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ABSTRACT

This thesis is concerned with the design and implementation of a Hierarchical Expert System
for Computer Process Control (HESCPC). The hierarchical architecture integrates four
classes of expert systems: operator/manager_companion expert class, control_system_design
algorithms expert class, hardware_design expert class, and software_design expert class.
The thesis emphasizes the integration of declarative knowledge represented by M-Prolog
rules with procedural knowledge embedded in a specialized Fortran library.

At this stage of the HESCPC development, the declarative knowledge represented by 123
meta rules and 261 rules is distributed on ‘a hierarchical structure among 20 experts on
different levels of the hierarchy which are able to communicate among themselves to solve
difficult control problems. The design and implementation of the general expert system
structure, an operator-adviser expert, and a control system design expert has been

accomplished.

Examples of control system design sessions of /inear mono and multivariable systems using
Jeedback state space approach are given, A sample run of an operator-adviser data driven

expert for a nuclear power plant is also presented.
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PART 1

INTRODUCTION

This thesis considers the design and implementation process of an intelligent piece
of software which can aid either the control design engineer or the human operator to
solve complex and difficult control problems. The goal of Parr I is to present the
thesis research areas and its organization, the role of Antificial Intelligence (AI) in

Process Control (PC), and some process control domain characteristics.

1.1 THESIS RESEARCH AREAS

The results reported in this thesis constitute a beginning effort at the University of
Ottawa to build an intelligent tool - an expert system - for Process Control, Theoretical
studies regarding the possibility of constructing such a system started in the summer of

1986 and the implementation process started in the summer of 1987.
This thesis covers the following major topics:

0 Definition, design and implementation of a hierarchical structure which
includes all the areas of application of expert system technology in the field of

Process Control,
o Design and implementation of a declarative-procedural knowledge interface

-that makes possible the integration of control system désign rules, represented



by M-Prolog statements, with control system design algorithms embedded in
a specialized Fortran library, and
o Design and implementation of a small operator-adviser data driven expert for a

nuclear power plant operator.

The thesis is organized as follows. Following this introductory part, Part 2
presents the various areas where expert systems can be found in the field of Process
Control. Some examples of expert systems used in Process Control are also given.
Part 3 discusses the architecture of the HESCPC expert system and some of the
important issues related to its implementation. Part4 outlines the kind of problems the
HESCPC expert is able to solve and analyses the experimental results obtained. Part 5
provides some lessons learned from this experiment and proposes some future work
that should be done for further development of the HESCPC expert system. Part 6
gives Related References and finally, an Appendix presents the HESCPC system at
work. This includes, design sessions of linear mono and multivariable systems using
the feedback state space approach as well as a sample run of an operator-adviser expert

for a nuclear power plant.
1.2 ARTIFICIAL INTELLIGENCE AND PROCESS CONTROL

Interest in Arificial Inteltigence (AI) has been growing dramatically in the last
few years, and many corporations have set up Al groups or are in the process of doing
so. One of the prime areas of corporate interest is Expert Systems (ES). Though the
number of expert systems actually functioning in & corporate environment is still
relatively small [39], the number of projects lookiﬁg into expert system development is

growing rapidly.



Whether expert systems are viewed as a fundamental principle for organizing and
animating expert knowledge, a challenge to create much smarter compuicr software, a
concept for organizing otherwise ill-structured systems, or a wildly frandulent fad,
their goal of capturing commonsense reasoning in software correlates well with the
structure of process control knowledge [15] . Long ago, the process control field
realized the limited value of formal analytical methods in favor of a combination of
recognized, simplificd, analytical techniques, designer judgements, and tuning
procedures, |

Intelligent software should improve all aspects of process automation design and
function. However, the iznplementation of this software faces serious difficulties
because of the large spectrum of knowledge to be acquired, the size of the rule base to
be created, and the complexity of the imman and system .interfaces. The potential
benefit is to allow rapid application of defined expertise to dynamic problems involving
thousands of variables. The system approach to this, requires the consideration of the
challenges of real-time inference, in particular, the dynamic nature of the domain, the
large knowledge base and the requirements for efficient execution.

The present digital control systems do not provide means for intelligent
interpretation of sensor data, diagnosis of problems, coping with process disturbancies
and predicting consequence of actions. In a large processing plant, such as a steelmill,
a nuclear power plant or an oil refinery, there are several thousand measurements and
alarms provided to the human opcfator. In a major process upset, the operator may be
confronted with a very large number of individual alarms, but with very little
intelligence concerning the underlying plant condition. The plant status may change
significantly within minutes. The large size and dynamic nature of the domain requires
new approaches to the inference, since exhaustive search proccdurcs are not possible in

real-time. The knowledge based system offers a natural vechicle to perform inference



as would a human expert who is confronted with the same problem of limited tinie to
respond to a complex situation. The key concepts are to quickly recognize process
conditions which are potentially significant and to invoke relevant sets of rules and
focus on these problem areas for diagnosis and procedural advice {10]. On the other
hand, expert systems could not replace the standard control algorithms, the use of
advanced control techniques, optimization, etc. but will augment the control power of
the above.

The important requirement for integrating an expert system with a distributed
control system is an effective communication between the two. The process data base
must be accessible to the expert system in as much detail as it is accessible to the human
expert (i.e. the expert system should be able to access current data as well as historical
data files). To prevent overloading the communication network, the expert system
should be able to vary the scan rates on the severity of abnormal conditions in a selected
process area. The current process data is used to update the knowledge base.

Typically, the vast and complex process operating knowledge [10] is shared
between the process control engineer and process operator. Control engineers tend to
analyse process performance, whereas operators use heuristic rules to operate the plant.
The engineer should be provided with user friendly interactive tools to enter his process
knowledge and operator heuristics into the knowledge base. The expert system should
develop inference results based on various types of evaluations, and should also
provide capabilities to invoke logic rules and procedures to diagnose a process problem
and explain to the operator the recommended course of action.

The state variable representation is a basic construct for dealing with the time
varying quality of the environment. For this reason an expert sytem used in process
control must be able to gather data, construct the generalized state variable of the

process, arrive at conclusions, decide upon actions, and carry them out in an



environment of continuously changing circumstances. It must be capable of changing
its plans when circumstances change, and it must be able to operarte as best it can with
incomplete data. Furthermore, it must be able to operate in a situation in which not all
information is up-to-date [10]. This dynamic aspect of process control imposes the
expert sytem to also include a wide procedural knowledge-base with already known or
learned control cases. Process models, which will be discussed in Section 2.1.4 can be
an important resource for an expert system to use during execution.

The implementation of an expert system satisfying the above mentioned

requirements, as proposed by K. Gidwani [10], should have the general architecture
as presented in figure 1.1.

The main idea following in this thesis is to design and implement a complex
expert system that groups together the hierarchical structures of four expert classes as
depicted in figure 1.2. Each expert class of this structure will satisfy some of the
objectives mentioned above, combining at all stages of the hierarchically distributed
architecture, procedural and declarative knowledge, therefore different software
technologies. This mixing of numeric-processing languages, and languages that are
fundamentally symbolic, needs enhanced computing resources. To satisfy the real-time
objective of both the computational complexity and symbolical programs, a

multiprocessor organization with high speed CPU'’s at competitive prices is required.



EXPERT SYSTEM v
INFERENCE
———— AND
ACTION

KNOWLEDGE Update
<

 EE——

BASE
Real-Time Data
CAPTURE P
Interface
v v v
oo
Window DISTRIBUTED o
CONTROL
8 SYSTEM
8l E| 8
2 R
cg (-
PLANT
(CONTROLLED PROCESS)

Figure 1.1 : General Architecture of a Process Controlled by
Conventional and Expert System Automation Tools
[from K. Kumar Gidwani 1985]



SOFTWARE

EXPERT
CLASS

Figure 1.2 :

OPERATOR/
MANAGER
EXPERT CLASS

J Y

y

GENERAL
EXPERT SYSTEM FOR

PROCESS CONTROL

J

y

PROCEDURAL/
COGNITIVE
ACTIONS
EXPERT
CLASS

HARDWARE
EXPERT

CLASS

General Architecture of an Expert System for Process Control




1.3 PROCESS CONTROL DOMAIN CHARACTERISTICS

This short section intends to point out some of the most important process control

domain characteristics which make the implementation of expert systems for this type

of applications a difficult job. Many of these characteristics have been already

discussed in Section 1.2 and no further comments are needed at this time.

A. A process control domain description requires:

o

o)

a large spectrum of knowledge,
different types of knowledge: declarative and procedural which must be
integrated to work as a whole,

a large knowledge base.

B. An expert system for process control must be able to deal with:

0

o

o

real-time constraints,

limited time to respond to very complex situations,

a domain which is dynamic in nature,

many disturbances that take place in a short period of time,

complex human-machine interfaces.



PART 2
EXPERT SYSTEMS FOR PROCESS CONTROL

Process control represents one of the most complex and challenging control

software activities. Applications of expert systems in the field of process control can be

found in the following areas:

o Expert Systems for Process Operator
o Expert Systems for Control Systems Design
o Expert Systems for Process Management

As shown in figure 2.1, (from Freeman 1985 [9]) the heart of a modern process
control system is a process computer which receives information from both the process
model and the data acquisition system, interprets the data and instructs the process
controller how to control the process. The process computer also communicates with
display systems, data storage and retrieval systems, and off-line analysis functions.

The proper control of such a complex system can require considerable expertise,

Expert system technology brings some significant help to the plant operator,
control system designers, as well as process management staff. The idea is to make
available the expertise of master operators, control system designers or process
managers as a tool for the average person in the specific area.

\\\

"}S
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2.1 EXPERT SYSTEMS FOR PROCESS OPERATOR

In a control room there may be thousands of pieces of information available to the
operator at all times. There are alarms, gauges, recorders, indicators, lights, horns,
computer displays, etc. One of the problems is how to transform this vast amount of
data currently available into more valuable and useful information [3].

An expert system can facilitate the rapid acquisition of relevant data and on-line
analysis supporting the decision making. Various types of gauges may be displayed
and assigned variables to monitor. Cross plotting of variables may be specified and
displayed in multiple windows. Multiple activities may be simultaneously monitored
while control action is taken. - Models may be run and predictions compared with data
10 test control actions. Rules may be invoked to temporarily modify the control while a
diagram is completed. In this way the operator can be helped toward a conclusion that
is consistent with all of the available knowledge and information about the process and

its current state [9].
2.1.1  Duties of Process Operators

As described in [21], [7], [14] the process operator's duties fall into four categories:
A. Process start up or change over,
B. Process regulation and optimization,
C. Dynamic avoidance of and compensation for breakdowns, and

D. Diagnosis of failures.

A. A human operator performing the start up or change over of a process can be

helped by an expert system functioning as an adviser or coach to plan and time hisfher

11



control actions. Thus the process is guided through various state transitions toward the
desired steady-state operation. The expert system must also be able to re-plan the route
to the desired state in the face of unforseen events. The benefit sought from an expert
system of this type is the increased ability to quickly achieve the desired operating state,

minimizing scrap but not compromising safety [21].

B. Substantial prescriptive as well as diagnostic expertise can be provided to the
human operator by an expert system in regulation and optimization duties once normal
operation of the process is attained. This type of expert system must detect when the
process moves away from the desired state and recommend proper actions. In this
way the operator is guided in moving the process towards a more stable state or states

producing the desired output.

C. An expert system which is able to predict future states of the process and
recommend actions based on assessment of the current state will help operators in
dynamically avoiding or compensating for breakdowns. Also, in compensating for
unavoidable failures, it would recommend corrective actions based on an assessment of
the alternatives presently available, rather than on pre-scripted or "canned" advice,

which might not be applicable in a crisis situation [35].

D. Finally, the last category of expert systems meant to aid the operator in diagnosis
of failures is-not difficult to imagine. Such an expert system making reasoning on data
from a set of sensors will be presented in Section 3.2.1 as a component of the

HESCPC system.

12



2.1.2  Demands of Expert Systems for Process Operator

From the above discussion one can conclude that expert systems for process
operator applications must meet the requirements of real-time process control software.
With the exception of diagnosis of upsets that have led to a plant shutdown, expert
systems for process operators will necessarily be a real-time piece of code. Therefore
the system must be capable of scanning time varying and possibly rapidly changing
data, handling interrupts and tasks of diverse priorities, and initiating actions depending
on events or on a schedule [27]. For coping with such complex problems, Sauers and
Walsh [41] have proposed the approach of changing data by means of shared memory,
while Moore and others [34] have implemented techniques for interfacing the inference

engine of an expert system to a data scanning module which runs its own code.

2.1.3  Unique Problems in Real-time Expert Systems

As was stated above expert systems for process operator are in fact real-time
expert systems. Two unique problems arise in such a system that do not necessarily
occur in other real-time softwafe.

A. How to re-use the system’s memory space, and

B. How to provide real-time advice concerning a system of complex causal

relationships using information from variables that are generally functions

of time.
A. In order for a perpetually running expert system to never run out of memory,
obsolete facts must eventually be removed and space must be made available for new

data through a "garbage collection” mechanism {21]. This solution can lead to spurious

13



application of rules in the expert system's knowledge base if there are rules whose
applicability depends not only on the presence of some facts, but also on the absence
of others. Griesmer and others [12] have proposed a solution to this problem by giving
to the garbage collection task a higher priority than other tasks, but this may "lock”
other tasks out at inopportune times. Other solutions, such as preventing the marking
of facts as "obsolete" by one rule when their absence is meaningful to other rules,

require further research to determine their practicability [21].

B. An expert system for process operator must be able to perform a variety of
dynamic, "temporal reasoning". It is not enough for this type of intelligent piece of
software to reason about data that is transient and changing, it must also be able to
reason about transient conditons of the process as a whole, about the time required for
initiating an action, and the time needed before the effects of an action will Gecur. An
approach to make possible this type of reasoning is to encode temporal information as
part of specific rules. Moore and others [34] have proposed that the elapsed time
before the effects on an action are expected to be detected and coded in a triplet structure
in the expert system's knowledge base as:
[ <action>, <time-delay>, <expected-result> ].

As stated in [21], this approach has the advange of making the temporal information
explicit, and keeping the information lexically located with the rules that use it.
However, it has the disadvantage of n:qﬁiring the information to be determined ahead
of the real-time situation, raising the possibility that the approach will lead to numerous
ad hoc rules that eventually become unmanageable. As an alternative to the above
approach, Kaemmerer and Christopherson [21] have proposed the use of a dynamic
model of the process which has to be controlled as a part of the expert system's

reasoning process. Their approach will be discussed in Section 2.1.5.

14



2.1.4  Types of Process Models

The report made by Crossman in 1974 in {7} shows that use of some type of
process model is necessary for process control operators to become expert at their
job. It seems that expert operators as opposed to average ones apparently do not use a
"rule-of-thumb" approach in controlling a process, nor do they use analytical reasoning
of general engineering principles; rather they usean insuitive mental process model.
Common factors seem to underline individual skills in terms of both the speed of
learning new control jobs, and the individual's final level of ability in controlling a
process. These underlying factors include the ability:

- to predict what is likely to happen in 2 situation if the process controls are left

alone,

- to know what means can be used to influence the process in the current

situation, and

- to select the proper control action most likely to achieve the desired result.

From the above discussion one may hypothesize that the operator was helped by an
intuitive mental process model to achieve expert performance by organizing his/her
knowledge about the process (reducing cognitive load), and by facilitating casual and
temporal reasoning about it. This, in tum, may support the ability of the operator to
forecast the likely future states of the process, to determine what actions are effectively
available in the current situation, and to distinguish transient conditions requiring no
action from enduring ones needing attention [21]. The question is: can we expect
similar benefits from the use of process models with expert systems?. The answer
, canno£ be given here. What is less clear is how such process models are to be used in

. conjunction with expert systems. Kaemmerer and Christopherson [21] suggest some

15



approaches to this problem which will be presented shortly.

From an abstract point of view, all models can be seen as information resources that
predict the consequences of changes to the state of the system being modelled.
During the course of this research the following types of models were found in the

literature:

1. Functional model
Physical model
Economic model
Procedural model

LU

Cognitive model

The first four types of models are defined by Lee, Addams and Gaines in [28] as

follows:

o A functional model is a description of the functions performed by the major
portio:{s‘_‘_of a plant, and the relationships ainong them, with respect to the flow

of materials through the process;

o Physical process model defines the mathematical relationships among the

physical variables involved in the process;
0 Economic model defines the realtionships among the resource costs, the
constraints on the mix of materials permissible and the objective function

describing the aim of process operation (e.g. to minimize cost);

16



2.1.5

o Procedural model describes how the plant should be operated, especially

under start up, shutdown, and load changes;

Cognitive model was introduced by Kaemmerer and Christopherson and
described at the begining of this section. A precise definition of this type

of model is impossible to be given, but studies of operators have

- provided information on the nature of cognitive models. For example,

Bainbridge and others [1] have studied operators performing proportional
control of one process variable in a task in which many parameters had to be
taken into account in the process control. They found that experienced
operators perform the task by predicting the significant events expected to
happen next, and the control action to take, if any, in response. In contrast,
inexperienced operators use error-correcting actions and feedback rather than
predictive control, and organize their data monitoring efforts less efficiently.

The experienced operators' performance suggests that their cognitive models

. include means for identifying the present and predicting the future states of

the process, as well as some knowledge of the dynamics of the process, and a
repertoire of control actions that can be carried out on it [21]. Furthermore,
related studies indicate that an operatdr‘s cognitive model includes a running
record of important system variables, which are kept in mind and updated

regularly only if the operator is more or less continuously involved in the

control activity [2).

How Models Can be Used with Expert Systems

Kaemmerer and Chritopherson [21] suggest the following use of models

17



with cxpert systems:

Using models in knowledge engineering,
Using models for automatic knowledge acquisition,

Using models during expert system execution, and

50w >

Using information from models for efficient implementation.

A. Itis known that knowledge engineering is the process of acquiring knowledge
from human experts and enco-ding it for system use. When a functional model
defining the components of the process and their interrelationship is acquired, the
knoweldge engineer establishes the entities and variables of interest to the system, and
the physical paths by which components of the system can effect each other. A precisé
functional model of the process obtained from designers is needed to define the
measurements by which the expert system will interface to the actual process. The -
informal description of the functional model of the process drawn from operators is
valuable for identifying the salient feature of the process in the operators' minds.
Another use of functional models in knoweldge engineering is to generate sample
~ problems tobe posed to the expert operators, in building expert systems as diagnostic |
aids. In this technique, a component of a functional model is selected as a locus ;)f an
imaginary process upset, and an expert operator is asked to predict how .that upset
would be manifested to the plant operator. Because the mental process by which one
recognizes a situation from the data is likely to be different from that by which one
generates a description and data given a situation, the technique involves the use of two
experts. The second expert is presented with the data imagined by the first, and asked

to describe the data collection and reasoning steps to be used in diagnosing the upset.
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B. To build an expert system is not an easy job even if the four key resources - an

expert, a knowledge engineer, a computer and a software tool - are available.
Currently, many person-years of effort are required to capture the knowledge that
underlies an expert's performance from the expert, through person to person
interviews, observations, and problem solving exercises. To reduce this labor
Kaemmerer and Christopherson proposed {21] to design an expert system capable of
augmenting its own knowledge base, by "observing" an expert operator in action. The
observations would consist of a record of variables describing the state of the process at
selected time intervals, while an expert operator runs the controls. The rules to .bc
derived by the system from these observations would be a triplet:

[<state_k>, <action_k>, <state_k +1>],

encoding the information that "when the process is in state_k, the expert operator takes
action_k, bringing the process into the state_k+1", Furthermore, general rules can be
obtained by using generalization techniques from individual situation sequences. In
order for these techniques to be applicable, they must be assigned with finite
state-space descriptions of the situation. It is also efficient for the system to have the
knowledge needed to recognize pertinent analytical relations betweén corresponding

elements of the states [38], [45}. Physical process models can provide some of the

latter information,

C. Aswas stated in Section 1.2, process models can be an important resource for an
expert system to use during execution. For example, an expert system performing a
prescriptive or advisory function may itself use a physical process model as part of its
reasoning process (e.g., to generate the initial recommendations for set points in
supervisory control). In a diagnostic system, i simulator can be used on a time

availability basis to generate predictions from hypothesized causes of the failure in
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order to determine how well the hypothesized cause also accounts for other observed
data. To the extent that other data are consistent with the predictions of the simulator,
the sytem confidence in the hypothesis may be increased, (assuming the simulator itself
has previously been validated). In prescriptive systems calls to a simulator may be
used to verify that the results expected from the recommended actions will be desirable,
and to generate expectations against which future incoming information from the
process can be compared. The latter provides a means to "ignore" transient effects, by
designing the rules in the knowledge base to suppress alarms that would otherwise
occur, as long as the incoming data do not deviate significantly from simulated

transients previously judged to be acceptable [21].

D, Finally, process models can provide useful information for an efficient
implementation of an expert system. As was discussed in Section 2.1.4, the expert
operator's cognitive model of the process is related to the means he/she uses to organize
the scanning of incoming dafﬁ from the process, making his/her cognitive load more
manageable, Thus, the operator's cognitive model should aid in grouping the data
points to be scanned by the expert system, and in setting the relative priorities for the
scanning tasks under different situations. Functional models can provide a2 means to
organize rules according to the functional components of the process to which they

might pertain, leading to faster search for relevant rules [21].
2.2 EXPERT SYSTEMS FOR CONTROL SYSTEM DESIGN
With the advent of increasingly more powerful computers and increasingly more

capable software, engineers have been given the opportunity to apply an expanding

number of computationally demanding approaches to the solution of design problems.
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Indeed, conferences devoted exclusively to the exchange of information on the status of
computer-aided control systems design methods and programs are now held regularly

in the United States as well as in Great Britain [20].

2.2.1  Introduction and Motivation

Research in feedback control proceeds on two levels. The goal of the first level is
to invent, analyze, and describe control schemes that allow the construction of new
physical processes which perform better. The goal of the second level is to improve the
productivity of the control sytem designer who specifies how these new processes will
be built. This productivity goal is enhanced with the emergence of new design
methodologies and with computer-aided control engineering software that supports the
design process. The availability of the first generation computer-aided control
engineering software has vastly accelerated the applications of sophisticated feedback
control algorithms through their implementation in digital controllers. However, the
diversity and complexity of the system classes and consequently the pertinent control
algorithms and the conditions under which these control algbrithms are valid, makes the
building of a general valid software package which is completely reliable and easy to
work with practically impossible. It is also obvious that a perfect human expert in all
the areas of control system doesn't actually exist. For this reason it has been
recommended to capture the existing expertise from different experts in the related
fields and to include it in a knowledge base of an expert system.

One aadvantagé of the expert system is its ability to explain the internal workings
of the program to the user while the program is executing. Another advantage of the
expert system is the consistency with which it responds to situations since the rules do

not change from one design session to another. Thus, itis believed that expert system
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programming techniques provide a reasonable approach to deal with the complexity of
the design process. This belief is based partially on the experience gained from
investigating the application of expert systems techniques to design problems and

partially on the extrapclation of this experience [20]. At this point it is evident that:

o  design heuristics (rules of thumb) can be placed in a knowledge base
and incrementally expanded or amended,

o the applicability of a design method to a given plant can be
automatically analysed and advice provided to the user,

o the nuances of using a particular approach can be placed in the
knowledge base and are not overlooked by the system during
execution, |

0  parameter variations can be analysed in a straightforward manner,

o the results of sets of parameter values can be automatically
determined and combinations of programming methods (modular

and rule-based) can be employed in building an expert system.
2.2.2  The Interactive Design Process

The relationship between man and machine in the interactive design process has
been discussed by Pang and MacFarlane [36]. A large part of the material in this
section has been adapted from their considerations. They consider data passed from
- machine to man in terms of indicators and data passed from man to machine in terms of
drivers as depicted in figure 2.2. The man works in terms of a high level conceptual
framework and accesses in the machine a powerful manipulative framework. The basic

task in creating a satisfactory interactive computing system is to get these two
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Figure 2.2 : Interactive Design Process [from Pang and MacFarlane 1986)
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frameworks to mesh together satisfactorily via an appropriate set of indicators and

drivers. Thus, the design process can be described as:

o A feedback process, where both the object being created and the
specification against which it is being manipulated are being
iteratively adjusted in a feedback cycle of dependence as the design
proceeds. This is illustrated in figure 2.3.

0 A process of instantiation: the progressive generation of a specific
fully defined object from an initial incomplete general description.
1i creating a specific instance of the general class of object desired,

the designer is grappling with both uncertainty and complexity.

When developing an interactive computing environment, we have to take proper
account of the man as well as the machine. In discussing this it is useful to talk in
terms of principles and procedures. Principles are the organizers of ﬁigh—levcl
declarative knowledge, and procedures are the implementors of low-level imperative
or procedural knowledge. In an interactive computing environment both the declarative
knowledge and procedural knowledge have to be integrated in an effective and efficient
way. Such an integration will be presented in Part 3 of this thesis.

2.3.3  Traits of a Human Expert

The traits of a human expert have been considered by Michaelson, Michie and
Boulanger [33]. They asset that human experts can be characterized by the following
traits:

o Collect information,
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o Identify problem,

o Group and differentiate,

o Solve problems that are unstructured and ill-defined,
0. Use heuristics (rule of thumb) to solve problems,
o Engage in different problem solving activities,

o Process data,

o Generate questions,

o Make decisions,

o Explore and refine,

o Pursue and test hypothesis,

o Establish hypothesis space.

In addition to these traits, they observed the following capabilities exhibited by human
experts:

o Apply their expertise to the solution of problems in an efficient manner,

o Restructure and reorganize the knowledge,

o Employ plausible inference,

o Reason from incomplete or uncertain data,

o Explain and justify what they do,

o Communicate well with other experts and acquire new knowledge,

o Break rules,

o Determine relevance,

o Degrade gracefully.
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2.2.4  Traits of An Expert in Control System Design

Considering the traits and capabilities outlined above, the following specific traits

of an expert in control systems are offered as being among the most fundamental [20] :

o Obtains a realistic model of the dynamical system,

o Chooses the design method based on system diagnosis, constraints and
specifications,

o Designs to specifications and constraints,

o Understands the limitations of the chosen method,

o Implements trade offs, and

o Justifies and documents his design.

2.2.5 Comments

As was presented above, the basic problem of a control system designer is to
create or modiﬂ a given dynamical system. The complexity of the design process can
be transfered from the shoulders of the design engineer to the knowledge sources of an
expert system. This is achieved by integrating declarative knowledge with procedural
knowledge in an interactive computing environment. Part3 of this thesis presents the
- design and implementation of a hicrarchical expert system which integrates both
declarative knowledge and procedural knowledge required for designing linear mono

and multivariable systems using feedback state space approach.
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2.3 EXPERT SYSTEMS FOR PROCESS MANAGEMENT

A potential application of expert system technology in the field of process control
is in the area of high level process management. Plant management staff are now being
asked to consider yet another new technology. However, it is not clear whether this
new option is an evolutionary change from present control activities or yet another

revolutionary path.

The ideas reported in this section are based on the paper entitled "Expert Systems as a
Stimulus to Improved Process Control" by Beaverstock, Bristol and Fortin 1985 [3].

2.3.1 Manager's Role in a Plant

It is well known that plants operate on a concept of responsibility. Today's
popular management concepts regarding productivity improvement are based on
establishing areas of responsibility for workers and managers alike. This new
philosophy has been given the name “distributed managemen;.- ;thg hierarchy still
exists, individuals in lower levels are expected to develop operational llcinowledge and
show innovation in improving their unit's operation, as well as being flexible in
handling unexpected problems. Toward the top of the hierarchy, individuals are
measured by their:

o experience in strategic planning,

o openness for risk taking,

o interpretation of information,

0 success in providing a proper work environment, and

6 ability to delegate authority and responsibility.
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2.3.2  How Expert Systems Could Help Process Managers

Expert systems certainly possess the potential to take on more of the atiributes
associated with the managerial function, such as equipment scheduling, production
planning, or even determining the best operating conditions. Data bases exist today 1o
cover plant operations. The information is available as either scanned, periodic
rime-based (second, minute, hour, shift, month, or year) or event-based (batch
finished or pallet shipped). Unfortunately, there is no way to relate event and periodic
information unless some extensive time stamping methods are used. The
standardization and coordination of data bases are key process control problems
necessary to effective distributed control. Knowledge bases can replace the rigidity of
such conventional data bases and.provide a much more robust description of the plant.
They can organize the system in a clear and much more useful form, Eventually, this
new approach may allow asutomatic translation between different application and
marketing perspectives, thus eliminating the need for a central data base altogether.

The impact of expert systems on plant managment personnel will depend on the
scope and source of the expert knowledge. Studies have shown [3] that the user
receives no credit even though he is given the responsibility to accept or reject the
system proposal. If the expert system is correct, credit is given to the system. If
recommendation is wrong and it is rejected by the manager, emphasis will focus on
why a wrong conclusion was reached, rather thah on the user's insight in correcting the
situation. Such possibilities must be considered very closely for expert systems to be
accepted and successful on the managerial level. While such systems can provide
inference, managers m\hst be given the opportunitjr to provide perception. Additionally,
interpretation or operational information and value judgements are considered

managerial prerogatives that will not be easily relinguished. Expert systems will
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certainly improve in their ability to take over managerial type functions and will be used
where they can be viewed as noncompetitive co-workers, prepared to serve in either a

private advisory role or totally replace particular, well-defined functions.

2,4 SOME EXAMPLES OF EXPERT SYSTEMS FOR PROCESS CONTROL

Since the thesis is concerned with building an expert system for computer process
control, it is appropriate to give some examples of such systems which have been
already developed or are in the process of being developed. Therefore, this section

intends to make a short review of several expert systems used in process control.

24.1 FALCON

FALCON, an acronym for Fault Analyser Consultant, is an expert system to aid
an operator in detecting and identifying process faults. It is being developed as a joint
project by the University of Delaware, E.I du Pont de Nemours and Company, and
The Foxboro Company to do fault detection and analysis on an adii:ic acid reactor. The
simulation package used for FALCON to simulate the adipic acid reactor is DESLSIM
and covers a wide range of operating conditions. It has over 200 differential equations
and over 1100 variables. Even on 2 VAX-11/780, FALCON could not run in real time.
The problem was solved by running the simulation over the weekend, saving the
resulting time histories in files, and then using those files to provide data to FALCON.
At present FALCON has been installed, running on the Micro-VAX-II using Lisp and
Fortran 77, and testing on the process is under way. More information about this

expert system éan be found in [4] and [43].
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2.4.2  Heat Exchanger

Another expert system for fault detection and analysis is being developed to run
on a variety of processes (as opposed to a single, specific process). Emphasis is being
placed on development of tools to greatly reduce the effort required for knowledge-base
engineering. Initial tests have been on a pilot plant heat exchanger. The heat exchanger
demonstration has been implemented on a Xerox 1186 Lisp machine, using the LOOPS
software environment. Unfortunately, the only source of information concerning this

expert system is the IEEE Control Systems Magazine, December 1987 [44].

24.3 EXACT

EXACT is an expert system application to tune proportional-integral-derivative
(PID) controllers [25], [26], and uses heuristics to tune a PID controller, with no need
for process modelling. It has been developed in the form of an expert system, then

delivered on a microprocessor as an assembly language program with a widely

acceptance.

244  FlowMeter Consultans

The Flow Meter Consultant is planned for implementation as an expert system, It
will be a sales support tool, helping sales personnel to translate customer flow-metering
requirements, into recommendations for specific flow meters, including prices and a
completed order form. There are two special requirements for this expert system: first
that it tes into a data base of flow meter products cumrently being defined

independently, and second that the human interface matches the general appca}anoe and
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function of the human interface for an associated control system product line. The
Flow Meter Consultant will be developed using an expert system shell - Personal
Consultant Plus - on a personal computer, and eventually delivered as a C program

[44]. (Personal Consultant Plus is a trademark of Texas Instruments).
24.5 DELTA

DELTA stands for Diesel Electic Locomotive Troubleshooting Aid and is being
used in railroad repair shops to assist maintenance personnel in isolating and repairing a
large variety of diesel electric locomotive faults. DELTA asks the user a series of
questions about a locomotive that is not wérking correctly. Using the answers to these
questions along with the knowiedge the system has about different types of locomotive
problems, DELTA draws a conclusion about what the fault is and recommends
corrective action. On request, this system can display detailed drawings of various
components of the locomotive at any time during a diagnosis to assist the user in
understanding how and why a certain fault is being considered. Repair procedures are
also displayed on the screen to help in the repairs recommended by DELTA. More
about Delta in {32] and [3].

2446 ACE

The ACE expert system (Automated Cable Expertise) is being developed at Bell
Laboratories. It handles hundreds of telephone cable maintenﬁnce reports daily. These
reports come from a data mﬁnagement and report generation system. Each night, this
expert system examines these reports to determine what repairs are needed and where, a

job that would take a week for a human. The main sources of ACE's knowledge are a
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large data base system and primers on maintenance analysis strategies. Based on its
analysis, ACE suggests the proper response to immediately resolve a problem which
ACE retrieves from a data base of recommended repair procedures. This type of
maintenance system could also be useful in any process environment where routine

problems are encountered on a regular basis ([32] and {3]).

24.7 MAID

MAID stands for Multivariable Analytical and Interactive Design. This expert

system is a prototype for the investigation of applying expert system techniques in
control system design. It was implemented using an expert system shell called X;

(Expertech, 1985) and runs on an IBM PC/G terminal which acts as a stand-alone
personal computer. In the initial development stage, the declarative knowledge was

represented by IF-THEN rules and the control system analysis and design facilities
were provided by the MATRIX, package (Integrated Systems 1984).

MAID can aid a designer by guiding him through the design process of
multivariable systems acting as a designer's assistant. As shown in figure 2.4, the
approach used for implementing this expert system differs from the approach used for
the HESCPC system implementation. That is, in the case of MAID, the declarative and
procedural knowledge are not integrated to work as a whole. The user acts as an
interface between the two. In the case of HESCPC expert system the declarative
knowledge represented by M-Prolog rules and the procedural knowledge embedded in
a Fortran library talk together acting as one system with control at the task level also
provided. Thus, the HESCPC expert could redirect the execution of a process control
CAD task depending on the obtained results. Thisis illustrated in figure 2.5 and
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presented in detail in the rest of this thesis. For the next development stage, MAID is
planned to be reimplemented using KEE (Knowledge Engineering Environment), an
expert system development tool marked by Intellicorp, and its knowledge represented

by frames. More information about MAID can be found in [36).

24.8 CACE-II

Computer-Aided Control Engineering for third generation (CACE-II) is an expert
system developed at Rensselare Polytechnical Institute, as a research tool, for the
United States Army. It has demonstrated a high level of competence in automatically
designing lead-lag compensation for a single-input, single-output linear plant and has
been extended to the compensation of sample data and nonlinear plants. CACE-III runs
on VAX-11/785 under the VAX/VMS operating system. Its inference engine is
provided by DELPHI, a proprietary rule-based system shell developed at General
Electric from DELTA's original design.

| Like the HESCPC expert system presented in this thesis, CACE-III integrates the
control system design rules, written in the VAXLISP version of Common Lisp, with

procedural routines contained in two packages:

o The Cambridge Linear Analysis and Design Program (CLADP) which
contains more than thirty separate routines to perform design, analysis and
simulation functions for both single-input, single-output and multiple-input,
multiple-output  systems in either the time or frequency domain, and

o The SIMNON package which suphorts simulation of nonlinear systems.

A detailed presentation of CACE-III expert system can be found in [20].
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PART 3
DESIGN AND IMPLEMENTATION OF THE HESCPC SYSTEM

The HESCPC expert system is a hierarchical structure of specialized experts
which incorporates two kinds of knowledge: -

o Declarative knowledge represented by M-Prolog rules, and

o Procedural knowledge embedded in a control system design algorithms

Fortran library called CONTPACK.

From this point of view the HESCPC system is a three-block system:

0 Declarative Knowledge Block (DKB),

o Declarative-Procedural Knowledge Interface Block (DPKIB), and

o Procedural Knowledge Block (PKB).
This is shown in figure 3.1,

Before discussing the architecture of the HESCPC system and its implementation,
a short review of the tool that made possible the building of this expert system and

some remarks concerning knowledge representation are presented.
3.1 TOOLS USED FOR THE HESCPC IMPLEMENTATION

As was stated in Section 2.1.5, four key resources are necessary for developing
an expert system:

o a human expert,

o aknowledge engineer,
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o acomputer, and

0 an expert system tool called a shell.

The HESCPC expert system was implemented on a VAX/VMS using a tool called
Reshell.

3.1.1 A brief overview of Reshell

It is known that expert systems are computer programs which are built to
represent and apply actual expert knowledge of specific areas. As shown in figure
3.2, they consist of three major components: a knowledge base, an inference engine
and a user interface. They differ from traditional data processing systems because they:

o use symbolic representation, symbolic inference and heuristic search,

o have the ability to handle explanations, noisy or fuzzy data,

© acquire knowledge through interaction with the user and maintain consistency

between the newly acquired knowledge and the "past experience".

Such an expert system with an empty knowledge base is called a shell.

Reshell is a blackboard system developed by the Canada Centre for Remote
Sensing (CCRS) and it is written in M-Prolog. The organization of the Reshell expert
system shell is shown in figure 3.3. Its key functional components are:

o the data interface, |

o the scheduler,

o the meta rule interpreter,

=]

the object rule interpreter,

=]

the frame processor,
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o the arbitrator, and

o the operator.

The fundamental data structures in Reshell are:
o object values,
o frames,
o object rules,
o meta rules,
o operator knowledge, and
o LDIAS Task Interface (LTT).

The primary data storage elements of this shell are:
o the blackboard,
o the rule bases,
o the frame data base, and

o the operator knowledge bases (OKB),

Other components, not shown in figure 3.3 are:

o the expert system controller, which transparently switches control of the
Reshell components between different experts,

o the procedures for accessing and controlling Reshell components from
applications, and

0 the human interface and development components.

Reshell was designed in such a way to permit the implementation of hierarchical

structures of expert systems placed on different levels of this hierarchy. The
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components of this structure can communicate among themselves through their
blackboards via the Data Interface as shown in figure 3.3. Figure 3.4 illustrates the
hierarchy concept which can be implemented using the Reshell system. Reshell was
successfuly used for the implementation of hierarchical structures of expert systems for

updating forestry maps with LANDSAT daia [11].

Using Reshell the knowledge can be represented either by frames or production
rules and the inference can be made in one of the two search modes: depth-firs:
backward chainir_zg or breadth-first forward chaining. Both these modes were used in
the HESCPC system.

A detailed presentation of this powerful tool is given in Reshell Beginner's Guide
~ [22}), Knowledge Engineering with Reshell {23}, and Reshell Software Reference [24].

3.1.2  Rules vs. Frames

Knowledge representation is still a central topic of research in Anificial
Intelligence. This section intends to present some remarks concerning how to represent
the expert's knowledge in an expert system.

Two main approaches are currently used for knowledge representation:

o Production rules: IF [condition(s)] THEN [action(s)], and

o Structured objects.
A. Production rules approach was used in most early and conventional expcrt-
- systems and it is still used today. The advantages often claimed for the use of this kind

of knowledge representation, as reported by Pang and MacFarlane [36], are;
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o Itrepresents knowledge in a declarative manner. interaction among the rules
may lead to unplanned and interesting results.

o It allows for a uniform representation of knowledge.

o It allows for incremental growth of the knowledge base. New rules can be
added easily.

o Itrepresents naturally cccurring chunks of knowledge.

However they outline the following disadvantages of production rules:

o It is an inefficient way of representing knowledge and results with
liule flexibility to handle the search especially ifthe. knowledge base
becomes large.

o The expressive power is inadequate for representing concepts and
relationships among objects.

o Itis difficult to see the consequences of adding a new rule to the system. It
may lead to an undersirable interaction and result in the knowledge base

containing contradictory and circular rules.

B. Examples of representing knowledge by structured objects are semantic networks
and frames. Using this approach the knowledge base is typically a hierarchical network
of objects, concepts or events. Their interrelations are represented by a framelike or
node-and-link structure. A frame is a generic data structure containing any number of
categories of information called slots, where this information is associated with the
subject of the frarﬁe [36). Each frame, which has a name similar to the concept of a
header in a list, defines a semi-independent body of knowledge which can be both
procedural and declarative. Frames may be linked together to form a hierarchical
classification of domain knowledge and allow for inheritance. Pang who has evolved
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the concept of frame, first developed by Marvin Minsky in 1975, outlines the following

advantages of the frame-based approach [36] :

0

o

3.1.3

Frames unify both the procedural and declarative expressions of knowledge.
The knowledge base of a frame-based system is extremely modular. This
provides a natural way of representing components of expertise. Also, the
knowledge base can be maintained more easily.

Each frame can represent appropriate knowledge as default values.

Each frame is an object which represents an independent body of knowledge.
Once the domain expertise was organized into frames, it is relatively simple to
represent the procedural aspects as rules within the knowledge base.

Frames can be defined as specializations of more general frames, leading to a
hierarchical classification of the domain knowledge.

Frames can be linked together to have inheritance relationships.

Uncertainty in the design process calls for flexibility and this can be provided
if the frames are semi-independent.

The flexibility of the frames allows the experienced designer to vary the
sequence in which the frames are used and therefore provides him with a

more powerful structure for handling unanticipated types of design problem.,

Comments

The hierarchical concept presented in figure 3.4, which can be implemented in a

Reshell-based system, is in fact a semantic network where each element is a production

rule expert system ‘which belongs to a class, or sub class of experts. As will be

presented in the next secnon, all the experts composing the HESCPC system are related

among themselves through very well defined relanonshlpa By partitioning the global
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knowledge base into small knowledge bases distributed on a hierarchical structure the
main disadvantages of production rule systems outlined above have been eliminated.
For example:
I. The exhaustive search has been eliminated by keeping small knowledge
bases. At a given time, the search is done in only one expert knowledge base.
2. The consequences of adding a new rule to the system is not so difficult to see
because the knowledge bases are not large.
3. The relationships between concepts are very well defined in the semantic

network representation.

For the HESCPC's implementation the “semantic network-production rule” approach
has been considered in the naive belief that this representation is much closer to the
human way of thinking. As a future work, the HESCPC system will be implemented
using frames approach to explore the possibilities of this kind of knowledge
representation for process control domain and verify the advantages of frames outlined

~ above concerning the integration of declarative-procedural knowledge.

3.2 ARCHITECTURE OF THE HESCPC EXPERT SYSTEM

The HESCPC expert system was designed following a vertical hierarchical
architecture. The global system was decomposed irto a number of experts able to
exchange information and controls through their blackboards. Thus, this society of
experts could cooperatively work in solving specific control system problems.

As shown in figure 3.5, at the top of the hierarchy, a General Manager Expert

having knowledge about which expert-class and problem-class (in the selected
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Figure 3.5 : Architecture of the Hierarchical Expert System for Computer Process Control
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expert-class) can be selected directs the user to the next level of the hierarchy activating
a certain expert depending on the user input. On the next level, the user is querried by
the activated expert about the specific parameters that describe the rarger problem to be
solved. These parameters are needed to further go down on the hierarchy for locating a
specialized problem expert which has the required knowiedge in solving the user's
target problem. At this stage of development, the HESCPC system has two specialized
problem experts:

1. Operator-Adviser Expert for a Nuclear Power Plant, and

2, State Space Feedback Expert
which will be discussed later on,

This process of gathering parameters may continue on more than one level (depending
on the target problem description) until the desired specialized problem expert is
reached. At this point this expert asks the user for the input data necessary to solve the
target problem. After collecting the input data, the specialized problem expert starts
the reasoning process using the solving problem knowledge embedded into its
knowledge base.

Usually, for control system design the farget problem is so cornplex that it has to
be broken down into subproblems. Thus, the specialized problem expert must also
contain knowledge about this broken down process and which expert in the hierarchy
is able to solve each subproblem. In this way, the specialized problem expert activates
the proper expert with proper data for solving a certain subproblem. In turn, the latest
expert could contain knowledge about how to further break down the subprobiem into
sub-subproblems and which experts in the hierarchy can solve these sub-subproblems.
This process can continue until a reasonable complexity of the sub-subproblems is

reached. j
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After doing their job, the subproblem experts report the results to the specialized

problem expert which in turn reports the global conclusion (solution) of the targer

problem to the user.

Because for process control design the last sub-subproblems resulted from the
broken down process are solved by specialized algorithms, at the lowest level of the

hierarchy resides a Control System Design Fortran library (CONTPACK) which will
be briefly discussed in Section 3.2.3.

3.2.1 Declarative Knowledge Block (DKB)

The experts defined in the Declarative Knowledge Block (DKB) are shownin
figure 3.6. In fact, each expert composing this block (except the Operator-Adviser
expert) acts as a manager to the user guidance in reaching the proper specialized expert
for solving the target problem. At this stage of development, only 5 of these experts

have their knowledge bases completely or partially built. A short functional description

of the 5 experts follows.

A. The HESCPC_GEN_MGR Expert is the top expert of the implemented
hierarchy and first activated when a HESCPC session starts up. Being the general
manager of the system, it knows that four classes of experts can be selected, and that
under each expert class a proper expert can be activated depending on the problern class

the user is interested in.
o The OperatoriManager-Companion expert class intends to include experts for
process operators and process managers as described in Sections 2.1, and

2.3 respectively of this thesis.
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© The Control System_Design_Algorithms expert class includes experts
dealing with four problem classes:
- linear systems,

- bilinear systems,
- quasi-linear systems, and
- nbnlinea.r systems.

o Under the Hardware_Design expert class, R1 like experts will be build for
computerized process control system hardware configuration. (R1 is an
expert system for configuring DEC VAX computer systems to meet customer
needs. See McDermott 1980, [31]).

o The Software_Design expert class will include the same kind of experts as
the Hardware_Design expcrtl class but for the software configuration for
computer process control.

At this time the HESCPC_GEN_MGR expert has an incomplete knowledge base.

B. The Operator_Adviser Expert for a Nuclear Plant was implemented in
the summer of 1987 as a demonstration for the Atomic Enérgy of Canada Ltd. Itisa
. small data-driven expert with an incomplete knowledge base. The idea was to explore
the possibilities of implementing such an expert system using Reshell. Tilis expert is
one of the two specialized problem experts implemented into the HESCPC structure at
this stage.

As shown in figure 3.7, the Operator_Adviser expert system for a nuclear power
plant has an inference engine which is part of Reshell and a knowledge base containing
the knowledge captured from Parcy 1982 [38). The Data File is created and updated at
a fixed rate by the Data Acquisition System which is not part of the expert system, For

this demonstration the following ren sensors which collect relevant data from a nuclear
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power plant were considered:

reactivity metre,

reactivity balance,

drift speed,

temperature sensor tric_1,

temperature sensor ttc_2,

- fuel bar variation,

- primary flow drift variation,

- secondary flow drift variation,

- steam generator, and

- gain breaking.
When the user wants to check the state of the reactor the Data File is loaded into the
expert's blackboard. The goal of the expert is to find "what is the state of the reactor"”,
At this point the inference engine is. invoked and, using the knowledge base, the
inference process starts. Depending on the sensor data, the expert will come up with a

" diagnosis of the reactor and an advice (if necessary) to the usér. The format of this

message is:
"The nuclear reactor is in:
state —-> (reactivity, ..., breakdown)
condition  --> (acceptable-time, ..., inacceptable)
cause —> (where the trouble is located)
action -——> (action/no action to be taken)."

For the next step, the human operator takes or initiates the recornmended actions by the
expert. Sample runs of this expert for different sensor data are given in Appendix.
Note that two classes of breakdowns were considered: internal and external

breakdowns.
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C. The Linear Systems Expert acts as a manager to the user's guidance for
locating the specialized expert on the target problem. By querring the user it collects:

- the parameter types of the linear system (distributed or lumped),

- the linear systern class {continuous or discrete), and

- the linear system type (deterministic or stochastic).

At this stage, this expert has an incomplete knowledge base.

D. ' The Deterministic_3 Expert continues to gather the parameters that describe
the target problem:

- to find the area in which the problem to be solved fits (realization, modeling

and simulation, control laws, identification descentralization, theoretic proofs
or performance analysis),

- if the user chooses the control laws area, this expert will ask him what kind
of design he is faced with (aptimal control, feedback, or decoupling),
- if the feedback design is selected, the expert querries the user about the
method he intends to use for this design (input-output or state spci;:e).
If, for exampie, the state space method has been selected the control will be passed
over to the State Space Expert before reaching the specialized problem expert. The

Deterministic_3 Expert has an incompiete knowledge base at the present time.

E. The State Space Expert is located on tfae last level of the hierarchy in the
Declarative Knowledge Block (DKB). It also acts as. a manager and collects the last
parameter that describes the target problem:
- what kind of state space _problem has to be solved (state feedback, outpur
Jeedback, canonical forms -or property analysis).

The State Space Expert has an incomplete knowledge base and the user must select
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"state feedback" 1o reach the State Space Feedback Expert (part of DPKIB) which is

the second specialized problem expert implemented at this stage into the HESCPC

system.

3.2.2 Declarative-Procedural Knowledge Interface Block (DPKIB)

The components of the Declarative-Frocedural Knowledge Interface Block
(DPKIB) are presented in figure 3.8. All the experts defined in this block have their

knowledge bases completely built. A functional description of each component of the

DPKIB and how this block works follows.

A. The State Space Feedback Expert (SSFE) is the second specialized
problem expert implemented into the HESCPC system and can be used by a control
system designer who has as a target problem the design of mono or muldtivariable linear
systems using the feedback state space approach. It is activated by tile State Space
Expert (part of the Declarative Knowledge Block ) and together with its 14 children and
51 Fortran routines is able to solve the following kind of rarget problem:
Given a linear time invariant system described by the equation:-
| dx/dt = Ax+ Bu, where
A isa n x n marrix called the state space matrix,
B isa m x n marrix called the input matrix,
x isthe n x 1 state space vector, |
u isthe m x 1 inputvector,
it is required: to design a feedback upon the state space variable x
u=Hx+Gv, where

v isthe m x I reference variable,
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G isagiven m x m matrix, and

H 1isthedesired m x n feedback matrix.

For the first step, this targer problem was decomposed into seven subproblems.
The knowledge needed to solve these subproblems is embedded into seven experts
(Task1_Mgr, Task2_Mgr, ..., Task7_Mgr) which are the children of the State Space
Feedback Expert. For the next step, each subproblem was further broken down into a
different number of sub-subproblems. The total number of sub-subproblems, for the
seven subproblems, is 51. Each sub-subproblem is a Fortran routine part of the

Procedural Knowledge Block (PKB), which is a Fortran library specialized on control
system design algorithms.

Refering to figure 3.8, the Taskl_Mgr, ..., Task7_Magr experts have the same
functionality. They only differ by their knowledge bases. The same statement can be
made about Analystl, ..., Analyst7 experts and Taskl_For, ..., Task7_For

components.

B. The Thskn_Mgr Expert is a specialized subproblem expert. It has an intimate
knowledge about a specific subproblem (subproblem n ).

All these experts, Taskl_Mgr, Task2_Megr, .., Task7_Mgr, have their
knowledge bases completely built.

C. The Analystn Expert is a child of the State Space Feedback Expert and is
attached to subproblem n. It knows how to analyse the output data produced by
Fortran routines which solve the subproblem n. All these experts, Analystl,

Analyst2, ..., Analyst7, have their knowledge bases completely built.
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D. The Taskn_For Component represents a Fortran code which was wriiten
for subproblem n. It is activated as a logical function by Taskn_Mgr expert. Each
component, Taskl_For, Task2_For, .., Task7_For, contains procedural
knowledge about the sub-subproblems needed for solving the corresponding
subproblem. These components make the necessary calls to the Fortran routines

which reside in Procedural Knowledge Block (PKB).
3.2.2.1 How the Declarative-Procedural Knowledge Interface Block Works

When the specialized problem expert (State Space Feedback Expert) is reached,
the user is aslcedxfgl_'\thc target problem input data. After collecting this data the
Taskl_Mgr Expcrt,‘ whtch is a specialized subproblem expert, is alﬁays activated first
with the proper data. This expert has an intimate knowledge about subproblem 1. Tt
knows how to:

o create an Input Data File for subproblem Task1_For with the specific data (see

- figure 3.8),

o activate the subproblem Task1_For as a logical funcion.

o load the Output Data File created by subproblem Taskl_For into its

blackboard,

o display this data to the user, and

o send this data to its pﬁrent - State Space Feedback Expert - .

Thus, at this point the output data generated by the first subproblem (Taskl_For) is
available into the blackboard of the State Space Feedback Expert. Next, this expert
sends this data to the child, Analystl expert, which starts to analyse it. The results of
this process are displayed to the user and, at the same time,.sent to the parent - State

Space Feedback Expert -. Depending on these results the parent expert decides which

58



subproblem has to be solved next and activates the corresponding child expert - another
Taskn_Mgr Expert - with the proper data. This process continues until the targer
problem is solved. Figure 3.9 depicts the sequence of actions described above. Note
that a subproblem could be activated more than once, or not activated at all during a

session, depending on the input data of the target problem.

323  Procedural Knowledge Block (PKB)

The Procedural Knowledge Block (PKB) is a Fortran library, called
CONTPACK. It contains over 700 Fortran routines specialized on control system
design [16].

After a careful study of this library, 51 routines were found necessary for the
designing process of mono and multivariable linear systems using feedback state space
approach. As an example, figure 3.10 shows the Fortran routines used by Task5_For

component for solving the subproblem 5. Note that the nodes represent routine names

and the links represent routine calls.

33 IMPLEMENTATION CONSIDERATIONS OF THE HESCPC SYSTEM

The HESCPC expert system was implemented using Reshell. Its highly structured

"= knowledge is distributed among a number of experts hierarchically organized as

\}‘lpresentcd in figure 3.5. The knowledge embedded in each expert is represented as
1?}’!2!—\1\'5N production rules and is shared between two files:
SN

o <expcrizname>.RBS file, and

0 <expert_na?tic>_CA.PRO file.
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State Space Feedback Expert is activated. It
collects the input data of the target problem and
activates Task1_Mgr Expert.

v

2
Task1_Mgr Expert is activated. It creates the
Input Data File for Task1_For and activates
this component as a logical function.

v

Task1_For Component is activated. It creates
the Output Data File and returns the control to
Taskl_Megr Expert.

v

Task1l_Mgr Expert reads the Output Data File
into its blackboard, displays this data to the

user and sends this data to State Space Feedback
Expert (the parent).

Y

State Spacc Feedback Expert activates Analystl
Expert with the output data generated by
Task1_For for analysis.

v

Analystl Expert is activated and starts the
analysis process of the received data. The
result of this process is displayed to the
user and sent to State Space Feedback
Expert (the parent).

v

State Space Feedback Expert makes reasoning
on the analysed data and decides which
Taskn _Mpgr Expert has to be activated next.

v

GO TO box 2 and repeat the same sequence of
actions for the chosen Task n_Mgr Expert
(with the corresponding Analyst n_Expert and
Task n_For component) until the target
problem is solved.

Figure 3.9 : How the Declarative-Procedural Knowledge Interface Block works
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3.3.1  The <expert_name>RBS File
This file contains two kinds of rules represented in a Reshell format:

1. The Object Rules which are the inference rules that manipulate the domain
objects. The domain objects are the entities an expert knows about and has

expert knowledge of. They are represented as follows:

obj{[[*, <object_name>*], <object_attribute>, <attribute_value>,

[<measure_of belief>, <measure_of disbelief>]]).

For example:

obj([[*, sensor, *], reactivity_meter, 15, [100,0]]).

An Object Rule has the following format:
IF [<list_of_conditions>]
THEN [<list_of_actions)

with associated: <rule_number>, <certainty_factor>.

The <certainty_factor> represents the degree of confidence the system has that
this rule is true or false. These certainty factors are combined during the search

procedure and are used to arrive at a certainty value for the final solution [23].

Ritle niumber 2_of State Space Feedback Expert.
IF the state space vector dimension is known and

the state space matrix is known and
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the input matrix is known and
the desired new eigenvalue vector is known and
the calculation precision for task 4 is known

THEN the input data for task4 is OK.

This object rule is true 100% and it is represented in the Reshell format as

follows:
knb(
[
obj{I[*, task4_input,*], data, ok])
I
[
obj([[*, tasks_input,*], state_space_vect_dim, N]),
obj([[*, tasks_input,*], state_space_matrix, A}),
obj([[*, tasks_input,*], input_matrix, B}),
obj([[*,task3_output,*],desired_new_eigenvalues_vectR]),
obj([[*, task4_input,*}, calc_precision_task4, CP})
L
100, 2
).

2. The Meta Rules are the "control program” of the expert system. They define
the strategies to be used to deduce or prove the goal of the expert. To be more
specific, the meta rules are those rules that govern the ways in which the
object rules are controlled and used to solve a pmblcm. Like object rules,

they are IF-THEN structures with conditions and actions. Unlike the object
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rules, the actions of meta rules are not deductions, they are control
operations for the expert system. The rule conditions are used to select the

appropriate control actions [23].

A Meta Rule has the following format:
IF [«list_of conditions>]
THEN [<list_of_actions]

<phase_name>, <meta_rule_number>.

Meta rule number 15 of State Space Feedback Expert.
IF the message from Analyst3 expert was received and

the system is multivariable and
the method selected by the user is Jordan and
the goal "input data for taské collected" was proven and
the: state space vector dimension is known and
the input vector dimension is known and
the state space matrix is known and
the input matrix is known and
the des';red new eigenvalue vector is known and
the calculation precision for task6 is known and
the phase is "check method"

THEN activate the expert "Task6_Mgr" in the "start” mode with
corhmand "task6_mgr" and the following data:
“state space matrix,
input matrix,

desired new eigenvalue vector,
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calculation precision for task6", and

set the phase to "getresults 'm Task6_For".

This meta rule is represented in the Reshell format as follows:
mknb(
[
activate_the_expert__in_the _mode_with_command__and_data(task6_mgr,
start, task6_mgr,
[obj([[*, tasks_input, *], state_space_vect_dim, N, {100, 0]]),
obj([[*, tasks_input, *], input_vect_dim, M, [100, 0]]),
obj([[*, tasks_input, *}, state_space_mairix, A, {100, 0]]),
obj([[*, tasks_input, *], input_matrix, B, [100, 0]}),
obj([[*, task3_output, *}, desired_new_eigenvalues_vect, R, [100, 0]]),
obj([[*, task6_input, *], calc_precision_taks6, CP, {100, 0]])
n, |
set_the_phase_to (get_results_from_task6)
L
[
message_from_analyst3 (received),
the_system_is (multivariable),
Jind__in_the_blackboard(obj([[*, method,*], jordan_wolovich, jordan]),
= \‘:“‘*?an‘;where),
~ prove_the_goal(obj([[*, task6_input, *], inpm_data_rasl{p’, collected})),
ﬁnd_in_tbe_blackboard{obj{ [{* tasks_input,*] state_space_vect_dim,N])),
\:E\.v anywhere),

find__in_the_blackboard(obj([[*, tasks_input, *], input_vect_dim, M}},
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anywhere),
find__in_the_blackboard(obj({[*tasks_input,*] state_space_matrixA]),
anywhere),
find__in_the blackboard(obj({[* ,tasks_input,*],input_matrix,B}),anywhere),
find__in_the blackboard(obj{{[*task3_output, *],
desired_new_eigenvalues_vect, R]), anywhere),
find__in_the_blackboard (obj([[*, task6_input, *], calc_precision_task6,
CP}), anywhere)
1

[check_method],
15

).
3.3.2  The <expert_name>_CA_PRO File

This file contains the condition predicates and action procedures. They are
M-Prolog statements that implement specific functions in object and meta rules. Some
examples of conditions and actions represented in M-Prolog rules are given below:

1. Nuclear_Reactor_CA PRO

IF the reactivity balance is abnormal and
"\"3‘_‘ the drift speest is not fast or
the reactivity balance is qpcertain and
the observation of tempefature sensor trtc_1 is greater
orequal to 10

THEN the big transient regime is abnormal
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which was implemented as:

big_transien!_regime(abnormal) :-
(reactivity_balance (abnormal),
drift_speed (not_fast));

(reactivity balance (uncertain),
observation_of (tric_1, X),

X>=10).
2. Task5_Mgr_CAPRO

IF the error index of TaskS_For is known and
the transposed matrix is known

THEN TaskS_Mgr sends this data to the parent expert

which was implemented as:
task5_mgr_sends_output_data_to_parent :-

find_in_bb{anywhere, obj([[*, taskS_output, *],
error_index_taskS, IER])),

pu:_hfgh(rewn_dam, obj([[*, taksS_output,¥],

" error_index_taskS, IER, [100, 0]]),
find_in_bb(anywhere, obj([[*, task5_output, *],
transposed_matrix_tasks, [H[T]])),

put_high(return_data, obj{[[*, task5_output, *],
transposed_matrix_taskS, [H[T], [100, 0]])).
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3. Analystl_CA.PRO

iF the state space vector dimension is known and
the input vector dimension is known and
the control matrix rank is known and
the decision on the branch was made

THEN make analysis on output data from Taski_For

which was implemented as:

make_analysis(tBRANCH}) -
find_in_bb(anywhere, obj([[*, rasks_input, ¥],
state_space_vect_dim, N})),
find_in_bb(anywhere, obj([[*, tasks_input, ¥],
input_vect_dim, ‘M])),
find_in_bb(anywhere, obj([[*, task]_outpus, *],
contr_matrix_rank_taskl, IR])),
decide_branch(N, M, IR, BRANCH), !,

decide_branch(N, M, IR, BRANCH) :-
N>0,
M>0,
IR >=0,
M=1,
IR=N,
BRANCH = one,
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put_in_bb_(data_base, obj({[*, analyst, *],
branch, BRANCH, [1G0, 0]])), !.

decide_branch(N, M, IR, BRACH) :-

N>0,

M>0,

IR >=0,

M=1,

IR <N,

BRANCH = two,

put_in_bb(data_base, obj([[*, analyst, *],
branch, BRANCH, [100, 0]})), !.

decide_branch(N, M, IR, BRANCH) :-

N>0,

M>0,

IR >=0,

M>1,

IR =N,

BRANCH = three,

put_in_bb(data_base, obj([{*, analyst, *],
branch, BRANCH, [100, 0]1)), !.

decide_branch(N, M, IR, BRANCH} :-

N>0,
M>0,
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IR>=1,

M>1,

IR < N,

BRANCH = four,

put_in_bb(data_base, obj({[*, analyst, *],
branch, BRANCH, [100, 01])). !.

3.3.3  Srate Space Feedback Design Heuristics

This subsection presents the state space feedback heuristics embedded in the State
Space Feedback Expert (SSFE). In fact each expert composing the HESCPC system
contains a certain amount of heuristics but the most complex is the one presented

below.

As depicted in figure 3.11, after the State Space Feedback Expert was reached the
user is asked for the input data of the target problem , in this case, a linear system with
lumped parameters. This data is passed to the subproblem Taskl_For (via
Taskl_Mgr expert as shown in figure 3.8) which in turn makes calls to
sub-subproblems in the Procedural Knowledge Block (PKB). The resulting data is
passed back io the SSFE (via Task1_Mgr expert, see figure 3.8) which in turn passes it
to the Analistl expert for analysis. The results of this process are reported to SSFE.
Thus at this point the State Space Feedback Expert knows if the linear system is mono

or multivariable and if itis controllable or not. =

1.  If the linear system is not controllable the SSFE sends the required data to the
subproblem TaskS_For (via TaskS_Mgr expert, see figure 3.8) which in turn
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Figure 3.11 : State Space Feedback Design Heuristics
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makes calls to a large number of sub-subproblems in PKB as shown in figure
3.10. Again the output data from TaskS_For is passed to AnalystS expert  (via
Task5_Mgr and SSFE) for analysis. At the end of this process the State Space
Feedback Expert knows if the linear system can be stabilized or not. If not, the
user is informed and the SSFE asks for another input data for another system. If
the system can be stabilized the user must select the controllable part of the given

system and the design session continues as shown in figure 3.11.

If the given linear system is controllable the State Space Feedback Expert passes
the required data to subproblem Task2 For (via Task2_Mgr, see figure 3.8)
which computes the system'’s eigenvalues. Again, the analysing process follows,
and then the subproblem Task3_For will generate the desired new eigenvalues
for the given linear system. Next, the system’s feedback matrix will be calculated
by the subproblem Task4_For for monovariable systems, and by subproblems

Task6_For or Task7_For - user choice - for pnuluvariable systems.

3.3.4 Whyan Expert System ?

Looking at the feedback state space design heuristics depicted in figure 3.11 one

could ask: why not implement this logical flow by using conventional programming

techniques with Pascal, Fortran C, or some other high-level language?. The answer is

that figure 3.11 could be implemented using a conventional, high-level language, but:

- For Process Control, such an imp!emcntﬁtion would suffer from complexity
problems mentioned before. The more interesting and more productive approach |
is to consider the descriptive, declarative-oriented nrogramming approach of

rules to represent what one wanis the expert system to know versus considering



the imperative, procedure-oriented approach of if-then-else constructs to

represent what one wants the program 1o do.

2.  Using an expert system approach the user is equipped with explanation facilities:
o Why - the usercan ask the expert system why a question is being asked, and
o Explain - the user can ask the expert to explain its reasoning process: how

the solution path was created and how the object values were deduced.

Implementing figure 3.11 using a procedure-oriented language the user would not
have been able to query the system to check on the logical flow of the design

heuristic.

3. Using an expert system approach the knowledge ﬁﬁse can be incrementally
increased without restructuring the code already written. Forexample, the
knowledge base for State Space Feedback Expert was first built for design of
linear monovariable systems, therefore only a part of figure 3.11 was
implemented. Aftera few weeks new rules (for linear multivariable system
design) were added to its knowledge base without making any changes to the
existing rules. The only requirement was that the premises of the new rules
had to be satisfied.

The above thre-cldiffetences between an expert system and conventional progratﬁming

techniques are reasons to prefer the use of a production rules expert system over the

use of a procedural programming approach.
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3.3.5

O

Conunents

The HESCPC expert system has been designed and implemented in such a way
as to provide the user with the capability of returning to the previous level of the
hierarchy if he/she has chosen a wrong limb of the tree. This has been achieved
by implementing specific meta rules into the expérts' knowledge base. Thus,
before passing the control to the next lower level, the activated expert reports to
the user the node of the tree he/she is working on. Next, the expert asks the user
if he/she wants to continue on that limb of the tree. If the answer is "yes" the
control will be passed on to the next lower level. If the answer is "no", the expert
asks the user if he/she wants to close that session. If the answer is "yes" the
control will be given to the User Interface level (the highest level in the
hierarchy). If the answer is "no" the control will be passed on to the previous

upper ievel. This is illustrated in figure 3.12.

Although the inference engine used in the HESCPC expert system is part of
Reshell, a lot of code has been written to build its knowledge base - 5349
M-Prolog lines and 519 Fortran lines - .

At this stage of its development the HESCPC's knowledge base includes 123
meta rules and 261 rules. More details about the HESCPC's implementation can

be found in its source code.

The Reshell inference engine has proven tc be a very capable tool for developing

an expert system for an engineering application.
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Figure 3.12 : General Flowchart of the HESCPC System
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PART4
COMMENTS ON THE SAMPLES RUN OF THE HESCPC EXPERT SYSTEM

The HESCPC expert system has been exercised on a variety of continuous-time
linear mono and multivariable systems (lumped parameters) using the feedback state
space approach design method. It has also been used as an operator-adviser for a
nuclear power plant.

The HESCPC's tests discussed below and presented in Appendix were chosen in

such a way as to have each expert in the hierarchy activated at least once.

4.1 CONTROL SYSTEM DESIGN WITH HESCPC

This section presents a short discussion of three tests: two for mu[nvanable Imear

systems and one for @ monovariable linear system (refer to figures 3.8 and 3.11).

4.1.1  Multivariable Linear Sytem Design Examples

The following design example of a multivariable linear system achieved by the

HESCPC expert in Appendix - TEST 1 is provided:

Given a linear time invariant system described by the equation:
dx/dt = Ax + Bu, where:
A isa n xn matrix called the state space matrix

B isa m xn matrix called the input matrix
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x isthen x I state space vector

u isthem x 1 inputvector.

Itis required to design a feedback upon the state variable x
u=Hx+ Gv, where:
v isthe m x I reference variable
G. isagiven m x m matrix

H isthedesired m x n feedback matrix.

Solution.

Step

As presented in Appendix - TEST 1, the user initializes the HESCPC system by
issuing the "new_reshell run hescpc” command. After the specialized problem
expert, State Space Feedback Expert, is reached the user is asked for the input data .

Step 2,
The State Space Feedback Expert collects the input data from the user:

9.6 -5.7

A= the state space matrix
09 -23.7
032 986
B= _ the input matrix
6.0 28 -7

and then activates Taskl_Megr, the specialized subproblem expert, which in turn
activates the Procedural Knowledge Block (PKB) via Taskl_For. The results of these
calculations:

S a matrix containing thé echellon form of the composed matrix (B,A),
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IR the controllable matrix rank, and

ICON the controllable index,
are displayed to the user and analysed by the Analist] expert which concludes that “the
given linear system is multivariable and controllable”.
Step 3.
The next specialized subproblem expert which is activated, Task2_Mgr, goes into the
PKB block via Task2_For for solving its subproblem which is compute the system’s
eigenvalues . The output data of this subproblem

VALR  avector containing the Real Parts of the eigenvalues,

VALI a vector containing the Imaginary Parts of the eigenvalues, and

IER the error index of subproblem Task2_For,
is sent to the user's screen and analysed by Aralyst2 expert which concludes that ” the
computation was correctly completed " (see Appendix- TEST 1). ¢
Step 4.
As a next step, the desired new eigenvalues of the given linear system will be
generated by the specialized subproblem expert Task3_Mgr (using PKB via

Task3_For) after the user imposes the following parameters:

xmin the lower limit of the Real Part of the eigenvalues,
Xmax the upper limit of the Real Part of the eigenvalues,
Xmin the lower limit of the Imaginary Part of the eigenvalues,

Xmax the upper limit of the Imaginary Part of the eigenvalues, and

P the percentage of complex eigenvalues to the total number of
eigenvalues.
The result of the subproblem solved by Task3_Mgr expert is the desired new

eigenvalue vector (R) of the closed loop system which has been correctly computed,
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as the Analyst3 expert has indicated.

Step 3,
Next, the specialized subproblem expert, Task6_Mgr, helped by PKB block via

Task6_For, using the Jordan method, computes:

M the feedback matrix,
W1 the closed loop system matrix, and
IER the error index of subproblem Task6_For,

which are displayed on the screen and analysed by the Analyst6 expert. At this peint |
the user is asked if he/she wants to know the new eigenvalues of the given system. If
the answer is "Yes“ the Task2_Megr expert is activated again (Step3) with the closed
loop matrix W1 as input, instead of the state space matrix A given at the beginning of
the session. The design session continues as before (Step 4 and Step 5). As an
alternative to the Jordan method, in Step 5, the user has chosen the Wolovich approach,
Therefore, Task7_MEgr expert computes the same H and W1 as the Task6_Mgr expert
but the Wolovich's method is not suitable for the given system because the input matrix
Bis nc;t of maximal rank as the Analyst‘?.expcrt says.

Step 6.

After the Analyst7 expert concludes that "computation incorrectly completed" , the user
could finish the session or try again with another system (A,B). In TESTI;:t{}p user. -
has decided to go for another session. At this point, the State Space Feedback E:xpcrt
prepares its blackboard for TEST 2 by deleting all the objects created during previous
sgss;ion.

Step 7,

As presented in Appendix - TEST 2, State Space Feedback Expert asks for the new
input data of the target problem.

The state space matrix A for the new linear system is:
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0 1 0 0O

3 0 0 2
A=

0 0 0 1

0-2 00

The input matrix B is:

0 0

1 0

00

01
The sequence of actions for this step is similar with Step 2 but for the new input data
the Analyst] expert concludes ” the multivariable system is not controllable”.
Step 8.
The next specialized subproblem expert which is activated (TaskS_Megr) checks the
system's stability by activating the PKB block via the Task5_For component. The
output data of this subproblem is sent to the user and analysed by the AnalystS expert
which concludes. that " computation incorrectly completed because the sign martrix A
cannot be evaluated"”, so the system cannot be stabilized.
Step 9,
For this step, which is similar with Step 6, the State Space Feedback Expert prepares
its blackboard for TEST 3.

4.1.2  Monovariable Linear System Design Example

Step 10,
Refering to Appendix - TEST 3, the new input data of the rarget problem is:
-5 0.7
A = the state space matrix
26 -02
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-1.8
B = _ the input matrix
4.3

The sequence of actions for this step is the same as for Step 2, but for this input data

the Analyst] expert concludes that " the given linear system is monovariable and

conrrollable “.

Step 11,

At the end of this step, which is similar with Step 3, the Analyst2 expert concludes
"computation correctly completed *'.

Step 12,

This step is equivalent with Step 4.

Step 13,

This step is similar with Step 5. The only difference is that the specialized subproblem

expert will be Task4_Mgr because the given linear system is monovariable. Therefore,

the closed loop system matrix (W1) will be computed making the required call to the
PKB block via the Task4_For. The Analyst4 expert concludes " computation correctly
completed ". Next, the user is asked if he/she wants 1o know the new ~igenvalues of
the system. The answer being "yes" (see Appendix - TEST 3 ), the Task2_Mgr
expert is activated again (Step 3) with the closed loop matrix W1 as input instead of
matrix A given at Step 10. At theend of this step, the Analyst2 expert reports
"computation correctly completed * and the user is asked if he/she wants to change the
final system eigenvalues. Because the answer is no, the design session for state space

feedback is ended and the control is given back to the User Interface level.

4.2 QPERATOR-ADVISER SAMPLES RUN
The followihg two boundary tests have been made to the Operator-Adviser
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cxpert. For the first test, the input data represents an emergency state of the nuclear
rcactor. This is presented in Appendix - TEST 4. For the second test, the input data
has been selected to represent a normal reactivity state of the reactor and is presented in
Appendix - TEST 5.

Step 14,

Refering to Appendix - TEST 4, from the User Interface level the user issues the
“run" command as in Step 1, but now the target problem is different. The first part of
this test shows how the control is passed from one level back to the previous level in
HESCPC system ( the implementaiion of figure 3.12).

Step I5. |

After going back to the previous level, the user selects a good path and the
Operator-Adviser expert (the target problem expert) is activated. As was presented in
figure 3.7, the expert loads the Sensors Data File into its blackboard, displays this
data to the user and starts the reasoning process. The results of this process are
displayed on the screen,

Step 16

In the case of a new session, the expert loads the updated Sensors Data File into its

blackboard and starts the reasoning process as presented in Appendix - TEST 5.
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PART 5
CONCLUSION

This part of the thesis presents what has been achieved, as well as, what has not
been achieved by this research and some future work which has to be done for further

developments of the HESCPC expert system.

5.1 WHAT HAS BEEN ACHIEVED

o A hierarchical structure has been defined, designed, and implemented using
Reshell. This includes all the areas of the application of expert system
technology in the fiéld of Process Control.

o Knowledge has been represented as a semantic network - production rules.

o A declarative-procedural knowledge interface has been designed and
implemented. This has made possible the integration of control system design
rules represented by M-Prolog statements with control system design
algorithms embedded in a Fortran package (CONTPACK).

o The Fortran routines error messages are handled by M-Prolog rules in the
declarative-procedural knowledge interface.This has been possible through
testing the values of the indices associated with each Taskn_For component
which are returned by Fortrén routines. Depending on their values a
corresponding message is displayed on the user screen and a specific action is
taken by the State Space Fcedbac_.‘{.__ Expert (the target problem expert) . (See
Part 4 Step 5, Step 6 and Step 8).
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o Control of the Fortran tasks execution has been achieved. The sequence of
these tasks is established depending on the data flow and user intervention.

0 A demonstration has been given on the use of an expert system approach for
control system design.

0 A small knowledge base of an expert system that acts as an operator

companion for a nuclear power plant has been designed and ﬁnplcmcnted.

5.2 WHAT HAS NOT BEEN ACHIEVED

o The Operator-Adviser Expert is a real time expert system which considers
the relevant data collected from ten sensors. It has only 2 meta rules and 57
rules, therefore a small knowledge base. In terms of performance, this expert
comes up with a diagnosis and an advice in 10 to 35 seconds depending on
the input data. As aresult of our discussions with the Atomic Energy of
Canada Ltd. representatives, a CANDU reactor has over 3000 sensors.
Taking into account this number of sensors a huge knowledge base should
be buikt for such an application. In this case, the expert system search space
will be immense, therefore it is very difficuit to give a guarantee that the user
will receive a diagnosis and an advice which can be used in real time.

0 In this implementation the Operator-Adviser expert system makes reasoning
on the updated data from the sensors only. A mechanism for considering the
historical data files has to be implemented to meet the requirements of a real

time expert system.
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5.3 FUTURE WORK

The results reported in this thesis are the first steps made at the University of

Ottawa in the direction of applying expert system technology to Process Control. To

continue in this direction, the following future work is proposed:

o

The Procedural Knowledge Block will include a graphics package called
Interactive Simulation Language (ASL) for displying a block diagram of the
designed control system. ISL is a highly interactive and colorful graphics
oriented language which provides the user with the capability to solve linear
or very nonlinear ordinary differential equations with one independent
variable.

The CONTPACK package does not include algorithms for nonlinear
systems design. As a future work, the HESCPC expert system will be
integrated with the MACSYMA system. MACSYMA is a large, interactive
computer system, designed to assist the user in solving mathematical
problems. It has a wide range of capabilities that enables the user to apply
mathematical transformations to symbolic inputs to yield either symbolic
results, or Fortran programs. It also provides tools for formulating and
editing new problems for creating and introducing new algorithms in the
knowledge data base [29].

Completion of the defined knowledge bases.

Pi}_l'allel execution of different experts.

E:éi:\!oring the implementation of the following mechanisms: non-monotonic

reasoning, learning, and theoretic proofs.
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APPENDIX
TEST 1

$ new reshell run hescpc
*%% RESHELL v3.0 *%*
LOADING : es_controller - 88/03/12 18:57:31

Initializing System *

Executing RESHELL system startup file *
RESHELL system startup file executed *
Executing user startup file *

User startup file executed *

Loading help file *

Help file loaded *

Loading knowledge and context for: analyst?7
Loading knowledge and context for: analysté6
Loading knowledge and context for: analyst5
Loading knowledge and context for: analystd
Loading knowledge and context for: analyst3
Loading knowledge and context for: analyst2
Loading knowledge and context for: analystl
Loading knowledge and context for: task? _mgr
Loading knowledge and context for: task6é mgr
Loading knowledge and context for: task5 . _mgr
Loading knowledge and context for: task4 ™ _mgr
Loading knowledge and context for: task3 | _mgr
Loading knowledge and context for: task2 _mgr
Loading knowledge and context for: taskl _mgr *

Loading knowledge and context for: state _space_feedback_mgr *
Loading knowledge and context for: bilinear _Sys *

Loading knowledge and context for: quasilinear _Sys *

Loading knowledge and context for: nonlinear _Sys *

Loading knowledge and context for: nuclear _reactor *

Loading knowledge and context for: state _Space *
Loading knowledge and context for: stochasticd *
Loading kncwledge and context for: stochastic3 *
Loading knowledge and context for: stochastic2 *
Loading knowledge and context for: stochasticl *
Loading knowledge and context for: deterministicd
Loading knowledge and context for: deterministic3
Loading knowledge and context for: deterministic2
Loading knowledge and context for: deterministicl
Loading knowledge and context for: linear _Sys *
Loading knowledge and context for: hescpc *

All knowledge loaded *

Initialized system *

* ¥ * ¥ ¥ %

* * % * % %

ﬂ-*!—ﬁ—**#*ﬂ-*ﬁ-*!ﬂ-ﬁ'***##*#*#ﬁ'*ﬂ-*#ﬁ-ﬂ-&*!—ﬁ-&***
* *+ ¥ ¥

*** User Interface **x

Enter one of run resume save quit exit help {help}
>run



khkhkhkhhkhkhkdhhhhhhrkhkhhxhhkhkrhhhkhr
* WELCOME TO THE HIERARCHICAL *

* EXPERT SYSTEM *
* FOR *
* COMPUTER PROCESS CONTROL *

Thkkhkdkhkhhhkhhhkhh kA kA kkxkhkhkhhkhk kA ki

*** NOTICE: This work was supported in part **=

ok ok by the Natural Science and dek %
*kk Engineering Research of Canada *#**
*kk under Grant no.A6684 *kk
*** The HESCPC is a Reshell based expert *ok %
*** system. Its knowledge is distributed on ***
*** an hierarchical structure among 30 ek ke
*** experts on different levels. At this * k%
*** stage of development 20 out of these * ok
*** experts have their knowledge bases * k&
**x* completely or partially built. * k%

Which expert class would you like to activate?

Enter one of operator_companion hardware design software_design
ctr_sys des_alg . - .

>ctr

What kind of control problem are you dealing with?
Enter one of linear_ sys nonlinear_sys quasilinear_sys bilinear_ sys

>lin

You are on the following node of the tree:

the expert_class is kR ctr_sys des_alg *#*

and the problem class is *** linear sys #**

Would you like to continue on this limb of the tree?

Enter one of yes no

>y

hkkhkdkkhdhkhkkhdkhkhbhhhhhkhhdhhhkikk

* START OF THE LINEAR SYSTEMS *

* » EXPERT *
hhkhkhhkhkkhkhkhkhhkhhkkihkhkhhthhkhkhkikhkkhk

What kind of parameters your system has ?
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Enter one of distributed lumped

>lum

What class of systems would you like to select ?
Enter one of continuous discrete

’con

What type of system are you dealing with ?
Enter one of deterministic stochastic

>det

You are on the following node of the tree:

the expert class is *** ctr_sys_des_alg ***
the problem class is  *** linear sys ¥x

the parameter type is *** lumped #**

the system class is **x% continuous ***

and the system _type is *** deterministic ***

Would you like to continue on this limb of the tree?
Enter one of yes no

>y .

hkdkhkkhhhhkhhhhbhhkhkhkkhbhdkhkhr bk

* START OF DETERMINISTIC3 *

* EXPERT *
AhkkhhkRhhhdkkkhhkdkhrdhdkkkkkhkhkdkkk

What kind of problem has to be solved?

Enter one of realization modelling and simulation control laws
identification descentralization theoretic_proofs performance_analysis
>contr

What kind of design are you faced with?
Enter one of optimal control feedback decoupling

>feed

What method do you intend to use?
Enter one of input output state_ space

>state_space



You are on the following node of the tree:

the expert_class is *** ctr_sys des_alg #***
the problem class is *** linear sys *x#*

the parameter type is k% Jumped *k*

the system class is *** continuous **%*

the system type is ***+ deterministic ***
the problem_to_be_solved is *** control laws *%%
the kind of design is **x%x feedback ***

and the method_to_be_used  *#*x state_space #*#**

Would you like to continue on this limb of the tree?
Enter one of yes no

>y

khkdkkhkhhhhddhdhkdhkhkhhkhhhhhkih

* START OF STATE SPACE *

* EXPERT *
khkhkkhhkdkkhkhdhkkhkkhhhhkhkhhkhk

What kind of state space problem has to be solved?

Enter one of state_feedback output feedback canonical_ forms

property analysis

>state_feed

You are on the following node of the tree:

the expert class is *kk cbtr sys des alg ***
the problem class is *%% linear Sys *%*

the parameter type is k%% Jumped ***

the system class is ***x continuous ***

the system type is *** deterministic **%
the problem to be soclved is *** control laws #*#%+
the kind of design is **x* feedback #x»

the method_to_be_ used *** state_space **%
kind of feedback *** state_feedback *%

Would you like to continue on this limb of the tree?
Enter one of yes no

Y
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P I I T sy
* START OF STATE SPACE FEEDBACK *

*

EXPERT *

IS E AR ERSEEREERSESERRERRRRRRS SRS E

LR N
* ok k
* kX

* ok k
LA

* &k

*kh
*kkk
LA R
*h %k
*kk
ok ok
*hk

LA R
* k%

% % %

* %k
* % Kk
* k%
* %k
LR 2

* k%
* %k
% % %
* k%
* k&
* % %
LA &

* %k
* kK
L &
* ok ok
* % %
L2 &
% % %
* ok k
* ok

The STATE SPACE FEEDBACK EXPERT is ***
able to solve the following kind of **x*

probhlem: *kk
GIVEN a linear time invariant system*x*
described by the ecuation: *kk
dx/dt = Ax + Bu ok k

A is ————- >a n xn matrix called #*»x
the state space matrix *#%=*

B is —we—o >a mxn matrix called ***
the input matrix * k%

X i§ =meee > the n x 1 state space #**%*
vector * %%k

u is —-——rm > the m x 1 1input vector**x
IT IS REQUIRED to design a feedback *#*=*
upon the state space variable x * k&
u = Hx + Gv, where: ik ok

v is ————- > the m x 1 reference *okk
, variable Fokk

G i§ ~———- >agiven m x m matrix kx%
His ———— > the desired mx n kK
feedback matrix. ke

This problem is solved by STATE ok
SPACE FEEDBACK expert and its 14 * k%
children using the declarative *k
knowledge embedded in their knowledge**
bases along whith the procedural *kk

knowledge embedded into a specilized **
FORTRAN library called CONTPACK. *k ok

TO THE USER: 1. Any real number given*
to this expert MUST **

BE followed by E to **

the desired power. ***

Ex.: 7.8E0, or 45.76e-3, or 0.9e5 .. *x*x%
2. The maximum format **#*

for real number * kK

accepted by the * %k

FORTRAN task is Fl4.4+*
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Ready to proceed ?
Enter one of yes no

>y

What is the STATE SPACE VECTOR DIMENSION ?
Enter a value between 1 and 20

>2

What is the INPUT VECTOR DIMENSION ?
Enter a value between 1 and 20

52

What is the STATE SPACE MATRIX ?
Enter an expression that matches [Vi|v2]

.>[[9.6e0,-5.7e0],[-0.9e0,-23.7e0]].

What is the INPUT MATRIX ?
Enter an expression that matches (vijv2]

->[[-0.32e0,-98.6€0],(6.0e0,2.8e0]].

What is the CALCULATION PRECISION for TASK1 ?
{1.0E-5}

.>d.

hkhkkhkhkhkhdbkhhkhkhhhdhhkhkxhd

* START OF TASK1 MGR *

* EXPERT *
% ke de ok vk o e o ke ok ok e ok ok ok ok ke

*** This expert has an intimate knowledge about **x

*%** TASK1.FOR. It knows how to: kkk
* k% - prepare the input data for the task *#x*
*hdk ~ create an input data file for the task*
* ok ~ activate the task as a logical function
* %k - load the output data from the task *#**
kk ok ~ display this data to the user and * ok
*kk - send this data to the parent expert.**#*

*kk Loading‘INPUT FILE for TASK1.FOR **x
*** TASK1.INPUT file loaded !1! w%xx

**% Activating TASKL.FOR #**x%
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LR 8
d ok
L
k&
k& k
* kA

The procedural knowledge embedded in thig **
FORTRAN task is based on the paper : bl
DIRECT COMPUTATION OF CANONICAL FORMS FOR***
LINEAR SYSTEMS BY ELEMENTARY MATRIX * %k
OPERATIONS. IEEE Trans.,AC-19, April ,1974%%+
pPp-124-126, by I.D.APLEVICH *k ok

***TASK1 EXECUTED***

LE 8

LER

* bk

*h*k

Wk k

* % ok

*k &

LE B

Loading OUTPUT FILE from TASK1 **x*

TASK1 .QUTPUT file loaded !!! ##*«x
THE OUTPUT DATA FROM TASKl IS : S, IR, ICON #*#%%

§ is  ———ao > a matrix cﬁntaining the echellon*#**
form of the composed matrix {B,A).*

The value of § is ————- > [(6.0E0,0,0,0],{0,0,0,0])

Controllable matrix rank,IR i§ ———comeeq > 2

Controllable index,ICON i§ ~————mmmee > 2

A e T Y
* START OF THE ANALYST1 *

w

EXPERT *

PRk hk Ak hk Ak A AN Ak kA hkhk®

* ok ok

ok k
Wk

* k&
LA &
* % X

* & %
LR X

Analyzing output data from TASK1.FOR *##

TASKL1.FOR —w—ewe > computation correctly * Kk
completed. *kk
THE MULTIVARIABLE SYSTEM IS CONTROLLABLE., *%%
Therefore a 2 * 2 feedback matrix (B) * ko
could be found. koK

The STATE SPACE FEEDBACK DESIGN procedure***
for MULTIVARIABLE SYSTEMS will follow. * Rk

Would you like to proceed ?
Enter one of yes no

>y
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Do you want the SCALLING of matrix A,yes=1 ?
Enter one of 1 2

>1

What is the CALCULATION PRECISION for TASK2 ?
{5.0E-7}

.>d.

khkdkdkkdhhhkhkhkdhhhARhrkhkkihkh®

*
*

START OF TASKZ MGR *

EXPERT *

LR R L E T T TR LT R ey

* k%
* %k %
k%
*k %
%% &
k%%
* %k

% %%
k&

*k %k
*k Kk
%k k

* ok Xk

kk

* k%

* ko

kkk

&k

* %k %
* k%

This expert has an intimate knowledge about *
TASK2.FOR. It knows how to:

* %
¥ % %k

- create an input data file for the task**
- activate the task as a logical function*

— load the output data from the task
- display this data to the user and
- send this data to the parent expert.

THE SYSTEM EIGENVALUES WILL BE CALCULATED **x
BY TASK2.FOR

METHOD —-> The original matrix is reduced *#w
to the upper HESSENBERG form  *%*
and then the QR method is applied*

Loading INPUT FILE for TASK2.FOR ##*%

TASK2.INPUT file loaded 1!1! ##%x

Activating TASK2.FOR *xx

The procedural knowledge embedded in tiiis **
FORTRAN task is based on the paper : Yok
MATRIX EIGENSYSTEM ROUTINES-EISPACK GUIDE*#*%
LECTURE NOTES IN COMPUTER SCIENCE, Nr.6, #*%#*
1974, Springen Verlag, by SMITH et. *k ok

***TASK2 EXECUTED* * *

*kk

*k*

Loading OUTPUT FILE from TASK2.FOR *#*%

TASK2.0UTPUT file loaded !1! *#x%

* %k
%k
*kk

LE %
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LE &
LE B

k&
*ok &
* ok ok
* k%
* %k
* %k
ok ok

A2

* kX

THE OUTPUT DATA FROM TASK2 IS : *%%

VALR, VALI, IER * kX
The VALR is ----> a vector with 2 element(s) #**x
containing the REAL part *xk
of the EIGENVALUES *ohk
The value of VALR is ——e——o > [0,9.6E0]
The VALI ig§ ————— > a vector with 2 element(s) #***

containing the IMAGINARY *#*%*
part of the EIGENVALUES **#*

The value of VALI i§ —————n >{0,0]

The error index, IER i§ —w————v > 0 **xx*

Kok ddhkkkodkk ok ok ok ok ok ok ok ok ok
* START OF THE ANALYST2 *

*

EXPERT *

khkkkkAhhhhkhkkhAh ke kkkhkkk

*kk

*kk

* k%
* %ok
* k%
LR R

* W &
LA

*kk
¥k &

* ok %
%ok ok
k% ok

* k%
L2
*kk

* k%
ok ok
LA

Analyzing output data from TASK2.FOR #%*

TASK2 ---> computation correctly completed, **x*

The eigenvalues are not ordered; the complex***
conjugated eigenvalues are typed *kk
consecutively. The one with the positive *k ok
imaginary being the first. Rk

THE DESIRED NEW EIGENVALUES WILI, BE *+#
AUTOMATICALLY GENERATED BY TASK3.FOR*#**

THE USER MUST IMPOSE THE FOLLOWING *#*#
PARAMETERS : XMIN,XMAX, YMIN, YMAX,P %%

XMIN is = > the lower limit of **x
' the REAL part of  %*%
the eigenvalues. *kok

XMAX i§ ——=—ueo > the upper limit of *#x*
the REAL part of % %
the eigenvalues. Ty

YMIN i§ —w—ee—a > the lower limit of ##+ =
. the IMAGINARY part #** !
of the eigenvalues,***
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* % %
% & ¥
* k&

* k%
* %k %
* k%
* k%
* kK
& %k %k

YMAX is

What is the

.>=9_8el,

What is the

.>=0.1e0.

What is the

->*1-OEOQ

What is the

.>1.

0el.

What is the

.>0.

0el.

_______ > the upper limit of *#x
the IMAGINARY part *#=
of the eigenvalues.*#%

——————— > a real subunitary #**=
number specifying *%x
the percentage of ##**
complex eigenvaluesxx»
of the total number***
of eigenvalues. kkk

LOWER LIMIT OF REAL PART of the eigenvalues ?
UPPER LIMIT OF REAL PART of the eigenvalues ?
LOWER LIMIT OF IMAG. PART of the eigenvalues ?

UPPER LIMIT OF IMAG. PART of the eigenvalues ?

PERCENTAGE OF COMPLEX EIGENVALUES ?

kkhkkhkhhhhhkhkhkhhhkhkhrkik

*
*

EXP

START OF TASK3 MGR *

ERT *

kkkkhhkkhkhhkrhhkhhkhhkhkkd

* ok &k
* %k
* k%
* % %
¥k k
k&
* %k

% % %k

% k&

* %%

This exp
TASK3.FO

Loading

ert has an intimate knowledge about *#*#
R. It knows how to: *k ok
create an input data file for the task*
activate the task as a logical function
load the output data from the task **+
display this data to the user and *okek
send this data to the parent expert.***

INPUT FILE for TASK3.FOR **%*

TASK3.INPUT file loaded !1! &%

Activati

ng TASK3 **%

***TASK3 EXECUTED#***



*** Loading OUTPUT FILE from TASK3.FOR **#*

*** TASK3.OUTPUT file loaded 11! **x%

* f X

* ok ok
* &k

* k&

THE OQUTPUT DATA FROM TASK3 IS : R *k ok

R is -——u-— >

the desired new eigenvalue vector **%
of the closed loop system. * k&

The value of R is —————m= >[(-9.6872E0,0],{-9.6872E0,01]

AhkhkhkhhkAkhkhkhkhkkhhhkhhktdkhkhkk
* START OF THE ANALYST3 *

%

EXPERT

*

LR RS R R LT ETEEEET T TFETE P

LE 2

LA R

* Kk %k
* ok ok
ok k
LA 2
* ok k

* kK
*kk
L 5
* k&
* ok

L2 2
* k%
% % ok
* k%

* k&
* k%
L2 3
L2 X
L2 2
* %%k
LA 2]

Analyzing output data from TASK3.FOR ***

TASK3 ---> computation correctly completed. ***

THE FEEDBACK MATRIX (H) WILL BE **%
CALCULATED BY TASK4.FOR IF THE &%
SYSTEM IS MONOVARIABLE and BY ek

TASK6.FOR or

TASK7.FOR IF THE * k&

SYSTEM IS MULTIVARIABLE. *kk

MATRIX (H)---

METHOD —=-->

TECHNIQUE --»

LE 2

k&
* %k
LE 2

METHODS ----3

—--> allocates the *x*=x
poles (R) to ok %k
the complete &k %
controllable %ok %
system (A,B)., *%%

The state space ¥ ok
matrix (A) is L2
reduced to JORDAN *%+#
DIAGONAL FORM. * ¥ %

The multivariable #*%
system is reduced #*x*
to a monovariable **x
one. Further the ##%*
monovariable system**
is reduced to the **#
JORDAN DIAGONAL *kk
FORM using one of #%x
two methodes : LA
JORDAN DIAGONAL hkk
FORM Or WOLOVICH. *%%
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What METHOD would you like to use ?
Enter one of jordan wolovich

>jordan

What is the CALCULATION PRECISION for TASK6 ?
{1.0E-6}

.>d.

khhkkkkhkkhhhhkhkhhhhohhhhkkk

* START OF TASK6 MGR *

* EXPERT *
Ekkhkkhhhikhkhkhkkhdkhhhkkkhk

*** This expert has an intimate knowledge about ***

*%* TASK6.FOR. It knows how to: * k%
Fkk — create an input data file for the taskx*
k% —- activate the task as a logical function
* k& ~ load the output data from the task #*%*
kokok — display this data to the user and +***
*okk — send this data to the parent expert.**#

*kx Loading INPUT FILE for TASK6.FQR **%

**% TASK6.INPUT file loaded 11! **#

***% pActivating TASKG6.FOR *%+*

*** The procedural knowledge embedded in this **
**% FORTRAN task is based on : MODAL CONTROL **%
**% THEQRY AND APPLICATIONS, Taylor and *k ok
*** Francis, London,. 1972, by POTER, CROSSLEY**x
***TASKG_EXECUTED***

*** Loading OUTPUT FILE from TASKS6.FOR

**% TASK6.OUTPUT file loaded !!! %%
*** THE OUTPUT DATA FROM TASK6 IS : H, IER, W1 *+#*

kkk H 1§ ——m—en > the feedback matrix * k%

*** The value of H is —————n > [[-1.211554E2,0],(-1.031553E2,0]] | F

P

kkk Wl ig ~———m > the closed loop system matrix *%%x [

*** The value of Wl is —ww—o > [[-2.91697E1,0],(7.260323E2,0)]
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kkk JER i§ ———m=m > the error index of TASKG *okk

**#+ The value of IER is —-————— > 0

Ahhkkdkhkhhkhhkhodhhhhohkkhthkhkdhk

* START OF THE ANALYST6 *

* EXPERT *
hkhdkkhhdkdhkhkhhhakhkdhddkndk

*** Analyzing output data from TASK6.FOR **%
*** TASK6 ---> computation correctly completed. ##%x

*** The NEW EIGENVALUES will be calculated #**
*** following the previously used procedure***
*** by activating TASK2.FOR with matrix Wl #*x
*** gbtained from :TASK4.FOR for monovariable*
*** systems or TASK6.FOR or TASK7.FOR for *+x
*** multivariable systems, instead of *kk
*** state space matrix A given by the user ***
*** at the begining of this design session.#**x

Would you like to know the NEW EIGENVALUES of the system ?

Enter one of yes no

>y

************************

* START OF TASK2 MGR *

* EXPERT *
khkkkhkdkhkhkhhkhhkkhbhrhkthhkkkk

*** This expert has an intimate knowledge about *%+

*** TASK2.FOR. It knows how to: k%
% - create an input data file for the task**
LA - activate the task as a logical function*
*ok ok - load the output data from the task * ko
k& - display this data to the user and * kK
ok ~- send this data to the parent expert. ***

*%** THE SYSTEM EIGENVALUES WILL BE CALCULATED ##%

**% BY TASK2,FOR *
*** METHOD --> The original matrix is reduced **%
* ko to the upper HESSENBERG form  *#*#
ok ok and then the QR method is applied*
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* k&

* k&

* k%

* k%
* k%
*k%
* % %k
*kk

Loading new INPUT FILE for TASK2.FOR #*x*
TASK2.INPUT file loaded !1! ##*x%

Activating TASK2.PQOR *#*

The procedural knowledge embedded in this #**
FORTRAN task is based on the paper : * ok
MATRIX EIGENSYSTEM ROUTINES-EISPACK GUIDE***
LECTURE NOTES IN COMPUTER SCIENCE, Nr.6, *xx
1974, Springer Verlang, by SMITH et. *kk

***TASK2_EXECUTED***

% % %

ok ok

*k*

k%

% k%

* %k

% %k %

* %%

* %k

*k%x

%%k

* k&

* % ¥

Loading OUTPUT FILE from TASKZ2.FOR #**

TASRK2.0UTPUT file loaded !1t #*xx

THE OUTPUT DATA FROM TASK2 IS : #®%*

VALR, VALI, IER * k%
The VALR is ----> a vector with 2 element(s) ***
containing the REAL parts dekk
of the EIGENVALUES *kk
The value of VALR is —————- > [0,-2.917E0]
The VALI ig ———v- > a vector with 2 element(s) **xx*

containing the IMAGINARY #%%
parts of the EIGENVALUES #***

The value of VALI is ——~——o >[0,01

The error index, IER ig§ ———e——n > 0 *k%

Fed e s e ok e ok ok ok e ook ok ok ok ek ke
* START OF THE ANALYST2 *

*

EXPERT *

khhhhkhkhhhdkhhhhhhhhhhhhhkkk

* %k &

*kk

*dk
Tk
%* % %
* k%

Analyzing output data from TASK2.FQR *%+*

TASK2 ---> computation correctly completed. **x
The eigenvalues are not ordered; the complex#**
conjugated eigenvalues are typed * ok
consecutively. The one with the positive kkk
imaginary being the first. ©okkdk
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Would you like to change the FINAL SYSTEM EIGANVALUES ?
Enter one of yes no

>y

What is the LOWER LIMIT OF REAL PART of the eigenvalues ?
.>=2.3e0.

What is the UPPER LIMIT OF REAL PART of the eigenvalues ?
.>-0.7€0. “

What is the LOWER LIMIT OF IMAG. PART of the eigenvalues ?
.>-0.8e0,

What is the UPPER LIMIT OF IMAG. PART of the eigenvalues ?
.>1.5e0,

What is the PERCENTAGE OF COMPLEX EIGENVALUES ?

.>0.0e0.

Tk ok ok e o v o ke ok ok ek ok sk ok e ok

* START OF TASK3 MGR +*

* EXPERT *
************************

*** This expert has an intimate knowledge about #%%%

***x TASK3.FOR. It knows how to: bl
*ok ok ~ create an input data file for the task*
k& - activate the task as a logical function
"ok ok - load the output data from the task *#*
bk - display this data to the user and  **+
*kk - send this data to the parent expert.*wx

*** Loading INPUT FILE for TASK3.FOR **%
*** TASK3.INPUT file loaded !1! %%

*** Activating TASK3 *x*%*
***TASKB_EXECUTEb***

*** Loading OUTPUT FILE from TASK3.FOR *++

*** TASK3.OUTPUT file loaded 111 #*#x%
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* %k THE OUTPUT DATA FROM TASK3 IS : R kkk

*k% R i§ ——e—uo > the desired new eigenvalue vector *#x
* k& of the closed loop systenm. ok k
*** The value of R i§ ——————v >[[—2.281430,0],[—2.2814E0,0]]

hhkkkhkhkhkhkkhhhhkhhhhhikhdkik

* START OF THE ANALYST3 *

* EXPERT *
kkhkdkkkkhhhhkhkkhhhwhkdhk

*** Analyzing output data from TASK3.FOR *#+
*** TASK3 ---> computation correctly completed. **x*

**% THE ' _EDBACK MATRIX (H) WILL BE *%%
*%%* CALCULATED BY TASK4.FOR IF THE *#%%
*%* SYSTEM IS MONOVARIABLE and BY Fokk
*%% TASK6.FOR or TASK7.FOR IF THE ¥k ok

*k* SYSTEM IS MULTIVARIABLE. kkk
***k MATRIX (H)--——-> allocates the **=x
*okok poles (R) to  **x
*k ok the complete * k%
* % % controllable LA
*h i system (A,B). **%x*
*** METHOD ----> The state space *k
* k% matrix (A) is ke k
* ik reduced to JORDAN *#*x
& ek DIAGONAL FORM. %k %
k%% TECHNIQUE --> The multivariable *#=*
*kk system is reduced **x
* kK to a monovariable #*%x*
* ok ok one. Further the *#*
LEA monovariable system*#
* % ok is reduced to the ***
* %k JORDAN DIAGONAL * k%
hkk FORM using one of **%*
* %% two methodes : * &k
*%% METHODS -=-—=> JORDAN DIAGONAL *x ok
k& ok FORM or WOLOVICH., **%

What METHOD would you like to use ?
Enter one of jordan wolovich

>wolovich
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LA S SR AR SR EREEEESERETESYES

*
*

START OF TASK7 MGR *

EXPERT *

kkhdhhhhhhhhhhdehhkhhhhkhkik

* ok k
L
* k&
* k&
* ok ok
* k&
* &k
*kk

* &k

% % %

LA R 4

* %k

*k*

* k&

* &k

%k k

khh

LA & ]

%* k&

* k&

ok &

* &k

* % &

* ok Rk

LA 3]

This expert has an intimate knowledge about ***
TASK7.FOR. It knows how to: * k%
- create an input data file for the task*
- activate the task as a logical function
- load the output data from the task **x%
- display this data to the user and  *#*x
- send this data to the parent expert.*#=

Loading INPUT FILE for TASK7.FOR **x

TASK7.INPUT file loaded 11! **xx
Activating TASK7.FOR #**%*

The procedural knowledge embedded in this **

FORTRAN task is based on : LINEAR %k ok
MULTIVARIABLE SYSTEMS, Springer Verlang, *#**
New York/1974, by WOLOVICH W.A. dk ok

Loading OUTPUT FILE from TASK7.FOR *%#

TASK7.0UTPUT file loaded !1!! *xx

THE OUTPUT DATA FROM TASK7 IS : H; KR, IER, W1 **x%

His ~———- > the feedback matrix ko
The value of H i§ ————en > [[0,0]),(0,0])

KR is —weeee > controllable matrix rank #**#*

The value of KR is ——————— > 2

iER is ———ee——o > error. index of TASK7 * k&
The value of IER i§ —————v > 1

Wl is ——weee > the closed loop matrix * %k

The value of Wl ig ————uc > [[~-3.272E-1,0],[-3.125E0,0]
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*************************

* START OF THE ANALYST7 =*

* EXPERT *
Thkkhkkhhhkkhkhkrhkhhkhddx

*** Analyzing output data from TASK7.FOR *#*%*

*** TASK7.FOR ---> computation incorrectly completed.*#x

*** The matrix B is no: of MAXIMAL RANK. %% %

Would you like to TRY AGAIN with another system (A,B) ?
Enter one of yes no ‘

>y
* %k Please DO NOT PANIC !!f, %%

*** I am preparing the blackboard *%*
*** for the next design session. #**%*
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TEST 2

Ready to proceed 2
Enter one of yes no

?y

What is the STATE SPACE VECTOR DIMENSION ?
Enter a value between 1 and 20

>4

What is the INPUT VECTOR DIMENSION ?
Enter a value between 1 and 20

»2

-

What is the STATE SPACE MATRIX ?
Enter an expression that matches {vijv2]

.>[[0.0e0,1.0e0,0.0e0,0.0e0],[3.090,0.090,0.0e0,2.0e0],
[0.0&0,0.090,0.0e0,l.0e0],[0.UEO,—Z.Oe0,0.0e0,0.0EO]].

What is the INPUT MATRIX ?
Enter an expression that matches {vi|v2]

.>[[0.0e0,0.0e0],[1.0e0;0.0e0],[0.0e0,0.0eO],[0.0e0,1.0e0]].

************************

*
*

START OF TASK1 MGR *

EXPERT *

************************

LR 2]

* ok

* ko
* &k
& & %
L 2
* &
LE 2]

%ok &

LR

LR &

This expert has an intimate knowledge about ***
TASK1.FOR. It knows ‘how to: *kk
- Prepare the input data for the task **%*
- create an input data file for the task*
- activate the task as a logical function
- load the output data from the task #*=
- display this data to the user and *kk
= send this data to the parent expert.*¥*

Loading INPUT FILE for TASK1.FOR ##+
TASK1.INPUT file loaded !!1 %=

Activating TASK1.FOR *x#
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*** The procedural knowledge embedded in this *=*
*** FORTRAN task is based on the paper : *kk
*** DIRECT COMPUTATION OF CANONICAL FORMS FOR***
*** LINEAR SYSTEMS BY ELEMENTARY MATRIX * k&
*** OPERATIONS. IEEE Trans.,AC-19, April , 1974 **x*
**% pp.124-126, by I.D.APLEVICH * %

***TASK1 EXECUTED***

*** Loading OUTPUT FILE from TASK1l *%%*

k%% TASK1.OUTPUT file loaded !1!! ***

*** THE OUTPUT DATA FROM TASK1l IS : S, IR, ICON %#*%

k*k% § ij§ ————m > a matrix containing the echellon***

*kk form of the composed matrix (B,A).*

**% The value of § is ————- > [{l.0EO0,0,0,0,0,0}),([0,0,0,0,0,0],([0,0,0,0,0,0),([0,0
IOI’OIOPOI]

*** Controllable matrix rank,IR is ——————a-- > 1

*%% Controllable index,ICON i§ —————mueo > 1

hhkkhkhkkhkkhkhkhbkdkhhhhhkhkhhkhkk

* START OF THE ANALYST1 *

* EXPERT *
hkkkkkkkhhk A kAR RKhAR R A hA*

*** Analyzing output data from TASK1.FOR #***
k%% TASK1.FOR —---> computation correctly *%x*
*kk completed. ok ok
**% THE MULTIVARIABLE SYSTEM IS NOT *%%
**%* COMPLETE CONTROLLABLE. Perhaps *%*%*
***% jt could be stabilizable. dek K

Would you like to check the stability ?
Enter one of yes no

>y

What is the ITERRATION NUMBER for TASKS ?
Enter one of 30 50

>30

108



AAhkddhhhhhhhhkdhhhkhhhkihhkhk

* START OF TASKS MGR *
* EXPERT *

LRSS EREEREERSELEEESEEEE R

**+# This expert has an intimate knowledge about **=*

*** TASK5.FOR. It knows how to: Rk
* ok ~ create an input data file for the task*
*okk - activate the task as a logical function
*kk - load the output data from the task *x*
*ok - display this data to the user and * ok
ko - send this data to the parent expert.*#*x

*** THE METHOD FOR DETERMINING THE STABILITY *%*

* kA OF THE SYSTEM (A,B) FOLLOWS: * &k
**%x METHOD ————- > This method is based on the**x*
* ok k SIGN MATRIX of matrix A. *kk
* k& The matrix A is reduced to **%
ek ok the JORDAN FORM and the *kk
* ok stability of the ok
k& uncontrollable part is kkk
*k ok tested. This job is hkk
*h ok performed by TASKS. ok %k

** Loading INPUT FILE for TASKS5.FOR *x#

*

*** TASKS5.INPUT file loaded !!! **x
k*x Activating TASKS.FOR #*#*%*

*** The procedural knowledge embedded in this **

*** FORTRAN task is based on the paper : *kk
**%* DECOMPOSITION AND REDUCTION OF LINEAR *F ok
***% SYSTEMS BY THE MATRIX SING FUNCTION. *dk

*** Revue Roumaine des Sciences Techniques, #*x*
*** Serie EE, Vol.2l, Nr.4/1976, by C. POPEEA***
*** and L.LUPAS. . * k%
***TASKS_EXECUTED***

*** Loading OUTPUT FILE from TASKS.FOR **#

*** TASKS.OUTPUT file loaded 111 ##%%.
*** THE OUTPUT DATA FROM TASKS IS : W2, IER %%

kW2 j5 ——meeeo > a matrix containing the * ok
LA independent rows of the * k&
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* %k transposed contrllable #x**

*kok matrix. * % &

*** The value of W2 is —~e-—o > [[0,0,0,0],[0,0,0,0],[0,0,0,01,[0,0'0'0]’[0'0'0'0
1]

*** IER is ----> the error index of TASKS ok

***% The value 0f IER ig ————-u—— > 2

khhhhhkhkhAhhkrthhhhhhhhkhrx

* START OF THE ANALYSTS *

* EXPERT *
hhhkhhkhkhkkkhkhhkhhdhhhkhk

*** Analyzing output data from TASKS.FOR *#+

*** TASKS --> computation incorrectly completed#**

**% The METHOD used could not be completed, e ek
*** because the sign matrix SIGN(A) cannot be ##%
*** evaluated. ki

Would you like to TRY AGAIN with another system {A,B) ?
Enter one of yes no

>y

***  Please DO NOT PANIC !1!.  ##
*** I am preparing the blackboard *x*
*** for the next design session. *&x

10



TEST 3

Ready to proceed ?
Enter one of yes no

>y

What is the STATE SPACE VECTOR DIMENSION ?
Enter a value between 1 and 20

>2

What is the INPUT VECTOR DIMENSION ?
Enter a value between 1 and 20

>1

What is the STATE SPACE MATRIX ?
Enter an expression that matches [V1|V2]

.>[[~5.0e0,0.7e0],[2.6e0,-0.2e0]].

What is the INPUT MATRIX ?
Enter an expression that matches [V1|Vv2]

.>{[-1.8e0]),[4.3e0]].

*i**********************

* START OF TASKl MGR *
* EXPERT *
khdkhhkhkhhkbrhhhhdhhbhhhkin

*** This expert has an intimate knowledge about #***

*#** TASK1.FOR. It knows how to: kK
ko - prepare the input data for the task **x
* ok ok - create an input data file for the task*
Rk - activate the task as a logical function
* ko - load the output data from the task #%*
* ok e - display this data to the user and ok
kokk - send this data to the parent expert.***

*** Loading INPUT FILE for TASKl.FOR *#*
**%% TASKL.INPUT file loaded !1!! %%

*** Activating TASK1.FQR #+%*

*k*x The proceddral knowledge embedded in this **
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*** FORTRAN task is based on the paper : * &k
*%%* DIRECT COMPUTATION OF CANONICAL FORMS FOR*#**

**% LINEAR SYSTEMS BY ELEMENTARY MATRIX ¥ Xk
*** OPERATIONS. IEEE Trans.,AC-19, April,1974%%x
**% pp.124-126, by I.D.APLEVICH ok

***TASK1_EXECUTED***

*** Loading OUTPUT FILE from TASK1 #x*

**% TASK1.OUTPUT file loaded !!1 #%x

*** THE OQUTPUT DATA FROM TASK1 IS : S, IR, ICON **x

*%% § i§ --——=> a matrix containing the echellon**x
*kk form of the composed matrix (B,A).*

*%** The value of § ig ————m > [[4.3E0,0,0],[0,0,0]]
*** Controllable matrix rank,IR is ————————w > 2

*** Controllable index,ICON is ————m—mmeu > 2

hhkkdkhkdkhhhhhhkhhkkhkrhkhkhhkhn

* START OF THE ANALYST1 *

* EXPERT *
*hhkhkhkhhhdhdkhhhhahkkkhhdk

*** Analyzing output data from TASK1.FOR *##*

*%% TASKL,FOR —————=> computation correctly *#**
* %k completed . kkx
*%* THE MONOVARIABLE SYSTEM IS CONTROLLABLE., **=*
*** Therefore a 1 * 2 feedback matrix (H) ok &
*k ok could be found . k&

*** The STATE SPACE FEEDBACK DESIGN procedure *
*%* for MONOVARIABLE SYSTEMS will follow. ek

Would you like to proceed ?
Enter one of yes no .

>V .
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Do you want the SCALLING of matrix A,yes=1 ?
Enter one of 1 2

>1

Ahdkhkkhkhkhhhkhhhhkhhkhhkhkhkih

*
*

START OF TASK2 MGR- *

EXPERT *

khkdhkhhhkdkhkhkhhhhhhhkkhkhkdhk

* &k %k
* %%k
* %k
LA 2
¥ % &k
*kk
ko

* % %k
* kK

& ¥ ok
% %k
% % &

* % &

* &k

* ok %k

LE. 3

LR R

LR

* & %
* k&

This expert has an intimate knowledge about *#*+*
TASKZ2.FOR. It knows how to: *kk
- create an input data file for the task#**
activate the task as a logical function*
load the output data from the task kdk
- display this data to the user and *kk
send this data to the parent expert. ***

THE SYSTEM EIGENVALUES WILL BE CALCULATED #**x%
BY TASK2.FOR *k ¥

METHOD --> The original mntrix is reduced *x#*
to the upper HESSENBERG form kK
and then the QR method is applied*

Loading INPUT FILE for TASK2.FOR #%*
TASK2.INPUT file loaded !!! **x

Activating TASK2.FQR *#%*

The procedural knowledge embedded in thisg **
FORTRAN task is based on the paper : kkk
MATRIX EIGENSYSTEM ROUTINES-EISPACK GUIDE***

LECTURE NOTES IN COMPUTER SCIENCE, Nr.6, **%
1974, Springen Verlag, by SMITH et. *ok ok

***TASK2 EXECUTED***

* % ok

%k &k

LA 2
* ok

* k%
* k%
LE X3

Loading OUTPUT FILE from TASK2.FOR *%%

TASK2.0UTPUT file loaded !1! *%%

THE OUTPUT DATA FROM TASK2 IS : #%%

VALR, VALI, IER * % ok
The VALR is ----> a vector with 2 element(s) **=*
containing the REAL parts *kk

of the EIGENVALUES *k &
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% ok &

* k%

*kk

* ke Kk

* %k

*k ok

The value of VALR is —————= > [0,-5.0E0]

The VALI is ——~—-- > a vector with 2 element{s) #**x*
containing the IMAGINARY #%*
parts of the EIGENVALUES #*%#*

The value of VALI is ——=——u— >[0,0]

The error index, IER is ———— > 0 *%x%

hkkkkhkkkkhkhkhhkrhkhkhkhhkx
* START OF THE ANALYSTZ2 *

*

EXPERT *

hhkhkhkkkhkhkhkhkhkhhkhhkhhkdhkhkhhik

k%

*hk

* k%
* %k
¥k K
* %%

% %k
*kk

*kk
LE k]

* kX
* &%k
¥ %k Kk

* k&
* k%
* k%

* k%
% %k %
* k%

k%
* k%
* % %

* kK
* % %
%* % %
*kk
LT ¥
* & %

Analyzing output data from TASK2.FOR **%

TASK2 ---> computation correctly completed. **%

The eigenvalues are not ordered; the complex**x
conjugated eigenvalues are typed * Aok
consecutively. The one with the positive *kok
imaginary being the first. * kK

THE DESIRED NEW EIGENVALUES WILL BE #*%%
AUTOMATICALLY GENERATED BY TASK3.FOR***

THE USER MUST IMPOSE THE FOLLOWING *%%
PARAMETERS : XMIN,XMAX,YMIN,YMAX,P %%

XMIN is ——————nm > the lower limit of *#*x
the REAL part of %k %
the eigenvalues. *k ok

XMAX i§ ——mmeee > the upper limit of ***
the REAL part of *kk
the eigenvalues. * k&

YMIN i§ —————e—m > the lower limit of *#x
the IMAGINARY part ##%
of the eigenvalues.***

YMAX i§ ——————v > the upper limit of **»
the IMAGINARY part #x*
of the eigenvalues,**x*

Pis == > & real subunitary +*+*+
number specifying *#*
the percentage of #**%
complex eigenvalues***
of the total numberx#x
of eigenvalues. LA
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What
>3

What

.>=0.

What

=2,

What
2.
What

.20,

is the
.0e0.
is the
5e0.
is the
0e0.
is the
Oel.

is the

0el.

LOWER LIMIT OF REAL PART of the eigenvalues ?
UPPER LIMIT OF REAL PART of the eigenvalues ?
LOWER LIMIT OF IMAG. PART of the eigenvalues ?
UPPER LIMIT OF IMAG. PART of the eigenvalues ?

PERCENTAGE OF COMPLEX EIGENVALUES ?

hhkhhdkhhdkhhhhkhhhdhhhhdn
* START OF TASK3 MGR *

*

EXP

ERT *

hhhdhhkhhh ke hd ko kb hhn

ok k
* % &
* k&
LA B
* ok ok
* % %
%k &

*kk

This exp
TASK3.FO

Loading

ert has an intimate knowledge about *#*%
R. It knows how to: k%
create an input data file for the task*
activate the task as a logical function
load the output data from the task *+%
display this data to the user and  **=
send this data to the parent expert.#**

INPUT FILE for TASK3.FOR *#%%

*** TASK3.INPUT file loaded !1!! *%x

***x Activating TASK3 #***

***TASK3_EXECUTED***

*** Loading OUTPUT FILE from TASK3.FOR **%*

LA 2

* k%

LR B
* %k

* ok &

TASK3.0U

TH

R is ——-

The valu

TPUT file loaded !11 #%x*

E OUTPUT DATA FROM TASK3 IS : R k&%

~-=> the desired new eigenvalue vector #*#
of the closed loop system. *dk

e 0f R is ————u-- >[[-2.9709E0,01,[-2.9709E0,0] ]
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hhhkkkkhkhhkhhhhhhhhhhkhakknh

* BTART OF THE ANALYST3 *

* EXPERT *
Ahkhhhkhkhkhdhhhhkhhhhkhhhkhhx

**%* Analyzing output data from TASK3.FOR %%

*** TASK3 ---> computation correctly completed. ##%

**% THE FEEDBACK MATRIX (H) WILL BE %%
*%* CALCULATED BY TASK4.FOR IF THE #**%
*** SYSTEM IS MONOVARIABLE and BY *kk
*** TASK6.FOR or TASK7.FOR IF THE Fok ok

*** SYSTEM IS MULTIVARIABLE. *kk
*%% MATRIX (H)=w—m— > allocates the **x
*kk poles (R) to * ok ok
*k ok the complete *kk
ey controllable kkk
* k% system (&,B), *%%
*** METHOD ----> The state space * k&
*ok ok matrix (A) is * kK
k% reduced to JORDAN *%*
% & % DIAGONAL FORM. * k%

What is the CALCULATION PRECISION for TASK4 2
{1.0E-6)

.>d.

Fhdkhkdkhkhkhhkhhhhdhkhhhkhhhwn

* START OF TASK4 MGR *

* EXPERT ~— *
************************

*** This expert has an intimate knowledge about #***

**% TASK4.FOR. It knows how to: ok
ek k - create an input data file for the tasgk*
¥ ok - activate the task as a logical function
"k - load the output data from the task #*%*
* k% - — display this data to the user and  *»*
*okdk - send this data to the parent expert.*+

*** Loading INPUT FILE for TASKA4.FOR ***
k% TASK4.INPUT file loaded 1!t *#%

*%% Activating TASK4 #%*
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*** The procedural knowledge embedded in this **
*** FORTRAN task is based on : MODAL CONTROL **%*
k%% THEQRY AND APPLICATIONS, Taylor and *k*
*** Francis, London/1972,by POTER, CROSSLEY. **x*
***TASKA EXECUTED**

*** Loading OUTPUT FILE from TASK4.FOR #%%

*** TASK4.OUTPUT file loaded !!! #%x

*** THE OUTPUT DATA FROM TASK4 IS : H, IRE, W1l ##%

*** H is ----> the state space feedback matrix #*#

**% The value of H i§ —~———- > [5.025E-1,4.294E-1)

¥*% JER i§ ———memm > the error index from tagk4d #*x*x

*** The value of IER is ——-——-- >0

¥hk Wl ig ——mee > the closed loop system matrix **%

*%% The value of Wl is -————;—> ([-4.0954E0,0],(4.391E-1,0])

!

F v o oo o e e ok ok ok ok ke ok ok ok e e ke ke ok ok

* START OF THE ANALYST4 *

* EXPERT *
Hhhdkkkdhdhhkhkhhdkhdkdkohin

*** Analyzing output data from TASK4,FOR #%%
*** TASK4 ---> computation correctly completed. ***

**% The NEW EIGENVALUES will be calculated **#
*** following the previously used procedure**x
**% by activating TASK2.FOR with matrix Wl %+
*** obtained from :TASK4.FOR for monovariable*
**%* systems or TASK6.FOR or TASK7.FOR for
*** multivariable systems, instead of de ke k
*** state space matrix A given by the user **x
*** at the begining of this design session.*%*

Would you like to know the NEW EIGENVALUES of the system T
Enter one of yes no

>y
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kkkkkhkhkkhhhkhkdhhhkhkkhhkrhkik

*
&

START OF TASK2 MGR *

EXPERT *

Thhkhkhhhhhhhkhkhhkkhkhhkhkkk

*** This expert has an intimate knowledge about ***
*** TASKZ2.FOR. It knows how to: *k ok
*kk — create an input data file for the task#*
ek ok - activate the task as a logical function*
ek - load the output data from the task  **x
*kk - display this data to the user and * k%
* ok k — send this data to the parent expert. ##
*** THE SYSTEM EIGENVALUES WILL BE CALCULATED *¥*%*
*** BY TASK2.FOR %k k
*** METHOD --> The original matrix is reduced **#

*k ok to the upper HESSENBERG form ok
*kk and then the QR method is applied*
*¥** Loading new INPUT FILE for TASK2.FOR *#%*

**% TASKZ2.INPUT file loaded 11! *%=

*** Activating TASK2.FOR **=*

*++ The procedural knowledge embedded in this **

*** FORTRAN task is based on the paper : ok ok

*k%* MATRIX EIGENSYSTEM ROUTINES-EISPACK GUIDE* % *

*** LECTURE NOTES IN COMPUTER SCIENCE, Nr.6, **%*

*** 1974, Springer Verlang, by SMITH et. * %k
***TASKZ_EXECUTED***

*** Loading OUTPUT FILE from TASK2.FOR %%«

*%* TASKZ2.OUTPUT file loaded 11! #wx

*** THE OUTPUT DATA FROM TASK2 IS : **x

*k ok VALR, VALI, IER *kk

**%* The VALR is ----> a vector with 2 element(s) ***
ok containing the REAL parts ok k

kkk of the EIGENVALUES ¥k

*%* The value of VALR is ————— > [0,-4.0954E0]

*** The VALI is ————— > a vector with 2 element(s) #**%*
*kk containing the IMAGINARY *#**

* k¥

parts of the EIGENVALUES **x*
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*#+& The value of VALI is —————o >[0,0]

*** The error index, IER is ——————o > 0 #*x%

hAhkhhhhkhkhkhhhrkhhhkhhehhhkhn

* START OF THE ANALYSTZ *
* EXPERT *
AhkkhhkkhhkdkRARkhh ARk Ak ki

*** Analyzing vutput data from TASK2.FOR *+*%*

*** TASK2 --~> computation correctly completed. ***
*** The eigenvalues are not ordered; the complex*x*
*** conjugated eigenvalues are typed * ko

*** consecutively. The one with the positive *kox
**%* imaginary being the first. * k%

Would you like to change the FINAL SYSTEM EIGANVALUES ?
Enter one of yes no

>n

*** DESIGN SESSION FOR STATE FEEDBACK ENDED **%
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TEST 4

*%* Jser Interface **%*
Enter one of run resume save quit exit help {help}

>run

Fhkkhkhhkkhhdhhhhhkhhkkhkhhhkthkkhrhkk
* WELCOME TO THE HIERARCHICAL +*

* EXPERT SYSTEM *
* FOR *
* COMPUTER PROCESS CONTROL *

hkhkhkhdkhkhkdhkhkkhhihdhkrhdhrrkrrhkhkhihd

*** NOTICE: This work was supported in part *%x*

ok k by the Natural Science and ok ok
*k % Engineering Research of Canada **x
*xk under Grant no.A6684 *k ok
*** The HESCPC is a Reshell based expert *kk
*k*x* gystem. Its knowledge is distributed on #***
*** an hierarchical structure among 30 ek
*** experts on different levels. At this ok ok
*** stage of development 20 out of these *kk
*** experts have their knowledge bases * ok k
*** completely or partially built, kkk

Which experﬁ class would you like to activate?

Enter one of operator_companion hardware_design software_design
ctr_sys_des_alg

>ctr

What kind of control problem are you dealing with?
Enter one of linear_sys nonlinear_sys quasilinear_sys bilinear_sys

»lin

You are on the following node of the tree:

the expert class is - kkk ctr sys des_alag i+
and the problem class is *** linear sSys *#*

Would you like to continue on this limb of the tree?
Enter one of yes no
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>n

Would you like to close this session?
Enter one of yes no

>n

k** Because you do not want either to #*=*%
**x*x close this session or to continue #*#%*
*** on this limb of the tree, I will %%

**+ transfer the control to the previous*
% de % * % % Upper Level #%*% *k*k

Which expert class would you like to activate?

Enter one of operator_companion hardware design software design
ctr_sys des_alg

>oper

What kind of problem are you dealing with?
Enter one of nuclear_reactor

>nucl

You are on the following node of the tree:
the expert class is k%% operator_companion ***
and the problem class is *** nuclear_reactor *#%

Would you like to continue on this limb of the tree?
Enter one of yes no

>y

LEEA R ERE RS R EEESEL LR LR T L LR T T T LR R R R RO P

* START OF THE OPERATOR-ADVISER *
* EXPERT SYSTEM *

* FOR A NUCLEAR POWER PLANT *
LAR AR TR I TSR T T P T Y F LY T g

*** Loading DATA from sensors #**%

*** DATA FILE loaded !!! #%%

*okok DISPLAYING DATA FROM THE SENSORS *ekk



**%%* REACTIVITY METRE S€nSOr ———————m—— e >

*** REACTIVITY BALANCE SE€RSOr —~———————me—— >
**% DRIFT_ SPEED SE€NSOr ———=—mme—mee e >
*** TEMPERATURE 1 sSensor ————————ccmmmeeo >
*** TEMPERATURE 2 sensor - ———————>
*** FUEL_BAR VARIATION sensor - -—=>
*** PRIMARY FLOW DRIFT sensor - m—————>
*#*% SECONDARY_ FLOW_DRIFT S@NSOL —w———m=—————o >
*** STEAM_GENERATOR SenSOr —————————m—e—————— >
**%* GAIN BREAKING SENSOr ———————— e >

*** MAKING REASONING ON DATA FROM THE SENSORS

LEEEER AL L E LR EEEESE S TR TRT L EPE R ey

* THE NUCLEAR REACTOR IS IN: *
* STATE —~--> INTERNAL BREAKDOWN *
*  CONDITION ——————v > ACCETABLE *
* FOR 2 MINUTES *
* CAUSE ----> SENSOR_TRTC_1 OR TRTC 2 *
* IS NOT WORKING *
* ACTION ----> CHECK WHICH SENSOR IS *
* NOT WORKING AND TURN ON *
* THE BACKUP TEMPERATURE *
* SENSOR *
Thhkhkhkhkhhhdhhhhhhhhhrhhbdidhhkhhkhhhhhhkkhkhhkhdxi

khkkkdkdhkhdhhhhdhrhhhhhhhkhrhhkhhh ki hkhkdhkk

*
*
*
*
*
*
*
*

LA R RS RS RS R TR L ET RS EEE L ET T PR ROR R RO

THE NUCLEAR REACTOR IS IN:

STATE —~===-- > INTERNAL_BREAKDOWN *
CONDITION -=-——— > ACCEPTABLE *
FOR 5 MINUTES *

CAUSE ~——-—- > FUEL_BUNDLE_ POSITONING *
, IS BAD *
ACTION ----> ACTIVATE ROBOT_1 FOR *
POSITIONING CORRECTION *

*

hkdkhkkhkhkkhhkkhkhhhhhkhrxhkhhhhkhhhkkhkhhkhkhkdhkhrik

* % ¥ F ¥ F ¥ ¥ ¥ ¥ ¥ ¥ ¥ F

THE NUCLEAR REACTOR IS IN:
STATE —w————- > INTERNAL_ BREAKDOWN
CONDITION —=—=——e——— > ACCEPTABLE

FOR 10 MINUTES
CAUSE —==--— > PRIMARY FLOW DRIFT

VARIATION ABNORMAL OR
SECONDARY FLOW DRIFT
VARIATION ABNORMAL
ACTION —==—- > CHECK WHICH ONE IS
ABNORMAL AND :
IF PRIMARY FLOW DRIFT IS IN
TROUBLE
THEN ADJUST PARAMETERS ......
IF SECONDARY FLOW DRIFT IS IN
TROUBLE

* % ¥ ¥ ¢ F % F F F ¥ X ¥ F ¥

is
is
is
isg
is
is
is
is
is
is

* k%

* ok &
* k&
ok Kk
* ko
* Xk %
*kk
* k%
%k
* k%
* % %

* % &
% kW
* %
o ek
* k%
*kk
*hk
*kk
*kk
% d i

;ivo

-y _-‘:_'::\\



THEN ADJUST PARAMETERS ...... *
IF BOTH OF THEM ARE IN TROUBLE*

4

*

* THEN ADJUST PARAMETERS ...... *
R T Y T T L T LY T

hhkhhhhhk bk khhkhhhhhhhhhhhrhhhkhhhhhhdkhkhiki

*
* THE NUCLEAR REACTOR IS IN: *
*  STATE ~=~—=——— > INTERNAL BREAKDOWN *
* CONDITION ———vew—w—- > EMERGENCY 1!!! *
*  CAUSE --->TEMPERATURE CONTROL SYSTEM *#*
* FAILURE *
* ACTION ——-ee————m > SHUT DOWN THE *
* *
* *

NUCLEAR REACTOR IMMEDIATLY!
hhhkkhhk ko k kA Ak Rk hhkhkk ko hkhhhhhhhni

hhkAhkhhhhhdhhhhkhdkhhhhkrhhkhkhkhkhkhkhhkhhkhhhikk

* THE NUCLEAR REACTOR IS IN: *
* STATE —==——-——- > EXTERNAL BREAKDOWN *
* CONDITION ——ee—me—e > ACCEPTABLE *
* FOR 3 MINUTES *
* CAUSE ----- > STEAM GENERATOR IS IN *
* DECOMPRESSION CONDITION *
* ACTION ———-- > ACTIVATE ROBOT 2 TO *
* *
* *

ADJUST THE FOLLOWING PARAMETERS...
FRAR A RN AR A AR AR AR AR R AR AR AR A Ak hkkhh K

Would you like another session ?
Enter one of yes no

>y

123



TEST 5

hkkkkdhkhkkhhdhhdhh ok khkkRAAAx A khrhkrhkhhk

* START OF THE OPERATOR-ADVISER *
* EXPERT SYSTEM *
* FOR A NUCLEAR POWER PLANT *

khkkkhkhhkhbhhkhhhhhrhkhhhhhhbidhhrhhrhhthhix

*** Loading DATA from sensors **x

*** DATA FILE loaded !1! #%x

*ok ok DISPLAYING DATA FROM THE SENSORS ok ok

**x% REACTIVITY METRE Sensor > ig k*%k 6 hokk
*** REACTIVITY BALANCE sensor --- > is *%xx 8 *kok
**% DRIFT SPEED sSensor ————— > is ki 25 *k ok
*** TEMPERATURE 1 sensor ——— > is k&% 7 * ik
*%%* TEMPERATURE 2 sensor —--—— > is  kkk 5 * ¥ ok
*%% FUEL BAR VARIATION sensor > is  kkk 5 *kok
*%* PRIMARY FLOW DRIFT sensor > is  kkk 3 *kk
*** SECONDARY FLOW DRIFT sensor > is **x 7 ko
*%% STEAM GENERATOR sensor ———> i§  kkk 85 * ok ok
*** GAIN BREAKING sensor —-- --=> is **x 9 ok

*** MAKING REASONING ON DATA FROM THE SENSORS *%*

hkdkkhkhhhkhhkhkhhhhhhhkkhhkhk kAR AA k. hhkkkhhi

* THE NUCLEAR REACTOR 1S IN: *
* STATE —————-—- > REACTIVITY STATE *
* CONDITION —-=—=————— > ACCEPTABLE *
* ACTION -————- > NO ACTION *
* N HAS TO BE CARRIED OQUT *
khdkdhkkhhkhkkkhhkhdhkhhhhhhhhkhhkdkkrrhhk

Would you like another session ?
Enter one of yes no

>n

*** User Interface #+%%
Enter one of run resume save quit exit help {help}
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>q

Are you sure?
Enter one of yes no {yes}

>Y
$
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