level event will have significant influence on
the selection of lower level events. In many ways, this is similar to
storytelling. The selection of a lower level event (e.g., pick up a knife)
for the story would depend heavily on the importance of the related
event at a higher level (e.g., fighting or cooking).

Once importance for each event is computed, we can start to select
events for event summarization. In this work, a summarization is also
organized hierarchically. Again, similar to storytelling, a story consists
of a number of sub-stories. Each sub-story consists of a number of sub-
sub-stories. There is an overall control about the coverage in breadth
(i.e., how many sub-stories are allowed) and depth (i.e., how many
levels of details).

Our event selection algorithm assumes the input of the following
initial conditions from the user: the particular levels of events to be
included in the summary, the maximum number of events at the high-
est level to be included in the summary, the time period covered, and
a few other parameters to be given later in the relevant context.

Let H1 ≺ H2 ≺ . . . ≺ Hk be the k levels of events to be visualized.
Nk be the maximum number of events to be depicted at level Hk. The
selection algorithm first selects Nk events at level Hk with the highest
importance values, resulting in a sequence:

A = ⟨a1,a2, . . . ,an⟩

where each event ai has an importance value αi.

For each event ai ∈ A at level k, we identify a sequence of relevant
events at level k− 1. The relevance is defined by a time period, [t −
δ1, t +δ2] where t is the point in time of ai, and δ1,δ2 ≥ 0. Often, we
set δ2 = 0 as the depiction of an event usually involves showing more
information about the sub-events leading the event.

Let Bi = ⟨bi,1,bi,2, . . . ,bi,m⟩ be a sequence of such sub-events at
level k−1. Each bi, j is defined with its importance β j and time u j .

The importance value β j is moderated by a Gaussian function G(x)
where x = |u j − t|. The parameter σ of G(x) is pre-defined, and we
set σ = 2 as a default in our system. This Gaussian function gradually
reduces the importance of events in Bi if they are further away from t,
which is the temporal focus of ai. Let β ′

1,β
′
2, . . . ,β

′
m be the resultant

importance values after Gaussian moderation. Let Nk−1 be a local
maximum number of events at level k − 1 to be visualized for each
event ai at level k. We select Nk−1 events from Bi based on with the
highest importance values in ⟨β ′

1,β
′
2, . . . ,β

′
m⟩. Fig. 2 illustrates this

moderation process, which can continue recursively.

4 CASE STUDY: SNOOKER VIDEO VISUALIZATION

We now present the proposed framework in application to sports video
event visualization. We choose snooker as an example since it con-
sists of well-defined events that can be clearly represented. Snooker
is played on a large green baize-covered table (of size 12× 6 ft) with
pockets in each of the four corners and in the middle of each of the long
side cushions [7]. It is played using a cue and a set of snooker balls,
consisting of one white cue ball, 15 red balls (worth one point each),
and a series of coloured balls: yellow (worth two points), green (worth



Fig. 3. Snooker event hierarchy. This shows low-level events that occur
within a particular shot (E2), higher-level events that define a single shot
(E3) and higher-level events that group a collection of shots (E4).

three points), brown (worth four points), blue (worth five points), pink
(worth six points) and black (worth seven points). The aim of the game
is to score as many points as possible by striking the cue ball with the
cue in order to pot the red and coloured balls in sequential order.

4.1 Snooker Event Hierarchy

Fig. 3 gives the event hierarchy that was adopted for snooker story-
boarding. The hierarchy shows three event levels, where E2 ≺ E3 ≺
E4. Given each ball on the table we define the detectable low-level
events into the following classes Ψ(c) = {moving, collision, pot},

c ∈ E2. It is assumed that at the start and end of each shot that each
ball will take the event ψstopped . Let us now consider the series of low-

level events E2 that would make a typical shot in snooker. The player
strikes the cueball (triggering the cueball event moving) and collides
with another object ball (triggering the cueball event collision). If this
results in the object ball event pot being triggered then the player takes
another shot, otherwise the opponent takes their turn.

Each shot is clearly bounded between the sequence of events that
results in each ball object being stationary on the table. Hence we
can begin to formulate higher level events E3 by collecting the events
and states occurring between this interval. As discussed in Section 3,
higher-level events are made up of lower level events, subject to sat-
isfying the condition of states. By searching for a particular signature
contained in E3, we assign each shot to one of the follow types: break
building, conservative play, snooker escape, shot-to-nothing and foul.

In order to define the states between events, we consider a set of
attributes α , each of which can take a particular value. Then any
state can be defined as s = {α1,α2, . . . ,αk}. For snooker we use
the following attributes: player1 score, player2 score, current break,
points remaining on table, cueball safe, valid shot played. Like-
wise, these attributes may have additional parameters associated
with them (e.g., cueball safe depends on cueball position and dis-
tance to closest red). At any time window w, the set of attributes
can be assessed to determine the current state. Due to the nature of
snooker, it is reasonable to consider these attributes for states at level
S3 which coincides with each independent shot in the match. After
each shot at event level E3, each attribute is updated to determine the
new state before the next shot is played.

Let us consider the events at level E3. Break building is defined
where αvalid shot played is true, and the event ψpot occurs. Similarly,
a shot where αvalid shot played is true but the event ψpot does not oc-
cur can be considered to be conservative play, subject to αcueball sa f e

being true. A shot-to-nothing can be defined where ψpot occurs with
attribute αcueball sa f e being true. We deduce a snooker-escape by look-
ing for the occurrence of a collision with the cushion before making
contact with the ball, subject to αcueball sa f e being true. Finally, a foul
occurs when αvalid shot played returns false.

For our highest event level E4, we begin to cluster together relevant
shots based on the context of a regular game of snooker. A collection
of break building shots can be grouped to give a break phase where a
player has potted multiple balls. Likewise, a collection of shots clas-
sified as conservative play could be grouped to be a safety exchange.
In some cases, it may also be important to know the shot that came
before or after an event (e.g., poor cueball positioning that allowed a
break to be scored, or a missed pot that ended a break). Hence we type
define ψbreak phase as a sequence of consecutive break building shots
along with the shots that precede directly before and after. We use the

Fig. 4. A bar chart of event importance (X-axis givens shot number
compared against Y-axis for importance). Events at level E3 are shown
in blue and events at level E4 are shown in red. Four significantly large
peaks occur for E4 that represent the key events for that level.

term ‘tactical play’ to categorize shots that involve escaping from a
snooker. Again, we consider the preceding shot in order to establish
the action that took place that results in the snooker.

4.2 Snooker Event Importance

Fig. 4 shows a bar chart that represents the event importance for a
snooker match, illustrating the importance of events at levels E3 and
E4. The 4 peaks in E4 corresponds to the 3 largest breaks in the game
and the phase when the frame ball was potted. Within each region,
we can see local peaks that show the more important individual shots
(e.g., potting the black ball) that are derived from the general form:

Γ(ψtype) = b+ν(α) (1)

where b is a constant that gives the baseline importance value for each
event type ψtype and ν(α) denotes the variable importance computed
based on the current attributes in the state. Given the higher level
events and the state attributes, we define our following importance
functions based on our general definition:

Γ(ψconservative play) = 1+(1−|αcueballposition|) (2)

Γ(ψbreak building) = βc +βc × ln(αcurrentbreak) (3)

Γ(ψsnooker escape) = 2+
1

e1/η
(4)

Γ(ψshot to nothing) = 4+ |αcueballposition| (5)

where η ∈ N is the number of cue ball collisions before contact with
object ball and βc corresponds to the score of potted ball colour (where
c = 1 . . .7).

From Eq. 2, the importance value for a typical conservative shot is
bounded between the interval [1, 2] where Γ(ψconservative play) −→ 2
as αcueballposition −→ 0. A good conservative shot generally involves
leaving the cue ball near the baulk end of the table which in our case
is when the cue ball x-position is at its maximum. As a general frame
of snooker can contain a large number of good conservative shots, we
indicate the bad conservative shots (i.e., when ξ tends to zero) with
higher importance as they occur less frequently. Similarly, this is also
applied in computing the importance for ‘shot-to-nothing’ in Eq. 5.
However, in this case we accentuate that the pot is more difficult when
the cue ball is closer to the top cushion (when αcueballposition −→ 1).

Break building is derived using a two-stage iteration. We use the
value of the potted ball as the base score followed by an additional
factor of βc ×αcurrentbreak. The higher the break that a player makes,
the more important that particular break becomes. We use a natural
logarithmic function to model the behaviour of a break being gradually
less important once a player has completed a break to secure a win.



Fig. 5. Applying Gaussian moderation as a weighting parameter for
event importance. The adjusted importance parameters are shown in
green. This introduces a temporal focus surrounding the key local event
that occurs within the grouping given by the global importance.

The most important shot in a frame is considered to be ‘frame ball’.
This is where the difference between the player scores is greater than
the number of points remaining on the table. The importance of frame
ball is defined as:

147

αpoints remaining on table

×
max(αplayer1 score,1)max(αplayer2 score,1)

|αplayer1 score −αplayer2 score|
(6)

Note that frame ball is only considered when:

|αplayer1 score −αplayer2 score|> αpoints remaining on table. (7)

A frame ball is more significant if the remaining score on the table is
small (this will occur if the game happens to be close) or if the score
difference between both players is small.

Fig. 5 shows Gaussian moderation being applied to the original
event importance (Fig. 4) as discussed in Section 3. For a particu-
lar higher-level event, the Gaussian curve is centred on the greatest
low-level event within this set. The Gaussian curve is used to apply
a weighting to the importance in order to provide a temporal focus
surrounding the key event.

5 SYSTEM OVERVIEW

The system can be described as a three-stage process, (a) event detec-
tion and classification, (b) event prioritization and selection, and (c)
event depiction and annotation. In (a), the input video is processed
to detect the snooker table and ball objects, and based on the tracking
data, detects the occurrence of low-level events. From this, the sys-
tem is able to produce the hierarchical event classification. Given the
event hierarchy, (b) computes the importance of each event that oc-
curs. From this, the system selects the shots of greatest importance.
Finally, (c) generates the visualization by using the event importance
and selection data in conjunction with the tracking data.

We capture video footage from the snooker table using a single
camera that is mounted above the table. The process of detecting, clas-
sifying and tracking each ball object within the captured scene (Fig. 6)
is given in [15]. For each shot in the match, and each frame of video
in the shot, we obtain the following data for each ball: ID, colour, po-
sition, speed, direction. This provides enough data to generate a 3D
reconstruction of the captured scene. Extending on our previous work,
each ball will also have three event tags that correspond to the three
low-level events: moving, collision and pot. A ball is detected as mov-
ing if the speed is greater than a fixed parameter, based on the position
between subsequent frames in the video. A collision is detected where
a ball starts moving, subject to another ball moving close to this. Fi-
nally, a pot is detected where a ball disappears from the table, subject
to being close to a pocket region. These make up the low-level events
that are used for further processing by the event selection tool.

Fig. 6. Conversion from video view to 3D reconstructed view.

6 VISUALIZATION DESIGN

A storyboard consists of a series of illustrations. Each illustration
represents a major event selected by the event selection algorithm de-
scribed in Section 3. Unlike the conventional storyboard used in com-
puter animation, each of our illustrations is not just a keyframe, but
a visualization of several sub-events related to the major event asso-
ciated with this illustration. As described in Section 3, the selection
of these sub-events is based on Gaussian-moderated importance val-
ues. In this section we shall discuss the visualization design used to
generate the illustrations, and how these form the video storyboard.

It is important that our visualization design follows best practice
guidelines. There are existing guidelines for how to use different vi-
sual cues such as colour, thickness/size, opacity, lines, texture and
symbols when producing visualizations [26]. The visualization should
clearly represent the action from the video data, whilst maintaining
temporal information. It should address the concept of event hierarchy,
and emphasize the key events at each level of the hierarchy by impor-
tance. The visualization should be intuitive for the user and provide
faster interpretation of events than watching the video in real-time.

As a basis for the visualization we use a 3-dimensional model of a
snooker table to give clear contextual representation of the data. Obvi-
ously other event-based systems would utilize a different environment,
based on the application area. The system will incorporate the track-
ing data for each ball object as performed in Section 5. However, due
to the wealth of information that is present in the snooker video con-
tent, the challenge in this system is quickly apparent. At most, there
will be 22 ball objects on the table during a match. For each shot, the
cueball will move around the table which will collide with a number
of other balls, causing these to move also. A typical match may have
50-60 shots played. To represent this information on a single image
will result in an exceptionally confusion representation due to over-
cluttering. Therefore we use a video storyboard to represent the video
using a user-defined number of static visualizations. We use event pri-
oritization and selection (from Section 4) to determine the key event
sequences from the video data for the storyboard.

Table 1 gives an overview of some of the different visual cues that
could be utilised in our visualization design. It is important that for
each visual cue we consider how this may be constrained by the ap-
plication context, and how this could be used to introduce additional
information to the scene. In snooker, the obvious constraint is colour
since this is already used extensively to represent different balls on the
table. Since colour is so commonly adopted as a visual cue in visu-
alization this poses an additional challenge to our work. Other cues
that are restricted by the data space are the size of the ball objects
and the line length of the trajectory paths. Just as with the data space,
there are constraints introduced in the rendering space for represent-
ing information on the 3-dimensional snooker table. Colour, ball size
and trajectory line length remain constrained due to the data space
being rendered. The main constraint introduced in the rendering is
lighting, since this is required to give a realistic representation of the
scene. Therefore, ball and table textures, along with shadow effects,
are also constrained by the rendering process. Finally, since this is a 3-
dimensional model that can be viewed from any arbitrary viewpoint,
the perspective viewpoint of the visualization will affect the size of



Visual Cues Constraints due to current use in Design options of additional event annotation to show

Existing Data Space Existing Rendering Space Event Order Key Event

Luminance n/a n/a Diffuse or specular highlight Trajectory of key event only

Colour Ball colours Constrained by data Varying trajectory colours Varying trajectory colours

Opacity n/a n/a Use to show ball motion Use for relative shot comparison

Size Ball size Constrained by data Increment size based on order Larger ball object for key event

Shadow n/a Shadow of ball objects Increase darkness based on order Shadow only for key events

Line

- length Ball trajectory Constrained by data Constrained by data space Constrained by data space

- thickness n/a Based on 3-D perspective Increase line thickness Key events shown thicker

Texture

- ball n/a Ball luminance Constrained by rendering space Constrained by rendering space

- trajectory n/a n/a Texture a proportion based on order Use ball motion for key events

- table n/a n/a Rings around cueball to show order Text or symbol to shown key events

Annotation

- inside frame n/a n/a Text-based label (may clutter) Text-based label (may clutter)

- outside frame n/a n/a Show potted balls by pocket Speech bubble pointing to key event

Table 1. Table to show the different possible visual cues that could be used within the visualization scheme. For each of the visual cues given we
assess the constraints that are imposed by the data space (i.e. visual cues that are already used in snooker), and the constraints that are imposed
in creating a realistic rendering of the scene. We then give design options based on each of the visual cues that could be used to introduce
additional information to the visualization.

both ball objects and line trajectories.

Table 1 also gives possible suggestions as to how visual cues can
be used to incorporate event ordering into the visualization. This is
important to provide temporal relevance to the information presented
in the visualization. In particular, this would indicate the ordering for
a sequence of shots on the snooker table. It is clear that some visual
cues will not offer significant benefit to illustrate such information, for
instance, luminance. Whilst other cues could technically be employed,
such as size, they are perhaps not particularly intuitive to a user whilst
maintaining a clear visualization style. Finally, suggestions are given
in the table for key event representation. This should introduce the no-
tion of event importance as discussed in Section 3.3. The visualization
should clearly indicate that particular shots are more significant than
others. Again, some of the visual cues presented may be unsuitable
for our task (e.g., colour) or may not provide intuitive representation
of the key events (e.g., annotation outside the frame).

6.1 Visual Language

Fig. 7 shows the development of the visual language used for our vi-
sualization scheme, based on the initial design ideas. To illustrate this,
we use an example visualization from the video storyboard, generated
from real match data. The visualization represents a ‘break phase’
event from level E4, that consists of 6 ‘break building’ shots from
level E3, each of which consist of events (e.g., motion) from level E2.
As we have previously discussed, we know that ball colours, ball size
and ball motion trajectories are three key elements confined by the data
space and so are preserved. Fig. 7(a) gives the initial visualization for
the video storyboard. In this we show each of the ball objects on the
table, along with the associated ball motion as depicted by coloured
lines on the table. This is done for each of the six shots. This initial
design suffers from a number of flaws: it does not indicate the key
event, time information is not explicit for neither a shot or the entire
sequence, and the sense of action and movement that a video offers is
lost from the static representation. We address these concerns in the
following revisions of the design.

Firstly we replace the line trajectories with ball objects (Fig. 7(b)).
Using ball objects to show the trajectory path provides a more intu-
itive cue due to a greater sense of ball motion. We then replace any
static balls that are not directly involved in play with only the ball
shadow (Fig. 7(c)). This choice was made to draw the viewer’s atten-
tion away from ball objects of low interest, whilst not removing the
information entirely. Only balls that move, or balls that contribute to
the state of play (i.e. in the case of a snookered position), remain in
full view. To enhance the sense of action in the visualization, we use
semi-transparent trajectories (Fig. 7(d)). The trajectory begins with a
low alpha value that increases as the ball travels. This gives directional

information, and helps emphasize the starting position for each shot.

Event importance is introduced into the visual design at the shot
level E3. To do this we use both opacity and trajectory width
(Fig. 7(e)). Before, opacity was applied only to the ball trajectory,
within the range [0.05,1]. Here, the maximum opacity value is defined
by the event importance, and applied to both the trajectory path and
the ball object, by the formula:

v

em
, m =

αmax −α

k2
(8)

where αmax is the maximum local importance for the series of shots, α
is the local importance for that particular shot and k is a user-defined
constant that influences the steepness of the function. For computing
the maximum opacity, v = 1 since this is the upper bound that the
parameter can take. The formula is also used to calculate the trajectory
width, where the upper bound for width is v = 50. From Fig. 7(e),
the shot that results in the black ball being potted in the bottom right
pocket has the greatest alpha value associated with it, and also is the
thickest trajectory, making this the most important shot in the series.

We present two approaches for incorporating temporal information
in the visual design. The first shows coloured rings on the table at the
cueball start position for each shot (7(f)). The number of rings indicate
the shot number, and the colour of each ring indicates the target ball
colour for that shot. The second approach places icons on the cueball
at each start position (7(g)), where the icon number refers to the shot
number and the icon colour refers to the target ball colour. Whilst both
approaches seem reasonable, the number-based icons are more explicit
and so we choose this for our final design (Fig. 8(a) gives a close-up
view of the icons used). By using icons we can also link this with the
additional table annotations for ball potting information (discussed in
Section 6.2). Fig. 7(h) presents the final visual design, whereby the
key event from the series is given an emphasized shadow to make this
stand out clearer from the other shots on the table.

6.2 Table Annotations

We have presented the visual language that will be used to construct
the illustrations for the video storyboard. In addition to this, we also
use annotation to display key information about the series of events.

Fig. 8 gives examples of the annotations used in the snooker video
storyboard. Fig. 8(a) shows the icons used on the cueball. As pre-
viously discussed, the number indicates which shot this is in the
keyframe and the colour indicates the object ball that the cueball col-
lides with first. Fig. 8(b) uses the same iconic notation to show the ball
pots at each pocket within the displayed sequence. Fig. 8(c) shows the
‘dashboard’ that represents the key information about the match for
the displayed sequence. The red and blue bars correspond to player



(a) Initial design (b) Trajectory using ball objects (c) Static balls shown by shadow (d) Semi-transparent motion trajectory

(e) Importance by shot opacity & size (f) Circle ordering (g) Numbered icon ordering (h) Key event shadow emphasis

Fig. 7. Development of the visualization language used for snooker video storyboarding. Shot 4 is the most important shot in this sequence, where
the black is potted in the bottom-right pocket and the cueball travels up the table. 7(a) shows the original representation with all ball objects shown
and trajectory data shown by lines. 7(b) replaces the trajectory lines for each ball with ball objects. 7(c) replaces stationary balls with shadow
objects. 7(d) introduces a semi-transparent trajectory to represent direction of ball motion. 7(e) incorporates shot importance, based on opacity
(applied to both the ball object and the trajectory) and the trajectory width. 7(f) shows event ordering using ring notation, where the number of rings
indicates shot number and the outer ring shows object ball colour. 7(g) shows event ordering using numbered icons, where the number indicates
shot number and the icon colour shows object ball colour. 7(h) highlights the key event in the sequence (shot 4) using emphasized shadow.

(a) (b)

(c)

(d)

Fig. 8. Snooker visualization annotations. 8(a) shows the numbered
icons used for each shot on the table. 8(b) shows the ball pot icons
at the side of each pocket which correspond to the shot icons. 8(c)
and 8(d) show the ‘dashboard’ that represents scoring and video timing
information. 8(c) shows the state of play early in a match whilst 8(d)
indicates a key moment, ‘frame ball’.

one and two respectively, whilst the width of each bar represents the
score. The solid region shows the scores prior to the displayed se-
quence, whilst the lighter reqion shows the scores as a result of the
sequence. An important factor in snooker is the remaining points on
the table, since if this is less than the difference between the player
scores then the highest scoring player has won. A green bar is dis-
played on the lowest scoring player to show this value as a result of
the visualized sequence. Fig. 8(d) shows where the remaining points is
less than the player score difference, indicating the state ‘frame ball’.
Finally, the dashboard also shows timing information from the video
data. The clock on the right represents the full length of the video,
starting from the up-most position and moving around clockwise. The
orange segment indicates the time period for the visualized sequence
being shown. The gray segments indicate the other sequences used
within the current video storyboard.

6.3 Video Storyboarding

We now generate the video storyboard for a typical game of snooker,
based on the keyframe visualizations. Our example match was played
in 66 shots, with each shot being recorded in 30 second segments (to-
tal length 33 minutes). From our initial case study, Fig. 4 gives the
computed event importance for this match.

Fig. 9 presents 4 different video storyboards that are generated for
the snooker match, using (a) 3, (b) 4, (c) 5 or (d) 6 illustrations. The
video storyboard is depicted from left-to-right in sequential order, and
maintains the event hierarchy presented in Section 4. Each illustration
represents an event at level E4. Each shot depicted on the table rep-
resents an event at level E3. Each shot is made up of detected motion
that represent events at level E2. We have discussed how importance is
depicted for events at level E3, however by using video storyboarding
we also introduce this for higher levels. The importance of E4 events
is shown by the relative size of each illustration. Frame ball has the



(a) Using 3 illustrations: the greatest level of detail, including all shot trajectories, shot number identifiers and corresponding pot identifiers.

(b) Using 4 illustrations: level of detail is reduced to remove outside annotation from the visualizations, however main table is preserved.

(c) Using 5 illustrations: level of detail is reduced so that less significant shots are no longer shown.

(d) Using 6 illustrations: more global events can be shown but at much lower level of detail. This results in only a single shot trajectory per visualization.

Fig. 9. Video storyboard based on hierarchical event visualization. 4 examples are shown using (a) 3, (b) 4, (c) 5, or (d) 6 illustrations (this
parameter can be defined by the user). Each keyframe shows an event at level E4 and shows importance based on relative illustration size. Each
keyframe consists of a number of shots from event level E3. The importance of events at level E3 is depicted through the visual design (using
shot opacity and size), with the key event being depicted using emphasized shadow. Event ordering is shown using illustration ordering, trajectory
paths, cueball icons, and the dashboard annotation. The number of illustrations used also impacts on the detail shown in each keyframe.



greatest importance and so the illustration appears largest in the story-
board (illustrations 2, 3, 4 and 5 for (a)-(d) respectively).

We also show how the number of illustrations can be used to impact
the event importance. When 3 illustrations are used, the full visualiza-
tion is shown with all shots portrayed on each illustration. As the
number of illustrations increases, it may be that the level of detail re-
quired by the user becomes less. In this example, we choose to show
only the key event from level E3 when 6 illustrations are used.

7 EVALUATION

To evaluate the work in this paper, we organized two consultation ses-
sions. In the first consultation session, we invited 10 participants (7
males and 3 females) with varied familiarity with the game of snooker.
The feedback from this consultation session indicates clearly that the
storyboard is a much more time-efficient method of understanding the
most important events in the video. The full video requires 33 minutes
to watch, whereas the participants required (on average) 2 minutes
44 seconds to view the storyboard. Additionally, several participants
commented that viewing the video became tedious because of the large
number of events that were of little interest, and ‘non-action’ moments.
The feedback also indicates that the storyboard has the clear advan-
tage over basic keyframes in helping viewers identify events. This
is because each illustration in a storyboard captures several shots and
depicts a series of motions and actions, while each keyframe shows
a static temporal instant, from which it is difficult to infer the actual
event. However, keyframes are more intuitive to depict the order of
events as long as there are a sufficient number of them.

Following the initial consultation, we decided to conduct an in-
depth study on the event selection algorithm by holding a second con-
sultation session. This time, we invited 5 participants all with a good
understanding of the game of snooker, but without any knowledge
about our event selection algorithm. The goal of this consultation
is to establish how close our event selection algorithm would match
the expectation of the participants. After a brief introduction, the 5
participants watched the 33 minute video of the snooker match. As in-
structed, when watching the video, the participants paid their attention
to important events of the video. They were allowed to make notes
during this time. Immediately after watching the video, we asked the
participants ‘what would you consider to be the most significant mo-
ments in the video?’ Participants were given a set of 66 keyframes,
one per shot, with textual annotation describing the shots.

As shown in Fig. 10(a), the 5 participants selected a diverse col-
lection of shots that are considered to be important. The participants
often named a group of shots as important, and it was unavoidable to
have some numbering errors(±1). Taking these facts into account, the
algorithmically determined top level event importance (i.e., the pink
regions) correlates well with that suggested by the participants, ex-
cept for the region of shots 47-49. In fact, shot 48 is a critical point
of the match (frame ball). As the video does not show the current
scores, most participants did not identify such a key event. On the
other hand, our event selection process is capable of computing the
numerical scores, thus taking such considerations into account.

We then provided the participants with the summary information
of their assessment of the importance, highlighting the fact that the
region of shots 27-42 were considered to be important by most. Some
participants identified this range as two individual events that occur
between 27-31 and 33-38, whilst others listed a number of shots that
occur within the range 27-42 with (±1) shot-shifting. We then asked
the participants to write 5 sentences to describe that particular period
of the video. We collected these writings and associated each sentence
with the relevant shot numbers. The results are shown in Fig. 10(b).

The objective is to examine the usefulness of the Gaussian-
moderation in selecting events for each illustration in the storyboard.
Again we take into account the facts of naming groups of shots and the
(±1) shot-shifting errors. Let us focus on shots 28, 30, 34, 36 and 41.

The ordinal ranking of the five events are high[30/36,28/34,41]low.

The Gaussian moderated-ranking is high[36,34,41,30,28]low. The par-

ticipants’ collective ranking is high[36,34/41,30,28]low, which is rea-
sonably close to the Gaussian-moderated ranking.

(a)

(b)

Fig. 10. Comparing the importance determined by our event selection
algorithm to that of the five participants in a consultation session. (a)
Each participant corresponds to a line below the bar chart of E4 and E3

importance, and the shot considered to be important by the participant
is marked with a red circle. (b) Each participant corresponds to a line
below the Gaussian-moderated importance chart. The shot considered
to be important by the participant is marked with a green circle.

The second consultation session has offered a more informative
evaluation about our event selection algorithms. It has shown that
our top-level importance classification is consistent with the collective
views of potential users, and the Gaussian moderation is highly useful
in selecting events for each illustration. The two consultation sessions
have also revealed that the assessment of importance varies noticeably
between users. Storyboarding can potentially be used by coaches to
help players make more objective and consistent assessment.

8 CONCLUSION

In this work, we have studied the use of video storyboarding to visu-
alize events in video footage. We have presented a hierarchical frame-
work for event organization, where higher level events are defined
upon more detectable low-level events. A video storyboard, which
is also organized in a hierarchical manner, consists of a set of illustra-
tions. While each illustration corresponds to a major high-level event,
it also depicts a number of events at a lower level. In the context of a
sport application, we have developed a software pipeline from object
detection to event classification, and from 3D reconstruction to visu-
alization design. The most important contribution of this work is a
novel method for hierarchical event selection. This method can eas-
ily be deployed in many other applications of event visualization. We
have conducted two consultation sessions to evaluate our approach.
The results have confirmed the usefulness of video storyboarding in
general and the merits of our event selection algorithm in particular.

Through an application in snooker, we have demonstrated that a
storyboard can provide an effective video visualization tool that fa-
cilitates memory externalization and reduces the needs for watching
videos repeatedly. Such a tool can be used to analyse events in a game
or a training session. A local snooker club has expressed that using
such a video storyboard for training summarization would be greatly
beneficial to players and coaches. The time required to interpret the
visualization is significantly less than viewing the video footage. This
approach may also be applicable to other sporting scenarios, along
with other application areas, which remains the topic of future work.
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