742 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

Hierarchical Finite State Machines
with Multiple Concurrency Models

Alain Girault, Bilung Lee, and Edward A. Le&ellow, IEEE

Abstract—This paper studies the semantics of hierarchical scheduling, and reasonably efficient synthesis of embedded
finite state machines (FMS’s) that are composed using vari- software or hardware.

ous concurrency models, particularly dataflow, discrete-events, While concurrency is a major source of complexity, it is
and synchronous/reactive modeling. It is argued that all three ’

combinations are useful, and that the concurrency model can not the only one. Increasin_gly intric_ate sequential contro_l logic
be selected independently of the decision to use hierarchical also adds difficulty to design, particularly when errors in the
FSM’s. In contrast, most formalisms that combine FSM’s with control sequence can have fatal consequences for the user, as
concurrency models, such as Statecharts (and its variants) and js the case in many embedded systems. Finite state machines
hybrid systems, tightly integrate the FSM semantics with the zq\1q) have long been used to describe and analyze intricate
concurrency semantics. An implementation that supports three L .
combinations is described. control sequences. Because of their finite nature, FSM’s yield
) . better to analysis and synthesis than alternative control models,
Index Terms—Concurrency, discrete events, finite state ma- o, ., o9 sequential programs with if-then-else and goto. For
chines (FSM’s), heterogeneity, hierarchy, modeling, synchronous . .
dataflow languages. example, with an FSM, a designer can enumerate the set of
reachable states to ascertain that a particularly dangerous state
cannot be reached. The same question may be undecidable in
I. INTRODUCTION a richer language.
ANNA and Pnueli [35] argue that concurrency is Most modern electronic systems have both intricate control
the essential feature of reactive systems, a class theguirements and concurrency. Thus, combining FSM's with
includes all embedded systems, real-time systems, and mangpcurrent models of computation is an attractive and in-
software systems. In concurrent systems, modules consistctgasingly popular approach to design. Since Harel introduced
relatively autonomous agents that interact through messagthgt Statecharts model [23] in 1987, a number of variations
of some sort. The rules of interaction of the agents, theve been explored [44]. The Argos language [36], [37], for
semantics of the composition, is what we call timedel of example, combines FSM’'s with a SR concurrency model [5].
computation Jourdanet al. [27] combine the synchronous language Lustre
Models of computation that support concurrency are numgg2] and Argos.
ous. A popular one today threads where a set of sequential Many researchers have combined FSM'’s with concurrent
processes operate on the same data. More sophisticated cormaadels of computation that are significantly different from that
rent models of computation include communicating sequent@fl Statecharts. Specification and description language (SDL)
processes (CSP) [25], the pi calculus [38], dataflow (DF) [193ombines process networks with FSM's [4]. The codesign
process networks [28], discrete events (DE’s) [14], and tlfiaite state machine (CFSM) model [16] combines FSM's
synchronous/reactive (SR) model [5]. These models are mavith a discrete-event (DE) concurrency model. Pankert
sophisticated in the sense that complex concurrent systesihscombine synchronous DF [31] with FSM’'s [40], [36].
can be more easily designed, and the designs yield befebgram-state machines (PSM) combine imperative semantics
to analysis. The block diagram languages used in signgith FSM's [39], [43]. Hybrid systems [1], [24] mix con-
processing, for example, almost all have some variant @firrent continuous-time systems (usually given as differential
DF semantics, and often yield to deadlock analysis, statiquations) with finite automata. Simulink, from The Math-
Works, Inc. (Nattick, MA), provides a simulation environment
for such combinations. All of these examples, however, tightly
Manuscript received September 8, 1997; revised October 19, 1998. TH@ertwine the concurrency model with the automata semantics.

[)eseﬁ“?h v CO”d(;‘CIEd as part of tr?e Ptolemy pfOJ'eCt& which ;S Sr?OHSOB;dcept for Simulink and Statecharts (and some of its variants),
y the Defense Advanced Research Project Agency (DARPA), the State P . S .
of California MICRO program, Cadence Design Systems, Hewlett Packaiil",ey also have limited compositionality in that they permit

Hitachi, Hughes Space and Communications, NEC, and Philips. The wakitomata only in the leaf cells of the hierarchy (as in SDL), or

Zf A. Gifagg_waSDS%Pﬁ)Ofted by INRIA. This paper was recommended kynly permit automata at the top of the hierarchy (as in hybrid
ssociate Editor D. Dill.
A. Girault was with the University of California, Berkeley, CA 947205y5tems)'

USA. He is now with INRIA, Rlbne-Alps, Grenoble, France. (e-mail: With Statecharts, Harel dramatically increased the usability

Alain.Girault@ inrialpes.fr). o o of FSM’s through two innovations [23]. First, FSM’s can be
B. Lee and E. A. Lee are with the University of California at Berkeley CAh. hicall bined. A singl | | of th

94720 USA (e-mail: bilung@eecs. berkeley.edu; eal@eecs. berkeley.edu): !erarc 'Ca y combined. smg_e stateat one level of the
Publisher Item Identifier S 0278-0070(99)03963-9. hierarchy is interpreted as being in one of several statespe.g.,

0278-0070/99$10.001 1999 IEEE

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 743

¢, ord, at a lower level of the hierarchy. These are often calledodel would be a better choice. The same hierarchical FSM
“or states” because being in statéas interpreted as being in language works with all of these concurrency models.

stateb, ¢, or d. Second, FSM'’s can be concurrently combined. The hierarchy irfcharts is arbitrarily deep, and concurrency
An FSM with statesz andb can be composed with an FSMmodels and FSM’s can be placed anywhere within it. An FSM
with statesc andd, resulting in an FSM that is in state, bc, can be nested within a module in a concurrency model, with
ad, or bd. These are sometimes called “and states” becaubke interpretation that the FSM describes the behavior of the
the FSM can be in both state and ¢, for example. Both module. Conversely, a subsystem in some concurrency model
innovations allow state machines to be represented compaciyn be nested within a state of an FSM, with the meaning
and intuitively. that the subsystem is active if and only if the FSM is in that

While the static interpretation of “and states” is clear, thestate. The latter is particularly well suited to describingdal
dynamics are far less clear. Given two concurrent FSM’systemswhere modes of operation are modeled as states of
when do they make state transitions, relative to one anothar? FSM.

How should they communicate their state and/or transitions?More interestingly, once we have decoupled FSM semantics
These questions greatly complicate the FSM model of corftem concurrency semantics, heterogeneous combinations us-
putation, and indeed were not completely resolved by Haiag multiple concurrency models become possible. Systems
initially. This is part of the reason for the proliferation of vari-<can truly be built up from modular components that are
ations of concurrent hierarchical FSM models of computatigeparately designed, and each subsystem can be designed using
[44]. the models of computation best suited to it.

Harel loosely defined state transitions in concurrent FSM's The main objective of this paper is to give a scalable
to be simultaneous. A state transition could broadcast approach to design. By “scalable” we mean that subsystems
event, visible immediately to all other FSM’'s. The othecan be designed, analyzed, verified, and synthesized relatively
FSM’s could then make state transitions immediately, and alswlependently of one another, and can then be composed
broadcast events. As long as there is no circular logic (circuliir a way that the composition can be analyzed, verified,
dependencies among transitions), this notion of simultanecrd synthesized. To achieve these objectives, our models of
transitions is well-defined. Real circular dependencies caamputation must satisfy two objectives. First, they must
lead to genuine paradoxes and/or to undetermined behavlg.compositional This means that composite modules can
However, apparent circular dependencies prove to be comnih treated as primitive modules. Second, they must support
in practical systems, primarily because of the use of hierarchygterogeneity This means that composite modules can be
so the model had to be refined. The Argos language [3@nbedded within a foreign model of computation. To preserve
and others refine the model by applying the SR principle [SAnhalyzability, this embedding should be done with a maximum
which resolves apparent circular dependencies by seekingaatount of information hiding.
each instant ¢east fixed pointa globally consistent behavior. A side effect of supporting heterogeneity is that more
The SR principle, first developed by Berry in the Esterélpecialized models of computation become more useful. They
language [8], gives a well-defined and determinate semantils not need to solve all problems because alternatives are
to simultaneous concurrent actions. But there is no reasonaailable. They only need to solve some problems well. Thus,
restrict concurrent FSM’s to SR semantics. it becomes practical to use specialized models of computation,

Indeed, all known high-level concurrency models haveuch as FSM's and synchronous DF, which have strong
their strengths and weaknesses. SR models are good atfaemal properties, excellent paths to synthesis, and natural and
scribing tightly coordinated control, but overspecify systeribtuitive syntaxes.
that do not need such tight synchronization. Dataflow andWe begin by adapting a standard notation for FSM’s, which
process networks models are much more loosely synchronizisczompact and efficient when considering an FSM in isolation,
but poorly model control logic and resource managemeft®. get a notation more suitable for studying compositions of
Discrete-event models are excellent for describing hardwdr&M'’s. To do this, we have to put more emphasis than usual
or other physically disjoint agents, but their physical notiogn the interaction between an FSM and its environment. We
of time is awkward for more conceptual or abstract concui?en consider combining FSM’s with three popular concurrent
rency. models of computation: DF, DE, and the SR model. In the case

This paper advocates decoupling the concurrency mo@IDF, we introduce a new subset of DF called heterochronous
from the hierarchical FSM semantics. We describe a famifiataflow (HDF) that combines particularly well with FSM's.
of models of computation, calletcharts (pronounced “star- We then briefly describe an experimental implementation in
charts”). Unlike Statecharts and other concurrent hierarchi¢he Ptolemy environment [13], where hierarchical FSM’s can
FSM's, *charts do not define a concurrency model, but rathee combined with DF, DE, and SR concurrency models.
show how to embed hierarchical FSM’s within a variety of
concurrency models. Thus, the concurrency model can be II. FINITE STATE MACHINES
chosen to match the problem at hand. Is tight synchronization
possible? Desirable? If not, then an SR model is inappropriate, The Basic FSM
and' perhaps a DF or process neMOrk model wou.Id be a bettejg.‘n FSM is a five-tuple [26]
choice. Is there a globally consistent notion of time? If not,
then a DE model will be inappropriate, and perhaps a CSP (Q,Z,A,0,q) 1)

744 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

b/v
w Current State o o B B
ox» Input Symbol a b b a
alu Next State o B B o
Fig. 1. A basic FSM.
Output Symbol € v € u
where Fig. 2. A possible trace for the basic FSM in Fig. 1.
Q finite set of symbols denoting states;
by set of symbols denoting the possible inputs; provides a sequence of input symbols, and the FSM reacts by
A set of symbols denoting the possible outputs; providing a sequence of output symbols, meanwhile tracing a
o transition function mapping? x X to @ x A; sequence of states.
g0 € Q@ initial state. Frequently, the interaction with the environment needs to be

In onereaction an FSM maps a current statec 2 and an modeled in more detail. It may not be convenient, for example,
input symbola € ¥ to a next state; € @ and an output to consider the FSM to have only a single input symbol.
symbolb € A, whereo(p,a) = (¢,5). Given an inputword, Multiple inputs and multiple outputs may be a more natural
or sequence of symbols from the input alphabgtand an model. To handle this, the input alphabet can be factored and
initial state, a sequence of reactions will produce a sequenggressed as a cartesian prodhct X1 x Tp X -+ X Ty,
of states and an output word, or sequence of symbols from fHere, the input to the FSM consists #f signals where the
output alphabet\. All sequences are potentially infinite. ith signal is a sequence @ventsrepresented by symbols

A directed graph, called ®tate transition diagramis from the signal alphabet®;. The FSM reacts to a set of
popular for describing an FSM. As shown in Fig. 1, each/ simultaneous symbols from th&/ signals. The output
elliptic node represents a state and each arc representslphabet can be similarly factored. Reactions emit events on
transition. Each transition is labeled bguard/action” where signals.
guard € ¥ represents the input symbol that triggers the
transition, andaction € A represents the output symbol wherC, Pure and Valued FSM's
the transition is triggered. The arc without a source state point
to the initial state, i.e., state. During one reaction of the FSM,

S size of the input symbol set is a power of twh,| = 2*, and
one transition is triggered, chosen from the set of enablg ch signal alphabet has size tig;| = 2for 1 < i < M. We
transitions. An enabled transition is an outgoing transitio ’ T e

|Hterpret this to mean that at a reaction, each signal consists

from the current state where the guard matches the curr%?tan eventthat is eitherpresentor absent(hence,|%;| = 2).

input symbol. The FSM goes to the destination state of t ¥ common notation in this scenario assigns a name to each

triggered transition and produces the output symbol indicatg%nal such asd”, and denotes the alphabet corresponding to

by the action of the triggered transition. ; I . .
. L . , that signal by>; = {a,a}, interpreted ada is present ais
In this paper, we focus odeeterministicandreactiveFSM’s. bsent. Thus, for eiamgle, consider ans{FSM with two input

An FSM is deterministic if from any state there exists at mOgi gnalsI — {a,b} and two output signal® — {u,v}. The

one _enal_oled transition for each mput symbol. An FSM 'ﬁput alphabet is writtelX) = {ab, ab, ab, ab} and the output
reactive if from any state there existd leastone enabled Iphabet is writtenA = {uv . w) wheree — @ is
-))) 1 -

trgns:tlotrr\] ffrlleac:]';gﬁ;t s>r/m:30I. t}(/o S|r\r/1prln‘y tn?ta:tlon anmh%]default symbol.
ensure that all ou S are reaclive, every state I1s assume a valuedFSM, the input and output alphabets are again

tct) Tavf an 'mﬁl.'c't stelf trag]SI'tt'ﬁni .€., q[omg ba(cj:k th the Salr.n‘gctored into signal alphabets, but at least one of these signal
staté, for each input symbol that 1S not & guard of an exp 'Ca“ habets has size greater than two (it might even be infinite).

outgoing transition. Each such self transitit_)n has as its actiwri again interpret one element of such an alphabet to denote
some default output symbol, denoteddjwhich has to be an gbsence of an event, while the remaining elements denote

element of A. Sometimes, this default symbol is interprete resence of an event and a value for the event. Valued

to mean "empty” and is omitted from the_output word [2_6]' FSM's are often used to augment automata with arithmetic
For example (see Fig. 1), supposg = {a,/},% ~_operations, which are awkward to specify directly using pure
{a, 0}, A = {e,u,v} g0 = aando:@ x X — @ X As FSM'’s. In our scenario, this augmentation is not fundamentally
such thato(a, b) = (f, v) ando(f, a) = (o, u), then we also oo yo hecause arithmetic operations can be specified instead
must have the implicit self ransitions(a, a) = (e¢) and ;- foreign model of computation better suited to them,
.a(ﬁ’ b) = (/3’5.)' A possibletrace, or sequence of re""Ct'ons’such as DF. Nonetheless, valued FSM’s may provide a more
is shown in Fig. 2. convenient syntax, even if they add nothing fundamental in
expressiveness, so we will briefly discuss their ramifications.
In a pure FSM, the size of the input alphabet grows
An FSM is embedded in an environment. The environmeakponentially with the number of input signals. Thus, it
may in fact be part of the overall system under design, can become quite inconvenient to define a reactive FSM
may be out of the control of the designer. In either case, iy explicitly specifying outgoing transitions from every state

A common special case, calledpare FSM is where the

B. Multiple Inputs and Outputs

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 745

—avb/u,v

_\ Current State o o B B B
an-b/v ‘ot@’ a/u a present| absent | present| absent | absent
—anb b absent | absent | present| absent | present
Fig. 3. A pure FSM. Next State o p p B o
In absent |present | present| absent | absent
for every input symbol. This may be a very large number v present|present | absent | absent | absent

of transitions. To avoid this problem, a single transition
may bear as a guard a subset Bf rather than a single Fig. 4. A possible trace for the embedded FSM in Fig. 3.
symbol. It would, thus, represent an ensemble of transitions

compactly. An arbitrary subset df can be defined by a Master FSM
boolean expression in the input signals. For exampl&; # ~ —a N b/u, v

{ab, ab,ab, ab}, the boolean expression-& v b (not a or dn—b)y o:@’ s
b) represents the subséub, ab,ab}. Thus, for pure FSM's,

guards will be represented as boolean expressions of the input —anb ;
signals.

Consider the example in Fig. 3 with statés = {«, 3}, a/v
input signal alphabef = {a,b} and output signal alphabet Y ’
O = {u,v}. The guard “a v " of the transition frome to 3 oxe
is enabled by any input ifiab, ab, ab}. The guard &” of the Stave FSM L

v

transition fromg3 to /3 is enabled by any input ifiab, ab}.
For valued FSM’s, more complicated boolean-valued eXig- 5. A hierarchical FSM.
pressions can be used for the guards. For example, suppose

that in a valued FSM, theth signal is named ¢” and | . . , : : L
hierarchical FSM’s. If all events in an action are implicitly
has the alphabet; = R, the set of real numbers. Then a L . L
: . bsent, the action is omitted altogether. For example, in Fig. 3,
guard may contain comparison operators and real numbers, JOF o .)
example % < 10”. This compactly represents an uncountablt e label of the transition fromni to « consists of just the guard
P ' pactly rep Yoo n b", and when this transition is triggered, both output

infinite number of transitions. However, it also makes it. L
signalsw and v are implicitly absent.

?us(ijk;fi::rilg:tal d':ifg]u'te)t(or;zisg: |2aoﬂ;tle Esvl\\//ill.l I;;Egt,s\grl:; For valued FSM'’s, an action denotes any output value that
. y rict P guage, } . 1S, different from the default. The default is again implicitly
guestions undecidable. Thus, valued FSM’s carry a high Cothitted and may denote absence of an event. Since the
loss of analyzability. . number of transitions in an FSM is finite, the possible emitted
Fortunately, because our model is heterogeneous, value(iin o
, . valuyes form a finite set and, thus, could be represented by a
FSM’s add no fundameptal expressiveness. Instead of a g_ufsllrr]clre number of boolean signals. Thus, again, a pure FSM
aaD<F1r(1)10V<;/zl nglr?] Suﬁzc,ll;]yeaﬂ?:;rgnb and externally, say "could be used without fundamental loss of expressiveness.
' P Externally, in some other model of computation, these boolean
signals could be translated into values. Hence, although valued
_Jjtrue a2 <10 2) FSM’s may provide a more convenient syntax, they are not
false otherwise. fundamentally required for expressiveness.

A possible trace for the FSM of Fig. 3 is shown in Fig. 4.

By supporting heterogeneous combinations of models of cofiOt€ that in states, when both inputs: andb are absent, an

putation, *charts permits us to keep FSM’s pure, simplifyindmpl'c't self-transition is taken and both outputsandv are

formal analysis, while not compromising on expressivenes®sent.

Of course, the combined model is no more analyzable than

the valued FSM, but at least we are able to analyze the plte Hierarchy

FSM. The basic FSM, which is flat and sequential, has a major
For pure FSM'’s, actions are specified with a reasonablyeakness; most practical systems have a very large number

compact notation. The default output for each signal is asf states and transitions. Representation and analysis become

sumed to denote an absent event. An action, thus, only ligifficult. One of Harel's solutions to this problemligerarchy.

output signals that are to have present events in the curremta hierarchical FSM, a state may be further refined into

reaction. In other words, all output events that are not explicithother FSM. We will call the inside FSM theaveand the

emitted in an action are absent. For example, in Fig. 3, tbatside FSM thenasterin such a composition. For example,

action “u” of the transition froms3 to 3 implies output symbol we can let the statg in Fig. 3 refined into another FSM but

u?, i.e., output signal: is present and output signalis absent let the state a not be refined, as illustrated in Fig. 5.

event when the transition is triggered. The absence g At a fundamental level, hierarchy adds nothing to the model

implicit, not explicit, a fact that will become important forof computation. Nor does it reduce the number of states.

746 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

Ill. HETEROGENEITY—MIXING FSM'’s

C t Stat X ,0
arrent State o | o | By | P ¢ WITH CONCURRENCY MODELS
a present| absent | present| absent | absent . . ,

Hierarchical FSM’s are not by themselves adequate for
) absent | absent | absent |present| absent | . describing most complex SyStemS. For one thlng, numerical
Next State o | By | BS| o | Byl ... computations are extremely awkward to express within this

model. For practical application to complex systems, the FSM
model of computation has to be combined with others.

v presentipresent\present|present|present| ... One commonly used solution is to generalize the activity
associated with an action. For instance, in the Stateflow tool
from the MathWorks, Inc., an action can invoke a function or

) o » assign a value to a variable. Moreover, FSM’s in this tool can
But it can S|gn|f|cantly_red_u_ce the number of transitions arlsie embedded within a block diagram system called Simulink,
make the FSM more intuitive and easy to understand. Thg, \ing for numerical computations outside the FSM.
transition from3 to « in Fig. 5 is simply a compact notation £ ,ction calls and variable assignments, by themselves, are
for transitions fromy to « and$ to «. The state space of thestiII quite limited. They provide, for example, no concurrency.

eq_lrjir:/al_ent flatlFr?I\g is fsimp;}lyQ II {a’l;y’s(ls\/l}.' b ¢ One could work around this limitation by using procedures
e input alphabet for the slave Is a subset o ﬂ?Stherthan functions, and permitting them to operate on global

input alphabet of its master FSM. In a pure or valued F.S'\étate outside the FSM. If this is done in an undisciplined way,

the input signals for the slave FSM are a subset of the in wever, it would provide a very chaotic and poorly char-

signals for the master. Similarly, the output signals from thaecterized programming model. Imposing some discipline on

slave FSM are a subset of the output signals from its maSt%S model seems essential. It needs a model of computation.

The hierarchy semantics define how the slave FSM'’s reacts . - : :
. . . n the most recent version of Simulink (version 2.2), actions
relative to the reaction of its master FSM. A reasonable . - . . .
. can invoke Simulink block diagrams, allowing a multilevel
semantics defines one reaction of the hierarchical FSM as

follows: if the current state is not refined, the hierarchice[ﬂ'eramhy as in Statecharts. The computation invoked by an

FSM behaves just like a basic FSM. If the current state 'Tlscuon Is specified using the_ Simulink concurrency model. .
Unfortunately, the very richness of possibilities makes it

refined, then first the corresponding slave FSM reacts and thep): : A .
the master FSM reacts. Thus, two transitions are triggered CE icult to decidea prion which models of computation should
' ’Bgvused. Each has its strengths and weaknesses. We advocate

two actions are taken. These two actions must be someh . X . .
leaving that choice up to the application designer, rather than

merged into one. oo
In the case of pure FSM's, it is easy to merge the actiort?é"ld'ng it into the language. Thus, the language should sup-

and avoid conflicting definitions of the output between thgortheterogeneityA convenient way to support heterogeneity

slave and the master. We take an output event to be preser i€ black box approach. For a system consisting of a set
the action of the master or any slave FSM below it emits interconnected modules, each mo-dulg can be treated as a
event on that output. Since an action does not explicitly enft2ck box. Some model of computation is chosen to govern
the symbol for absence of an event, no conflict is possible {A€ interaction between boxes, but the contents of boxes need
this syntax. For example, if Fig. 5 is in stateand substate not pe govemed by th|s.same model of computation. The only
~ and input signal: is present, the triggered action of thd€quirement is that the interfaces of boxes must cor}form toa
slave FSM is %" and the triggered action of the master Fshptandard accepted by the outer model of computation. Thus,
is “u”. Thus, the output of the hierarchical FSM g (both @ box may encapsulate a subsystem specified by one model
output signals, and v are present). A possible trace for the&f computation within a system specified by another. In other
hierarchical FSM is shown in Fig. 6. words, heterogeneity allows different models of computation
For a valued FSM, we adopt the convention again that ¥ be systematically and modularly combined together.
action makes no explicit mention of an absent event. However Our hierarchical FSM model of computation is easily ex-
since two actions can both emit an event with different valud§nded to support heterogeneity. A state or transition may be
the syntax permits conflicting definitions of the output. Ifiefined to a black box that reacts to some subset of the input
Esterel, a function can be specified to combine the conflictiggnals by emitting events on some subset of the output signals.
the definitions [8]. For example, for two reals, the valueiternally, this black box need not be an FSM. It could be, for
might be added. We prefer to consider this an error conditioggXample, a Turing machine (that halts), a C procedure (that
because the values can be more conveniently and flexiglyentually returns), a DF graph, etc.
combined externally, in a model of computation better suited In the reverse scenario, the FSM model of computation can
to numerical computation. Thus, for a valued (determinatep used to describe a module inside some other model of
FSM, no two-triggered transitions should emit the same outptemputation, as long as that model of computation provides
signal. a way to unambiguously determine the input symbols and
In the example of Fig. 5, the hierarchical FSM has onlwhen a reaction should occur. For example, in Fig. 7, three
two levels. However, the slave FSM can actually be anotheSM’'s are embedded inside the blocks of a “block diagram
hierarchical FSM, so the depth of hierarchy is arbitrary. THanguage.” The exact semantics of this embedding {ithe
semantics generalizes trivially. teraction semantigsneeds to be defined in terms of both

u absent |present| present| absent | present

Fig. 6. A trace for the hierarchical FSM in Fig. 5.

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 747

a This is not a problem for any of the concurrent models of
computation being considered.

B. Dataflow with FSM

" o, The DF model of computation, originally introduced by
Dennis [19], can be thought of as a special case optbeess

Y networks (PN) model, originally introduced by Kahn [28].
¢ <, L4, Lucid is an early language with DF semantics [3], [45]. In
PN, a network of concurrent processes communicate through
unbounded first-in-first-out (FIFO) queues. Formally, a process

" ¢ 'l VRS in a PN network is a prefix-monotonic function that maps a set
of potentially infinite input sequences into a set of potentiall
Y X infinite output sequences [28].
blc cld In the DF special case, a process consists of a sequence of
Fig. 7. Three FSM’'s are embedded inside the blocks of a block diagra%screte’ atomIF: units of computation calla‘idngs (19]. In
language. DF, a process is often called actor. A denotational formal

semantics for Dennis DF is given in [29]. Our description

. . re is informal and operational. The DF special case is better
the semantics of the block diagram language and the FSE)Eited to our purposes since the discrete firings map naturally

Most interestingly, hovyever, if the block diagram Iangu,agl.%to reactions of a slave FSM playing the role of a DF actor.

has concurrent s,emantlcs (e.g., DF), then the slave FSM’s a'Both DF and PN, however, can easily describe applications

concurr.ent FS.M S: . . . that do not terminate, meeting our objective in this regard. For
In this section, we explore the interaction semantics IF?F (but perhaps not for PN), we can invent a natural definition

gStMﬂS Wltgl\:/ar(quus c;)ncurrenélrznodelz of cohmputatlj)n, n?megf an iteration. Specifically, we will define an iteration of a DF
ataflow (DF), discrete-even{DE), andsynchronous/reactive raph to be the minimum set of actor firings (greater than zero)

(SEE' Our Ott.)JeCt'V?tr']S to develop femzn?cs .:Eaéssl\l/ljppo at return the FIFO queues to the same size that they were at
arbitrary nestings ot these concurrent modeis wi S Vife beginning of the iteration. Unfortunately, for general DF

wish for an FSM to be able to define a modyle N a concurre }e%phs, it is undecidable whether a finite iteration exists [12].
system and for a state to be able to be refined to a concurr| reover, there may not be a unique minimum set of actor

subsystem. The depth and order of the nesting is arbitr #ings

As shown in Fig. 8, we adopt the notation that square boxe 0 get around these problems, we specialize further to

indicate .mo.dules in a cpncurrent model of computation a%d subclass of DF calledynchronous dataflowSDF) [31],

ellipses indicate states in an FSM. reviewed below, for which these problems disappear. In SDF,
each time a DF actor fires, it consumes and produces a fixed
number of tokens on its input and output FIFO queues. Even

In general, the systems of interest may not terminatir this more restricted model, some interesting fundamental
Concurrent models of computation are usually defined witbsues arise. We advocate a semantics for combining SDF with
this in mind [17]. The reaction of an FSM, however, willFSM that is much more expressive than either SDF or FSM
usually need to take finite time. This means that if a statdone, but falls short of the full expressive power of general
refines to a concurrent subsystem, that subsystem must r&€t In exchange for this loss in expressiveness, we can ensure
in finite time to the inputs, possibly emitting output events abat intrinsic properties of a design, like deadlock or bounded
a result. This implies a finiteness of computation that is natemory execution, remain decidable, a very desirable property
intrinsic to many concurrent models of computation. for embedded systems.

For some models of computation, there is a simple solution1) Synchronous DataflowtUnder the SDF model of com-
[15]. The execution of a nonterminating system can often Ipaitation, a system consists of a set of blocks interconnected by
divided into a set ofterations Each iteration can be associatedlirected arcs. The blocks represent functions that map input
with a reaction of the master FSM. We require, therefordata into output data. The data are divided ittkens which
that any concurrent model of computation that can refinease treated as atomic (indivisible) units. An arc represents a
state of an FSM have a well-defined finite iteration. We wilbotentially infinite sequence, streamof tokens. Streams are
explore the implications of this requirement in terms of specifitarried by conceptually unbounded FIFO queuefiriAg of a
examples below. block is an atomic computation thabnsumes fixed number

The reaction of an FSM is discrete and for most application$ tokens from each input arc amoducesa fixed humber of
will be required to take finite time. The sequence of reaction®kens on each output arc. The number of tokens consumed
however, may not be finite if the input sequence is not finitand produced on each input and output can be viewed as
Thus, a model of computation that can include modules refinpdrt of thetype signatureof the actor, along with, of course,
to an FSM must be capable of supplying an infinite sequencetbé data type of the tokens. These numbers can be used to
inputs and requesting an infinite sequence of discrete reactiamsambiguously define aiteration, or minimal set of firings

A. Termination

748 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

Fig. 8. Hierarchical nesting of FSM’s with concurrency models.

that return the queues to their original size, as we will now SDF
explain [31]. This is done by writing for each arcbalance u
equation - x ¢ y
b —
TiPi = T5Cj 3) 7 A B
where the arc here is assumed to go from aétéo actor '/

4, and on this arc, actof producesp; tokens and actoy

consumesc; tokens. The variables; and r; are defined to FSM

be the number of firings of actotisand j, respectively. The /v
balance equations tell us that the number of tokens produced o }:{3
by the source actor equals the number of tokens consumed by o

the destination actor. b (Al B

Although in generalr; and r; may be infinite, in which
case (3) is trivially satisfied, the balance equations may al§
be satisfied by a finite number of firings. Indeed, to implement
an SDF systems, we seek a finite solution to the balance
equations, and then construct a finite schedule where adddr it is decidable whether a given set of initial tokens is
i is fired r; times and data precedences are respected. Sgfficient to prevent deadlock [31].

a finite schedule produces and consumes the same numbé) FSM Inside SDF:When an FSM subsystem is a slave
of tokens on each arc and, thus, can be iterated indefinitéfyan SDF actor, it must externally obey SDF semantics. Thus
with bounded resources. Thus, we take the variabjds be it must consume and produce a fixed number of tokens on
unknown and attempt to solve the balance equations to fifidery input and every output. In the simplest case, the FSM
the smallest number (greater than zero) of firings of each acgssystem refines a homogeneous SDF actor. Each input to
such that the balance equations are satisfied. the SDF actor provides a single data token, which takes on

Assuming there aré/ arcs and/N actors, then there will values from some alphabet. The cross product of these signal
be M equations inN unknowns,r;, 1 < ¢ < N. It can alphabets forms the input alphabet for the FSM, perfectly
be shown that for a connected graph, there is either a uniqoatching our FSM model in Section 1I-B. The actions of
smallest positive solution for the unknowns, calledifieimal the FSM will be able to emit events on each output signal,
solution or the only solution is;; = 0, 1 < ¢ < N. When the representing each event by a symbol from the corresponding
minimal solution exists, we define an iteration to consist gignal. Any outputs that are not emitted by the FSM in an
exactly r; firings of each actoi. When there is no solution, action will be assigned the default element of the alphabet,
the SDF graph is considered defective and an error is reporgsi usual.

(analogous to a type error a strongly typed language). Thus,The only subtlety in this approach is that an “absent” event
for SDF, it is decidable whether an iteration exists. If it doegppears explicitly as a token in the SDF graph, where the
it is unique, and the firing schedule for an iteration can belue of this token encodes the “absent” interpretation using
determined at compile time. the default symbol. A simple approach would be to encode

The simplest SDF graphs anemogeneoyslefined to mean presence and absence using boolean-valued tokens. In the other
that every actor produces and consumes a single token aamcurrent models of computation, absence of an event will
each input and output arc. For such graphs, an iteration alwaysrespond to absence of a token. A key property of DF,
consists of exactly one firing of each actor= 1,1 < i < N. however, is that absence of a token is not a well-defined,
The schedule of such firings must obey the data precedentsstable condition, so the absence of an event must be encoded
(a token must be in a queue before it can be consumed). Thiosa (present) token.
to avoid deadlock, all directed cycles in a homogeneous SDFConsider the example in Fig. 9, where there are two pure
graph must have at least one initial token (often calleglay) FSM'’s refining homogeneous SDF actors. An iteration of the
on at least one arc in the cycle. Arbitrary SDF may requifDF graph consists of a single firing of each actor. Since there
more than one initial token on some arcs, but unlike geneialno initial token on the arc between them, acofires before

. 9. Two FSM’s, refining homogeneous SDF blocks, are embedded in an
F system.

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 749

SDF
a() _
(a) b(2) Y@ >
D cl 3
FSM
a$3 A (a$2 v (a8l ~a))lx
(b) o
bv bS$1
IC
A i
(9 & ¥(2)
b2 ’
e
SDF
a(2)
—¥ x(L)y «(2) ¥(2)
(d) b(1) —
L [A] B
FSM

ana$l/x FSM

- %

b |K |E

Fig. 10. Two FSM'’s, behaving like multirate blocks, are embedded in an SDF system.

actorB in the iteration. The names on the arca”(™ 5", “z”, Signal language [6],d” denotes the most recent (last) token
etc.) indicate the names of the nearest input or output ofcansumed from inpug, “a$1” denotes the next most recent
DF actor. Suppose that in some iteration the input tokens haweken consumed, and:$2” the next most recent. Consider the
values indicating that is present and is absent, and that bothexample in Fig. 10, focusing for now on levels (d) and (e).
A andB are in statex. The SDF system reacts as follows: The numbers in parentheses at level (d) indicate the number
Fire A) Sincea is present, make the transition from of tokens consumed or produced by the corresponding actor.
to 3, and let the output: be assigned the value The guard on the arc from to 3 in A on level (e) isa A a$1,

indicating it is present. which means that both tokens consumed fromdlivgout must
Fire B) Sincec = z is present, make the transition backave the value representing a present evenBriihe action
to statex, and let the outpuy be present. y means that the first (oldest) output token on outpwill

Although this simple example may not look like a concurreftave a value representing an absent event (becgbseis
FSM, it is one, in fact. Within an iterationA and B must Nnot mentioned), while the second (newest) token on ougput
fire sequentially. Across iterations, however, they can fiMill have a value representing a present event (becguse
concurrently. Theth firing of A may be concurrent with the mentioned).

(i — m)th firing of B for any m > 0 such thati — m > 0. By default, state transitions occur whenever a DF actor that
Of course, with more complicated SDF graphs, there can tgfines to an FSM fires. Sometimes, however, we will prefer
much more concurrency, even within an iteration. for transitions to occur only between iterations of the DF

We can easily devise a syntax that permits an FSM to refigeaph. This will prove important below where states of the
a nonhomogeneous SDF actor. For a nonhomogeneous aEei may themselves be refined. In this case, there are two
(i.e., an actor where more than one token of each input/outpypes of firings of the DF actor that refines to FSM. In type
can be consumed or produced), we syntactically differentiade no transition is taken and no action is performed, but if the
each token of a given input or output by concatenatingurrent state is refined, the refinement subsystem is fired. In
its occurrence to its name. Borrowing notation from thgpe B, the refinement system is fired, a transition is taken,

750 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

for general DF, which can be made compositional, but not
for synchronous DF [29]. For the purposes of this paper, we
assume that only valid aggregations are specified.

[A] A second complication is that the FSM at level (b) in Fig. 10
might not be embedded within an SDF environment. Suppose
5 1) for example that it is embedded within a DE environment. In
[B] this case, the semantics must be that of SDF embedded within
[C] DE, which is covered in [15]. The key, therefore, is that an
FSM that contains slave SDF graphs must itself be treated as

Fig. 11. Actor C is not a valid SDF composition of A and B. The actoran SDF actor with the type signature determined by the slave
produce and/or consume a single token on each firing, as suggested byg@F graphs
annotations.)

v

A third complication is that the type signature may not be
the same in different states. In this case, the FSM system

and the corresponding action is performed. Type B firings witlannot be treated as an SDF actor because the number of
always be the last of an iteration. tokens it produces and consumes is dependent on its state.

Consider again the example of Fig. 10, focusing on levethis possibility is extremely interesting, and represents a major
(@) and (b). Suppose that the schedule for the top-level Siferement in expressive power, if it can be handled cleanly.
system is{D, C, C, C, E}. The first two firings of actoC are We deal with it in Section 111-B4.
type A firings, where only the subsystem refining the current 4) Heterochronous DataflowWhen an FSM system has
state (eithery or) is fired. The third firing ofC is a type more than one state refined to an SDF graph, the simplest case
B firing, where the refinement system is fired, a transition is where the type signatures of the SDF graphs are identical.
taken according to the values of the inputsind b, and the Then the FSM system itself is treated as an SDF actor with this

corresponding action is performed. type signature. Consider however the situation where the type
The notation described here has an obvious extensionsignatures are different. For example, in Fig. 12, one of the
valued FSM’s. We leave the details to the reader. SDF graphs consumes three tokens and produces one, while

3) SDF Inside FSM:If an SDF graph refines a state of arthe other consumes one and produces two. In this case, there
FSM, when that state is the current state, the next reactiawe two possible type signatures for the FSM subsystem and,
will consist of one iteration of the SDF graph followed by &ence, it cannot be embedded within an SDF graph.
reaction of the FSM. If the slave SDF graph is homogeneousOne option is to embed the FSM system within a dynamic
(consumes a single token from each input and producesiataflow (DDF) or boolean dataflow (BDF) graph [12]. In DDF
single token on each output), then it fits the FSM modeind BDF, the number of tokens consumed and produced need
naturally. At each reaction, each input has a symbol fronot be constant for each actor. However, the price we pay
the corresponding signal alphabet. Even if this symbol fer this approach is high. In DDF and BDF, many questions
interpreted as denoting an absent event, it nonetheless providesut the system are undecidable, such as whether it will
a token for the SDF graph to consume. deadlock and whether the memory required by the FIFO

If the slave SDF graph is not homogeneous, the semantipgeues is bounded [12]. More importantly, synthesis becomes
becomes more subtle. Suppose for example that the SBbre difficult and implementations more expensive. Moreover,
subsystem of Fig. 10(d) is to be used as a slave within anotliteseems that this choice of semantics provides more generality
FSM, say the one at level (b). Solving the single balantkan we really need for this application. So we invent a new
equation for the subsystem at level (d) (there is only one armodel of computation that we caleterochronous dataflow
entirely inside the subsystem and, hence, only one bala&tbF).
equation) indicates that one iteration will consist of two firings In HDF, an actor has a finite number of type signatures,
of A and one firing ofB. Thus, as shown at level (c), thewhere each type signature specifies the number of tokens
type signature for the subsystem indicates tfmatr tokens consumed and produced. When such an actor fires, a well-
will be consumed from input: and two from input b, and defined type signature is in effect. But type signatures are
two tokens will be produced at outpyt in one iteration of allowed to change between firings.
the subsystem. The semantics we choose is that the resultingThis model of computation is related ¢gclo-static dataflow
composite SDF type signature becomes the type signaturg(©SDF) [11]. In CSDF, an actor cycles through a finite list of
the FSM subsystem itself. Thus, whatever system the FSkpe signatures. It is easy to generalize the balance equations
at level (b) is embedded in must treat the FSM like an SDgo that all such actors complete an integer number of cycles
actor with the given type signature. in an iteration of the overall system. Thus, once again, an

There are a number of potential complications. First, conteration is finite, and static scheduling is possible. In HDF,
posing synchronous DF actors to create a new synchronous ifwever, the order in which type signatures are used is not
actor is not always possible. An example is shown in Fig. 1&yclic, nor even predictable.

There, if actors A and B are combined to form a synchronousif we allow the type signature of an actor to change between
DF actor C, the behavior changes. If for example actor C @y two firings, then it is easy to show that this model of
connected as shown, then the system deadlocks with actorc@nputation has the full expressive power of BDF and DDF
but not with actors A and B. This problem can be resolveahd, hence, of Turing machines. A more modest generalization

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 751

HDF
b(2) a(3,1) X(1.2) (1)
[Al [C]
FSNc[l ~Aa$Sl/x
N
SDF SDF

Fig. 12. An FSM with states that refine to SDF subsystems with different type signatures.

is possible by restricting the changes in type signature to oc¢he balance equations can be solved in time that is only linear
at more controlled points in the execution. in the number of arcs plus the number of actors, and a schedule
When an HDF system starts execution, there is an initiean be found in time that is linear in the number of firings
type signature in effect for each actor. These type signatuasd the number of edges [10], so it may not be impractical
can be used to solve the balance equations, finding an iteratimncompute schedules dynamically between iterations. We are
The semantics we choose for HDF is that each type signateterently exploring these implementation alternatives.
must remain constant for the duration of the correspondingAlthough the number of type signature combinations can be
iteration. To ensure this, the FSM components do not changgponential in the number of actors, it is finite. For each com-
state until their last firing in an iteration. At the completion obination, all key questions are decidable (deadlock, bounded
the iteration, a new set of type signatures is in effect, so theemory), and schedules can be statically constructed. Thus,
balance equations must be solved anew to redefine an iteratioa. have retained the key advantage of SDF (decidability),
In the example in Fig. 12, the top of the hierarchy iput have dramatically increased its expressiveness. However,
an HDF system. The middle actor in this system has twee can construct designs where not all combinations are
possible type signatures, consuming three and producing eeachable. Obviously, we need not worry about scheduling
or consuming one and producing two. Since this is the ontyich combinations. But if the language for expressing guards
actor refined into an FSM, there are two sets of solutions i® rich enough, then which combinations are reachable will
the balance equations. Two corresponding sequential schedulesbe decidable.
are{A,A A B,B,C,C}and{A,B,B,C,C,C,C}. Since HDF has one significant disadvantage. When a state transi-
statec is the initial state of the FSM, the HDF system starts bion occurs depends on a global solution the balance equations,
executing the first schedule. After the second firingByfthe rather than a local definition. This could make using it harder,
FSM is allowed to change state based on observations of it compromises the modularity of a design.
inputs. At that point, if the two most recent consumed tokensNote that in Fig. 12, in addition to the type signatures
(in the iteration) indicated “present,” then the state changesitoplied by the SDF refinements of the states, there are type
;3. After completion of the HDF iteration, instead of repeatingignatures implied by the guards on the transitions. The guard
the a schedule, thg schedule is invoked. a A a$1 implies that there are at least two tokens consumed
There are a number of alternatives for implementing HDFom input ¢ in one iteration (and that this input is pure).
If the number of possible type signature combinations & compiler will have to check that these constraints on the
small, as for the example in Fig. 12, it is probably best ttype signature are consistent with the type signature of the
precompute (at compile time) all balance equation solutiongfinement of the state from which the arc containing the guard
and all iteration schedules. Unlike DDF or BDF, it is alwaygmanates.
theoretically possible to precompute all schedules for all5) Dynamic Dataflow: The DDF and BDF models of com-
possible iterations. In general, however, the number of typetation permit actors to consume and produce a variable
signhature combinations is exponential in the number of HDkRumber of tokens on each firing. This enhancement by itself
nodes, so this approach can become impractical. Fortunatéysufficient to make the models Turing complete (they can

752 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

implement a universal Turing machine) [12]. At a fundamental The DE model of computation [14] is particularly useful
level, these models are therefore much more expressive thian modeling distributed or parallel hardware or software
SDF or HDF. The price we pay is that deadlock and boundedd their communication infrastructure. It carries a notion of
memory become undecidable and schedules can no longkbal time a value, usually a real number, that is known
(always) be constructed at compile time. simultaneously throughout the system. An event in a signal
To combine FSM’s with DDF and BDF, we use the concepiccurs at a point in time. In a simulation of such a system,
of firing rules, formalized in [29]. For the purposes of thigach event carries both a value aniihae stamphat indicates
paper, these firing rules simply imply that any DF actor mugie time at which the event occurs. The time stamp of an event
assert, prior to any firing, how many tokens it needs on eashtypically generated by the actor that produces the event,
input! So if an FSM refines a DDF actor, then in each statnd is determined by the time stamp of input events and the
of the FSM, we must determine how many tokens need to laency of the block. The DE simulator needs to maintain a
consumed on each input for the next firing (the next reactighobal event queue that sorts the events by their time stamps,
of the FSM). and chronologically processes each event by sending it to the
The semantics we adopt is simple; at least one tokendppropriate actor, which reacts to the evdireg).
consumed on every input signal mentioned in the guard of anyA formal semantics for DE is given in [30], which also
outgoing transition from the current state. If multiple tokenseferences other formal treatments. The semantics is based
are mentioned for a single signal, using the notatieis™ on constructing a metric space using the so-called Cantor
for any positive integet, then for each such signal, we findmetric, and defining signals to be elements of this metric space.
the largest index mentioned, and consume that many tokerSausality turns out to be a key property of operators on signals,
plus one. and can be characterized in terms of contraction mappings in
Thus, in each state, we know how many tokens will bidhe metric space. Determinacy is ensured if feedback loops
consumed at each input in the next reaction. These numbeositain a contraction mapping.
become the firing rules for the DDF actor refined by the FSM, 1) FSM Inside DE: Since the DE model of computation,
specifying the number of tokens that must be present on tilee DF, has well-defined firings, embedding FSM within DE
inputs for the next firing to occur. is straightforward from a control perspective. An FSM that
The inverse scenario is a bit more complicated. If a DDfefines a DE actor reacts when the DE actor fires, which occurs
graph refines a state of an FSM, then the firing rules of thrdhen there is an event at one of its inputs, and that event has
DDF graph are exported to the environment of the FSM. Thtite smallest time stamp of all events in the event qdelfie.
is, when the FSM is in the state so refined, the entire FSiHat event has a value, then that value is made available to the
becomes a DDF actor that will only be invoked when thESM for testing by the guards. If the other input signals do
firing rules of the DDF subsystentreated as an actqgrare not also have events with the same time stamp available for
met. This seems simple enough, but in fact, most realizatiofigs reaction, then those signals are assigned an input symbol
of DDF semantics are not compositional, meaning that a DDfdicating the absence of event. Unlike DF, absence of an
subsystencannot be treated as an act@nd, hence, cannotevent is represented in DE with absence of a token.
have well-defined firing rules. Techniques for making DDF In a reaction, an FSM that refines a DE actor may emit
compositional, and for determining the resulting firing rulegutput events. Those output events translate directly into
are covered in [29], and are beyond the scope of this papere¥ents in the DE domain. However, in DE, they must be
is sufficient for our purposes here to know that it can be dorassigned a time stamp, something that the FSM semantics does
not provide for. We choose semantics where the FSM system
C. Discrete Events with ESM appears to the DE system ag@ro-delayactor. If an output

) _ is generated in a reaction, it is assigned the same time stamp
DF is a loosely synchronized concurrency model, whetg ihe input that triggered that reaction.

events are partially ord_ered a_ccording_to their data prece-consider the example shown in Fig. 13. Suppose that an
dences. Because of this partial ordering of events, magyent for, with a time stampt is the next to be processed in

realizations of a DF system are possible, so systems are gt global event queue, and both FSMand B are in state
overspecified. Moreover, it implies a great deal of concurrency, Then. the DE system reacts as follow:

which can be exploited through parallel implementations.
However, the resulting loose synchronization is also a key
weakness of DF. Because of it, DF is not well suited for
explicitly modeling resource sharing and resource usage. We
study, therefore, two popular concurrency models that are
more tightly synchronized, DE and SR. The formal relation-
ship among all of these models of computation is studied in
[33].

Fire A) Since there exists an event far A makes the

transition froma to 3, and emits the pure event

«. In DE, this event will have time stampand,

thus, will be the next to be processed.

Fire B) Since there exists an event for B makes the
transition back to state, and emitsy. In DE, the
event ony will have time stamps.

1In [29], an actor may also assert what the token values must be. It is @There is some ambiguity when there is more than one event in the event
simple exercise to show that omitting this capability does not compromigeieue with the same smallest time stamp. Various DE simulators deal with
Turing completeness. Moreover, for reactive FSM’s, adding this capabiligituation differently. See [15] for a discussion of this issue. For the purpose
would not increase expressiveness. Thus, we omit it. of this paper, it makes no difference what technique is used.

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 753

DE DE
¢ avb/x|
a a’/x b X
x ¢ c/y v p & A
)@ P fonlia
2, [B]
b A
Fig. 13. Two FSM's that refine DE actors. @(,'/y
c y
[B]
DE
a —a’/x Fig. 15. As with all DE modeling, zero-delay loops can cause difficulties.
—>
B |, S
b @ problem, but all of them are intrinsic to DE and not to the
b [A] DE/FSM combination and, hence, are beyond the scope of
this paper.

Fig. 14. The guard on the upper transition is incomplete, in that eventD. Synchronous/Reactive Systems with FSM
must be present it is absent and the FSM is reacting. . . .
Even though time is a real number in a DE system, for

any well-behaved DE simulation, time in fact advances in
Since DE semantics is event-driven, an actor does not firegikcrete steps. Recognizing that, we could instead use a model
there are no events at its inputs. This leads to some subtleigscomputation where only the discrete steps are modeled,
with guards. Consider the example in Fig. 14, and suppogfd not the time continuum. In addition, we can resolve the
that the FSM is in statev. The guard on the only outgoingproblem highlighted above with zero-delay feedback loops by
transition indicates that must be absent for the transition toadopting afixed-point semanticdVith these two innovations,
trigger. Implicitly, however,b must be present, or the FSMwe get the SR model of computation [5]. SR is synchronous
would not react (there would be no event to trigger a firingjn the same sense as synchronous digital circuits. Time delays
Thus, it would be clearer to give the guard-as A b. If the in computations become irrelevant, so a useful conceptual
guard were given instead asa A —b, the transition would gimmick is to assume that computations take zero time. SR
never fire, since: andb are the only two inputs and the actohas a major advantage over DE in that an SR model can be
will not fire when both are absent. compiled into either sequential code or parallel circuits. DE,
2) DE Inside FSM: Much as we did with DF, if a state in in contrast, is difficult to implement efficiently in sequential
an FSM refines to a DE subsystem, then the properties of tiatie, although it is used routinely to specify circuits, which are
subsystem are exported to the environment of the FSM.Mtrinsically parallel (via the VHDL and Verilog languages).
that environment is not DE, but something else, such as DFExecution of an SR system occurs at a sequence of global,
then the semantics of DE within DF apply [15]. If more thamjiscrete, instants calleticks (as in ticks of a clock). At each
one state of the FSM refines, then all must refine to a Diek, each signal either has no event (is absent) or has an event
subsystem, but the semantics imposes no other consistefi§ypresent, possibly with a value). At each tick, signals are
constraint, as we had to do with SBF. related by functions that have signals as arguments and define
If the environment of an FSM is DE, the semantics is simplgignals. In general, directed cycles are permitted. Fir example,

The FSM will react when any of the inputs is present. Th®r signalsa andb, and functionsf and g, we might have
input that triggers the firing will have as its time stamp the

current timeof the environment. If the current state refines to a= f(b)
a DE subsystem, then that subsystem will be simulated until its b=g(a). 4

current time matches that of the environment. In the meantime, . i . .
it may emit events, which become outputs to the environmeﬁﬂus’ at each tick, signals are defined by a set of simultaneous

with time stamps equal to the current time (or later) equations using these functions. A solution is called a fixed

As is always the case with DE modeling where zero-deld) (Ijntél?cnhd ;hgxt:jkpgrn? compiler is ta generate code that will
actors are permitted, there can be semantic problems : . N .
directed cycles that have zero delay [33]. Consider the examggzei?:t?gi ;TV?/; ﬂs]efi:gsSttehme ;zgstzgrmggsrflc,ivtgr?ttf;[zes;?n-e
in Fig. 15. When A reacts to an event anit starts a process ! y 9

by which an event will circulate through the cycle forevelPUtS, each function is required to Ipeonotonicin a very

with no advance of time. There are a number of solutions p&\rticglar sense. Suppose that a functjohas input signak
with signal alphabefe, a1, az, ...}. We augment the alphabet

A particular programming environment may impose constraints on t})_{g'th a speC|aI symboIJ_, pronounced f‘bOttom’" that We
data types of the tokens, but that is not an issue being addressed in this papgerpret to mean “unknown.” The function must be defined

754 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

S B SR
\l/ a anb/x
1 - x
)))) b an—b/x
Fig. 16. Partial orders used to define SR functions. -,
[A]
for input L (the output will often, but not always be.).
We then define a “flat” partial order on the augmented set,
{L1,e,a1,as,...}, as shown in Fig. 16(a). In this diagram,
is below (“less than”) everything else in the set, and no two
other elements in the set are comparable (neither can be less c c/y y
than the other). The functiofi is monotonic if > \‘@DD -
B

a<d = fla) < fd) (5)

Fig. 17. Two FSM's are embedded in an SR system.
where the symbol £” is interpreted with respect to this
partial order. The partial order and the notion of a monotonic .
function is easily generalized to allow functions with muItipIeCannOt be known at the start of the tick for all the modules
arguments. It is then possible to use a fixed point theoréth the .Ioop. . .
based on the Knaster—Tarski fixed-point theorem to show t gn th|s section, assume the states of the FSM are not refln,ed.
any network of such monotonic functions has a least ﬁx’eﬁﬂnSIder the example in Fig. 17, where there are two FSM's,

point, where “least” is with respect to this partial order [18]... and B, embedded in an SR sys_tem an_d enclos_ed ina
The least fixed point is taken to be the semantics of the netw ected Ioop. InA, the _functlon mapping the inputs b into

of functions. This basic approach was pioneered by Scott [4 ,e outputz In state« s
Manna [34], and others. Many practical implementations of
the SR model have been constructed, starting with the Esterel
language [8].

Finding the fixed point is straightforward, in principle.This function does not depend énso if the FSM is in state
The functions are simply evaluated in any order until we anda is observed to be present or absent, then we specify
converge to a fixed point. Choosing a good order for evaluatiMdietherz will be present or absent without observiagrhus,
the functions can greatly impact performance, obviously. IR statec, the SR function defined by this FSM is not strict.
[20], Edwards proposes and compares several algorithms foPnly needs to observe, not b.
choosing a good order of evaluation. The above analysis can be automated to get a simplified

Functions are allowed to change between ticks. Thus,function for each output at each state using standard techniques
module in SR has two distinct behaviors that we gatiduce from digital logic design. These simplified functions will
and transition In the produce phase, the current function igdicate for each state what inputs need to be known to define

evaluated to determine outputs given the current informati@h output. _ _ o
about the inputs. In the transition phase, the function is We then define two phases of execution of an FSM within

changed in preparation for the next tick. SR, also callegproduceandtransition To complement firing

Most familiar functions arestrict, meaning that all argu- types A and B used for FSM within DF, we might call these
ments must be known before the function output is defineldfing types C and D, respectively. In the produce phase, a type
Strict functions are always monotonic. A directed loop of striét firing, the FSM observes the inputs and determines whether
functions has the solution (unknown) for all Signa|5_ any output function can be evaluated. If so, it is evaluated so

It is not uncommon, however, to have functions where tHBat the output is defined. If not, it indicates that the outputs
output can be determined even if some of the inputs are € still unknown. The produce phase may be invoked any
known. The use of nonstrict functions allows directed loogdmber of times in a single tick, as long as the output functions
with less trivial solutions. We will see that FSM’s can bére monotonic. The transition phase (a type D firing) makes
described as nonstrict functions that map input events im&]atever state transition is enabled by the current inputs, but
output events in each reaction. ignores the action associated with that transition.

1) Simple FSM Inside SREmbedding an FSM as an SR Thus, a run-time scheduler can sequence through function
module seems straightforward in the following sense. If &valuations, iterating until a fixed pointis found. The scheduler
a tick the inputs to the FSM are known, then the FSM c&@xecutes in three phases (cf. [20]).
react to them and possibly assert output events. Any outpui) First, invoke the produce phase for each FSM (and other
events that are not asserted would then be known to be absent. SR blocks) however many times is needed for it to either
However, there are two difficulties with SR. First, the current define the outputs or reach a fixed point. An algorithm
state of the FSM may refine to an SR or non-SR subsystem. for ordering these invocations is given by Edwards [20].
Second, the inputs may not be completely known. In particular,b) If any signals remain undefined, signal a causality loop
if the SR system includes a directed loop, then the inputs error.

fo(a,b) = (aAb)V (a A—b) = a. (6)

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 755

c) Invoke the transition function of every FSM in the SRnain validation method for most aspects of the combined
system. system.

The iterative procedure in Step 1 may seem costly at firstOne of the advantages of our approach is that it permits the
glance, but experience indicates that with intelligent schedise of established and reasonably mature synthesis and veri-
ing, convergence to a fixed point is very fast [20]. Moreovefication technologies within each model of computation, and
the iterative procedure is amenable to embedding in compilegpvides a simple and determinate mechanism for combining
code, so it does not imply an interpreted execution styl#le results. The determinacy of the combination ensures that
However, causality loops are only detected at run time anaa,llidation of the combination by simulation is practical.

hence, can only be reported at run time. This can be a serious

impediment to using such a scheme in embedded systems. V. IMPLEMENTATION

2) Refined FSM's Inside SRVe consider two cases. If the An experimental implementation of several of the combi-
current state of an FSM refines to an SR subsystem, the n P

Nations discussed here has been implemented in the Ptolemy

the produce phase of the FSM should |nvok.e the IorOduce1‘tware environment [13]. The SDF, DE, and SR models were
phase of the SR subsystem. No other change is needed. If the . . .
. already present in the software, and minimal modifications

FSM refines to non-SR subsystem, then we have to be more : . S
. ere required to interface them to FSM. The only significant
cautious. In that case, we assume that the non-SR subsystem™ .~ " ; :
: : . ; ——’“complication encountered was that, in order to support arbi-
defines a strict function, and modify the SR scheduling as : . S
follows rary hierarchical combinations of all four models, all four had

to have hooks supporting the produce and transition phases of

a) Same as above’. _ execution required for partial evaluation in SR. For SDF and
b) Look at all FSM’s in the SR system where the currerBE’ the “produce” phase does nothing, and the “transition”

state refines to & non-SR subsystem and that subsysigise implements a standard firing. Thus, SDF and DE have
has not fired. If there are non, continue to step 3. Oth&lfict hehavior. To get a modular software architecture, the
wise, if all of these have undefined inputs, then signal §yiect-oriented principle of polymorphism is used, where the

causality loop error. Otherwise, fire all refinements thafea it behavior of a model of computation is strict, but
have all inputs defined and repeat steps 1 and 2. gnecific models can override this behavior.
¢) If any signals remain undefined, signal a causality loop

error.
d) Invoke the transition function of every FSM in the SR V. EXAMPLES
system.
We do not have enough experience with this doubly iteratife "€ Reflex Game
procedure to know how costly it is. This is future work. A commonly used example for control-intensive software

3) SR Inside FSM:Embedding SR systems within FSM isenvironments is the “reflex game” [7]. Our version of the reflex
straightforward. If the current state of an FSM refines to ayame is a two-player game (to introduce more concurrency).
SR subsystem, then the semantics of SR are simply exported) Description of the GameThe inputs to the system are
to the boundary of the FSM. coin, ready, go, stopnd time. All but the last are user inputs,
while the last simply counts off time. The outputs &teeLt,
yellowlLt, greenLt, redLaind flashTilt used to control a user
interface. Normal play proceeds as follows.

Synthesis of hardware or software from FSM’s is standard a) lli-Ig;:;etru?rl]asyETun;ay asserointo start the game. A status
practice, and has been supported for many years in widely,) When player 1 .is ready, he presseady; and the status
used computer-aided design (CAD) packages. Synthesis oP light turns vellow ' '
hardware (e.g., [46]) and software (e.g., [10]) from SDF 9 y '

graphs has been demonstrated. Synthesis of hardware (e.g(?? ggeglap)l:)r/elr F)ZrepS‘rse;giDéstf}ZS?tgtsui;I%g;turns green

[9] and [41]) and software (e.g., [8]) from SR has also been d) The game ends, and the status light tums red.

demonstrated. Given our simple composition semantics, it_is

not hard to come up with ways to combine independentfv‘e game measures the reflexes of player 1 by reporting the

synthesized components. Although still somewhat limitefMe betweengreenLtand redLt There are some situations

such combinations have been demonstrated for embedddtfre the game ends abnormally, and a *ilt” light flashes.

software by Edwards [20]. DE is used more for modeling thaH'€Se are as follows.

synthesis, so synthesis is not much of an issue. a) After coin is asserted, player 1 does not presady
Verification of FSM's (reachability analysis and model Within L time units.

checking) is well studied. Verification of SDF graphs includes b) Player 1 pressestop before or at the same instant that

liveness analysis (or conversely, deadlock detection) [31]. Player 2 pressego.

Independent analysis is not compromised by our approachC) After player 2 pressego, player 1 does not presgtop

However, verification of an SDF/FSM combination, in general, ~ Within L time units.

becomes much more difficult. It is probable that because ©he additional rule is that if player 2 does not prgsswithin

fundamental decidability questions, simulation will remain thé time units after player 1 pressesady, thengo is asserted

IV. VERIFICATION AND SYNTHESIS

756 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

clock tine blueLr
ready vellowlLt
. player 1 stop | reflex gr‘wn[./; display
(d) MErge coin redlt
> » - —»
g0 JlashTilt
player 2 > >
cain coin j bluelt b/“()l‘/.
ready vellowli
—»
(b) g0 greenlt
— —>
Stop A redlt
P 1 »
fine error L flashTilt, redLr FST I S /(""hl,’l’
. 1ime Crron,
iime —1> —r’ yellowlLt
— ready exi —»
AR L
stop player 1 greenlt
— F—
ready end start greenkd
(© >
go - i ;mrt error
L 80 o
-7 ’W’II time play & 2 yellowLr exit
- -) . » -
.) N
Y | ready A — timeout e N RS
ine Crror ;
RALLSN ALY tinme
—_ —~x start | vellowLt end
recady iy exit start »
(d) tireout i error ~wu/ A --;.\)mp |) ol
¥ greenlt el yetiowl!
stop T greenLt z- ; v ’
! .. EB— go e go Vv timeoul " —»>
. A — fend - <SM
end ; -

- |srart | - =

[

time

time timeout
—

(e)

constant

SDF

Fig. 18. The system of the reflex game can be hierarchically decomposed into five levels of subsystems.

by the system, and the game advances to wait for playeiinterconnected with a zero-delay feedback loop, so we exploit
to pressstop the fixed-point semantics of SR.

2) Heterogeneous Realization of the Garfrir realization At level (d), the two players are refined into concurrent
of the game is shown in Fig. 18. To simulate the real-timeSM'’s. Player 1 starts in thé&lle state, and whemeady is
behavior of the game, we use DE as the topmost level (agserted, emits atart event and transitions to theait go
modeling the environment of the game (including the playerstate. This causes player 2 to transition to et state and
The DE model contains eélock to generate time ticks, modelsemit a yellowLt event. The rest of the behavior at this level
of the two players, aeflex block modeling the implementation should now be evident from the figure.
of the game, and display block. It also contains anerge In several states, we need to count ticks from the clock
block because either player can assert coin. to watch for time outs. This counting is a simple arithmetic

At the next level of the hierarchy Fig. 18(b), inside theomputation that can be performed using the DF graph shown
reflex block, we have a two state FSM. The statesgmene at level (e). This graph simply counts ticks, compares the
off and game on Inside thegame onstate, at level (c), we count against a constant, and emitiraeoutevent when the
use an SR model consisting of the two players. These dheeshold is exceeded.

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS

roatle REXLEX

irpu. TTME, RWAD
oumovat DISPIAY:

ouLoul BTURTT, Y

emit R=DL;
cmil DTSPTAY (D)

looo

awa'@ . COTN;

emit 3LUE_T;

sigral SLIARZD,

Lrapg n

| % olayer
var X :— 0
do

waLcning T
cmil START
awalzt

casc 570
exit I
casc TIND
cmil C
era awalzT;
Lrap 2
do
awa i
walchi
exiz U

cvery
X o=
end ev

rara.c ©
ermiT X
crmis D
cnd Lrap
end var
] % end ol
I
| % olayer
awail 57
armis YIT
awalt
casc G
[Sluns
case _
[Sluns
cnd awai
| % end ol
nana.c T do
cris TTASH
eriT REDLC
cra Lrap
cra signal
era loop

cra mcad. e

consTant _ — 10 ¢

c 87C3

awalT READY

integex;
Y, 8TOP, O, COTN;
integer;
TTTOW.T, CREWNTT, REDTT, TTASITTILT,
EX2T, END in

1

:oirTeger in

TTM® Lirmcoul exit 77 end;

i

Lransilicn nas Lhc higher oriorily
> ac
1
do
REENTT

A
L s7Ce

rg T TTMID oL
2;

rmcoul cxil T1 cond;

TTMS ac
X-1
ery

7 do
X1y
TEPTAY (X)

aycr 1

2
ART;
TOW.T;

G do
TND
CIME do
TND

L

ayer 2

TTTT;

Fig. 19.

Esterel realization of the two-player reflex game.

757

The computational aspects of the reflex game, which involve
only trivially simple arithmetic, are also a good match for
Esterel. For more sophisticated computations, such as signal
processing, it is common for Esterel programs to fall back on
modules written in C for their implementation. By contrast,
in the xcharts model, a designer could use DF models of the
sophisticated computations, which are somewhat higher level
(more abstract) than C programs.

Which description, Esterel ofcharts, is more readable or
understandable will depend heavily on the familiarity of the
reader with the languages involved. We believe that the version
in Fig. 18 will be more easily understood in general.

4) VHDL and C RealizationsEsterel has proven paths to
synthesis of both hardware and software [8], [9]. Code gener-
ation from DF graphs for both hardware and software targets
has also been demonstrated [10], [40], and has appeared in a
number of commercial products, such as SPW from Cadence
and COSSAP from Synopsys. Synthesis of embedded software
for a version of SR semantics that admits heterogeneity has
been demonstrated [20]. Synthesis of hardware from FSM
models is routine in CAD software, and synthesis of embed-
ded software from FSM models has appeared in commercial
products, such as Stateflow from The MathWorks. Thus, all
of the elements are in place for synthesis from tobarts
heterogeneous model. Nonetheless, we have not yet completed
a synthesis tool that performs the entire task, and we do not
wish to imply that this is a trivial task.

Although we have not implemented automatic synthesis for
the xcharts model, we manually crafted implementations of
the two-player reflex game in both (synthesizable) VHDL
and C. This code is written in a style similar to what would
be generated by a synthesis program. The complete VHDL
implementation is shown in Fig. 20, although not in a read-
able font. VHDL is a relatively verbose language, and this
description, which includes almost no comments, occupies
more than five pages, and like the Esterel program, does
not model the environment. The C description is somewhat
shorter, occupying less than four pages. In Fig. 20 at the right
we show the VHDL and C descriptions of the level (b) FSM
from Fig. 18. The FSM is implemented very directly as if-
then-else clauses in both cases. From these code segments,
we hope the reader is convinced that the translation from the
syntax in Fig. 18 to this syntax is relatively straightforward.
Our conclusion is that C and VHDL should be back-end
languages, synthesized from higher level descriptions for the
purpose of interfacing to lower-level synthesis tools (compilers
and logic synthesis), and thatharts provides a reasonable
higher-level description.

3) Esterel Realization:Fig. 19 shows an Esterel realization

of the two-player reflex game. The description is concisg,

. Digital Cellular Telephone

taking slightly less space than the one in Fig. 18. This ap-The reflex game example is rich enough to encompass
plication is a good match for the concurrent semantics ofultiple models of computation, but simple enough to be sum-
Esterel, which is synchronous/reactive. However, this Esterebrized on a page. A more practical application that exhibits
module does not include a model of the environment. Esterehny of the same features is a digital cellular telephone. It
programs generally specify modules that are intended to resideludes intensive numerical signal processing (a good match
within some foreign realization of the environment, such asfar SDF), in both the speech coder and radio modem. It may
C program. There is no support for DE modeling.

also include features such as speech recognition for hands-free

758 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

procedure reZlex proc
(coin, rcaay,go,sloo: in oil;
olue’t vazr,ye_lowlt ve
red t var, flasali = v
reflex s tin refllex
vlayerl state:in olaye
vlayer? state:in olaye 3
cournier:in inlLeger range O Lo

reerz,tivar,

a6;
rel_exX STaTe TeXTiouT Zlex Type;
vlayerl state next:ocut pl_ayerl Type;
olaycr? slale nexbl:oul player? Lypce;
cournzer next:cut Integer rance 0 —o 100)
is
variaole exild,crrorl:oil;

rcl ex state rnexb:i—garme of 75
cra i°;
wher came cn —>

garc c¢n orcc(recad

var,

greenlT
p-aycerl slaie,olayer? siaLc,couner,
playcerl slaic rexo,p.aycr? s.aLc rnex.,

counter nexw);
iT (exil0="1") Lrer
rcalie var:="17;
ref_ex s _rext:—gare ofZ;
c sl (crrorC="17) _ker
rcalie var:="17;

f,as:u‘i,iivar:*' _y

rcl ex state rnexb:i—garme of 75
clsc

ref_ex state next:—gare on;
cra i°;

cra casc;
era re f,exiproc;

reflex proc (coin, rcaa

bluclL, yollowl:
iat coin, ready, o, 8T
AL *blucTie, *ycliowl L,

[TasaTilL)
*rcalie, *Mlask™”i1L;

Int error—0, exiT—0;

swiLcn (rel cx sua
casc gamc ol [:
2f (coin) |
*olueT L-";

re’lex slale—-game or;

Dreax;
casc gamc on:
gare on proc(time, zeady, <o, sZop,
yellow'L, greerntl, &crror, &cxil);
M (exil) |
“realz—1;
re’lex slale—-game ol fl;
> clse [{crror) |
“realbt—1; ~flask"Z1lt—_;
re’lex slale—-game ol fl;

oOreal;

Fig. 20. VHDL description of the two-player Reflex game, with the segment corresponding to level (b) in Fig. 18 shown in a readable font at the
upper right. At the lower right is the C version.

dialing. These signal processing components are each qtite use of simpler algorithms when the channel is benign,
sophisticated, and may involve modal models that would Iseiggesting that mode changes would be driven by channel
appropriately constructed by combining SDF with FSM. Fagstimators.

example, equalization of a fading radio channel may involve A cellular phone also includes a substantial amount of
the use of distinct algorithms during the establishment of eanbedded control logic for call processing and multiple-access
connection vs. steady state. Also, power conservation dictapgstocols. Time-division multiple access (TDMA), such as

GIRAULT et al. HERARCHICAL FSM'S WITH MULTIPLE CONCURRENCY MODELS 759

that used in GSM phones, requires accurate real-time statwiously would be obtuse to someone familiar with only

transitions. Such protocols can get quite intricate, so tlaesubset. This particular example was chosen precisely to

ability to systematically verify correctness of FSM model8dlustrate our claim for heterogeneity and for multiples models

may become valuable. Even without formal verification, if anf computation. However, most designs of similar complexity

FSM model is more easily understood than a C program, thewould only require a subset of the four models of computation.

a design constructed in terms of FSM’s is more likely to be There are many issues that are not discussed in this paper.

correct. These include enhancements that are possible in FSM, for ex-
Modeling a cellular phone requires modeling its envirorample to support preemptive transitions, where the refinement

ment, which can itself be quite complex. Multiple-accessf a state is not fired prior to taking the transition. Another

scenarios, with varying numbers of other users, should ksue thatis not dealt with is what should be done with the state

part of the model. Multipath fading should also be modeledf a refinement of a state of an FSM. It is possible to support

although the level of detail of the model will depend on what “history entry,” where entering a state starts the refinement

question is being asked about the design (a transfer-functisotbsystem in whatever state it was last in.

level model would be used to verify the design of the radio

modem, while a drop-out-event model would be used to verify

the robustness of _the protocol implementa}tions). Many of the REEFERENCES

features of the environment can be conveniently modeled using

DE. Detailed modeling of multipath fading is well-suited to [1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
SDF X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
’ . . . analysis of hybrid systemsTheoretical Comput. Sgivol. 138, no. 1,
A cellular telephone also contains analog RF circuitry, pp. 3-34, Feb. 1995.

. programs,” presented &th Euromicro Workshop on Real-Time Systems
have discussed in this paper. Mixed-signal models that include 1, “Finland. June 1993

FSM'’s, DE, and SDF are an active area of research. ComméB] E. A. Ashcroft, “Proving assertions about parallel progranisComput.

i Syst. Scj.vol. 10, no. 1, pp. 110-135, 1975.
cial systems have already appeared that Support subsets fF. Belina, D. Hogrefe, and A. Sarm8DL with Applications from Proto-

these, such as Saber from Analogy, which models DE Syé‘ col Specification Hemel Hempstead, U.K.: Prentice-Hall International,
tems together with continuous-time systems, and HP Ptolemy, 1991.

: : : 4] A. Benveniste and G. Berry, “The synchronous approach to reactive and
which models SDF systems together with continuous-time™ ‘=" "~ systems,” ifProc IEEE vol. 79, pp. 1270-1282, Sept, 1991.

systems. [6] A. Benveniste and P. Le Guernic, “Hybrid dynamical systems theory

Finally, a cellular phone development project is a multiteam and the SIGNAL language[EEE Trans. Automat. Contrvol. 35, pp.

effort, and coordination of the diverse tasks of the teams is g, g?sgg‘,‘]?;aﬁgayelgge?,-y F. Boussinot. R. de Simone. G. Gonthier. A.

major challenge. In practice, cellular telephone design efforts Ressouche, J. P. Rigault, and J. M. Tanzi, INRIA, Sophia-Antipolis,

use a heterogeneous set of tools and methodologies. Different France, “Programming a reflex game in esterel V3,” Rapport de
techni df h of th bedded DSP softw. Recherche no. 07/91, June 1991. _
echniques are used Tor each of the embedde SOTWa&: G. Berry and G. Gonthier, “The esterel synchronous programming lan-

the embedded microcontroller software, the custom digital guage: design, semantics, implementatidgi. Comput. Programming

i vol. 19, no. 2, pp. 87-152, 1992.
hardware, and the analog and RF hardware. We believe that t G. Berry, “A hardware implementation of pure estereSadhana,

*charts model provides a good framework for coordination of * Academy Proc. Engineering Scienc&892, vol. 17, no. 1, pp. 95-130.
such efforts. [10] S. S. Bhattacharyya, P. K. Murthy, and E. A. L&xnftware Synthesis
from Dataflow GraphsNorwell, MA: Kluwer Academic, 1996.
[11] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static dataflow,”IEEE Trans. Signal Processingol. 44, pp. 397408,
VII. CONCLUSION Feb. 1996.
. . . , . _#12] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory
We have described the combination of FSM’s with three dif- ~ using the token flow model,” Ph.D. Dissertation, Dept. EECS, Univ.

ferent concurrency models, DF, SR systems, and DE systems, California, Berkeley, CA, 1993; Tech. Rep. UCB/ERL 93/69, .

. 3l J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
These three concurrency models have different strengths éjh A framework for simulating and prototyping heterogeneous systems,”

weaknesses, and are, thus, applicable in different situations. DF nt. J. Comput. Simulatignspecial issue on “Simulation Software
(Section 11I-B) is well suited to numerical computation, such ~ Development,” vol. 4, pp. 155-182, Apr. 1994; [online]. Available:

. . . http://ptolemy.eecs.berkeley.edu/papers/JEurSim.
as signal processing, but poorly suited to resource manage”ﬁﬁ]t C. CassandrasDiscrete Event Systems, Modeling and Performance

and control logic. SR (Section 11I-C) is well-suited to resource Analysis Irwin: Homewood IL, 1993.

management and control logic, but overspecifies numeridaf] W--T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous
simulation—mixing discrete-event models with dataflow,

compgtational systems by i_mposing synchrony. DE (Section jnvited paper, J. VLS| Signal Processing RASSP spe-
[1I-D) is well-suited to modeling hardware systems, but poorly cial issue, submitted for publication. [online]. ~Available:

suited to more abstract specifications because of its physigal m‘péﬁfgﬁmgee{gﬁﬁgkﬂeyHes‘fé‘(]aner%?ggit:rogefgigéno and A

notion of time. FSM’s complement all three of these with ~ sangiovanni-vincentelli, “Hardware-software codesign of embedded
sequential control that is easily analyzed and synthesized. W% ;ysgelms,;’lEEE N(Ijicgo, App-s26—”?£, IAugS- 1994, g

: : 7] R. Cleveland and S. A. Smolket al, “Strategic directions in concur-
have g|ver_1 Sema_ntlcs for each concurrent model of compu{é rency research,ACM Computing Surveysol. 28, no. 4, Dec. 1996.
tion combined with FSM. [18] B. A. Davey and H. A. Priestly|ntroduction to Lattices and Order

An example is described that uses all four models of = Cambridge, U.K.: Cambridge Univ. Press, 1990. i
. Th I bination is easil ndersto :(L]9] J. B. Dennis, “First version data flow procedure language,” Massachu-

computation. : e resu Ing combinat ! iy u] setts Inst. Technol. Lab. Comput. Sci. Tech. Memo MAC TM61, May
by anyone familiar with all four models of computation, but 1975.

760

[20]

[21]

[22]

(23]
[24]
[25]
[26]
[27]
(28]

[29]

(30]

(31]

(32

(33]

(34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

S. A. Edwards, “The specification and execution of heterogeneo{#3] F. Vahid, S. Narayan, and D. D. Gajski, “Speccharts: A VHDL front-
synchronous reactive systems,” Ph.D. dissertation, UCB/ERL M97/31, end for embedded systemdEEE Trans. Computer-Aided Desigvol.
Department of EECS, Univ. California, Berkeley, CA, May 1997. 14, pp. 694-706, June 1995.

N. Halbwachs,Synchronous Programming of Reactive Systenor- [44] M. von der Beeck, “A comparison of statecharts variants, Pioc.
drecht, The Netherlands: Kluwer Academic, 1993. Formal Techniques in Real Time and Fault Tolerant SystéRES 863.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous Berlin, Germany: Springer-Verlag, 1994, pp. 128-148.

data flow programming language LUSTRE,”Rmoc. IEEE vol. 79, pp. [45] W. W. Wadge and E. A. Ashcroft.ucid, the Dataflow Programming
1305-1319, Sept. 1991, . Language London, U.K.: Academic, 1985.

D. Harel, “Statecharts: A visual formalism for complex systen®t. [46] P. Zepter and T. Grotker, “Abstract multirate dynamic data-flow graph
Comput. Program.vol. 8, pp. 231-274, 1987. specification for high throughput communication link ASIC's,” submit-
T. A. Henzinger, “The theory of hybrid automata,” Rroc. 11th Annu. ted for publication.

IEEE Symp. Logic in Computer Science (LICB)96, pp. 278-292.

C. A. R. Hoare, “Communicating sequential process€sfhmun. ACM

vol. 21, no. 8, Aug. 1978.

J. Hopcroft and J. Ullmarintroduction to Automata Theory, Languages,
and Computation Reading, MA: Addison-Wesley, 1979.

M. Jourdan, F. Lagnier, F. Maraninchi, and P. Raymond, “A multi
paradigm language for reactive systems,Pioc. 1994 IEEE Int. Conf. ;
Computer Languages (ICCL '94Youlouse, France, May 16-19, 1994,
pp. 211-218. £
G. Kahn, “The semantics of a simple language for parallel prograr|

ming,” in Proceedings of the IFIP CongressAwsterdam, The Nether- .
‘ ‘ RIA, the Institut de Recherches en Informatique

lands: North-Holland, 1974.

E. A. Lee, “A denotational semantics for dataflow with firing,” Electron__ Ep) .

Res. Lab., Univ. California. Berkeley, CA, Memo UCB/ERL M97/3,-;§";3¢_%.)_ Asts| et Automatique, Grenoble, France. His research
Jan. 1997. _ interests |nc|ude the de_35|gn of reactive systems, with

, “Modeling concurrent real-time processes using discrete event@rspecial concern for distributed implementation and formal verification. He
invited paper Ann. Software Eng., special volume on real-time soﬁi_ea_gn(_ad the OCREP tc_JoI tha_t parallelizes synchronous programs according
ware engineering, submitted for publication; Electron. Res. Lab., UnitP distribution specifications given by the user.

California. Berkeley, CA, Memo M98/7, Mar. 4, 1998.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous

data flow programs for digital signal processintEFEE Trans. Comput.

Jan. 1987. Bilung Lee received B.S. degree in control engi-
E. A. Lee and T. M. Parks, “Dataflow process networks,”Hroc. d neering from National Chiao-Tung University, Tai-
IEEE, May 1995, vol. 83, no. 5, pp. 773-801. [Online]. Available: wan, R.O.C., and M.S. degree in electrical engi-
http://ptolemy.eecs.berkeley.edu/papers/processNets. neering and computer sciences from University of
E. A. Lee and A. Sangiovanni-Vincentelli, “A denotational framework California, Berkeley. He is a Ph.D. degree candi-
for comparing models of computation,” Univ. California, Berkeley, date in the Department of Electrical Engineering
CA, Eng. Res. Lab Memo UCB/ERL M97/11, Jan. 30, 1997. [Online] and Computer Sciences at University of California,
Available: http://ptolemy.eecs.berkeley.edu/papers/97/denotational/. Berkeley.

E'.‘”lvlzigr;i,Mathematlcal Theory of ComputationNew York: McGraw His research interests include embedded system
Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurreni ggtsilgnn,sggigrﬁsénd video processing, and communi
Systems Berlin, Germany: Springer-Verlag, 1991.

F. Maraninchi, “The argos language: Graphical representation of au-
tomata and description of reactive systems,” presentetE&E Work-
shop on Visual Languages Kobe, Japan, Oct. 1991.

, “Operational and compositional semantics of synchronous ag
tomaton compositions,” inecture Notes in Computer Sciend@ON- |
CUR'92, Third International Conference on Concurrency Theory, vo
630, Stony Brook, NY: Springer-Verlag, pp. 550-564, Aug. 1992.

R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes
1,” Inform. Computationvol. 100, no. 1, Sept. 1992.

S. Narayan, F. Vahid, and D. D. Gajski, “SpecCharts: A languag
for system level specification and synthesis,” presentethtatSymp.
Computer Hardware Description LanguagesMarseille, France, Apr. .\
1991. ‘m N

Alain Girault received the Ph.D. degree from the
National Polytechnical Institute of Grenoble, Greno-
ble, France, in 1994, and spent two years and a half
as a post-doc researcher, in the ESTEREL team in
Sophia-Antipolis, France, in the PTOLEMY group
at the University of California, Berkeley, and in the
PATH project at UC Berkeley.

He. holds a Research Fellow Position at IN-

Edward A. Lee (S'80-M'86-SM'93-F'94) re-
ceived the B.S. degree is from Yale University,
New Haven, CT, in 1979, the S.M. degree from
Massachussets Institute of Technology (MIT) in
1981, and the Ph.D. degree from the University of
California, Berkeley, in 1986.

He is a Professor in the Electrical Engineering and
Computer Science Department at the University of
California, Berkeley. His research interests include
embedded real-time systems, signal processing,
M. Pankert, O. Mauss, S. Ritz, and H. Meyr, “Dynamic data flow ant discrete-event systems, concurrency, and system-
control flow in high level DSP code synthesis,”fmoc. 1994 IEEE Int. level design technology. He is director of the Ptolemy project at the University
Conf. Acoustics, Speech, and Signal Processirfgdelaide, Australia, of California, Berkeley. He is co-author of four books, numerous papers,
Apr. 19-22, 1994, vol. 2, pp. 449-452. and two patents. From 1979 to 1982 he was a member of technical staff
F. Rocheteau and N. Halbwachs, “Implementing reactive programs at Bell Telephone Laboratories in Holmdel, NJ, in the Advanced Data
circuits: A hardware implementation of LUSTRE,” lrecture Notes in Communications Laboratory. He is a co-founder of BDTI, Inc., where he
Computer ScienceReal-Time, Theory in Practice, June 3-7, 1991, volis currently a Senior Technical Advisor, and has consulted for a number of
600. Berlin, Germany: Springer-Verlag, 1992, pp. 195-208. other companies.

D. Scott, “Outline of a mathematical theory of computation,”Hroc. Dr. Lee received a National Science Foundation (NSF) Presidential
4th Ann. Princeton Conf. Information sciences and systef30, pp. Young Investigator and won the 1997 Frederick Emmons Terman Award
169-176. for Engineering Education.

L

