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Abstract—This paper studies the semantics of hierarchical
finite state machines (FMS’s) that are composed using vari-
ous concurrency models, particularly dataflow, discrete-events,
and synchronous/reactive modeling. It is argued that all three
combinations are useful, and that the concurrency model can
be selected independently of the decision to use hierarchical
FSM’s. In contrast, most formalisms that combine FSM’s with
concurrency models, such as Statecharts (and its variants) and
hybrid systems, tightly integrate the FSM semantics with the
concurrency semantics. An implementation that supports three
combinations is described.

Index Terms—Concurrency, discrete events, finite state ma-
chines (FSM’s), heterogeneity, hierarchy, modeling, synchronous
dataflow languages.

I. INTRODUCTION

M ANNA and Pnueli [35] argue that concurrency is
the essential feature of reactive systems, a class that

includes all embedded systems, real-time systems, and many
software systems. In concurrent systems, modules consist of
relatively autonomous agents that interact through messaging
of some sort. The rules of interaction of the agents, the
semantics of the composition, is what we call themodel of
computation.

Models of computation that support concurrency are numer-
ous. A popular one today isthreads, where a set of sequential
processes operate on the same data. More sophisticated concur-
rent models of computation include communicating sequential
processes (CSP) [25], the pi calculus [38], dataflow (DF) [19],
process networks [28], discrete events (DE’s) [14], and the
synchronous/reactive (SR) model [5]. These models are more
sophisticated in the sense that complex concurrent systems
can be more easily designed, and the designs yield better
to analysis. The block diagram languages used in signal
processing, for example, almost all have some variant of
DF semantics, and often yield to deadlock analysis, static
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scheduling, and reasonably efficient synthesis of embedded
software or hardware.

While concurrency is a major source of complexity, it is
not the only one. Increasingly intricate sequential control logic
also adds difficulty to design, particularly when errors in the
control sequence can have fatal consequences for the user, as
is the case in many embedded systems. Finite state machines
(FSM’s) have long been used to describe and analyze intricate
control sequences. Because of their finite nature, FSM’s yield
better to analysis and synthesis than alternative control models,
such as sequential programs with if-then-else and goto. For
example, with an FSM, a designer can enumerate the set of
reachable states to ascertain that a particularly dangerous state
cannot be reached. The same question may be undecidable in
a richer language.

Most modern electronic systems have both intricate control
requirements and concurrency. Thus, combining FSM’s with
concurrent models of computation is an attractive and in-
creasingly popular approach to design. Since Harel introduced
that Statecharts model [23] in 1987, a number of variations
have been explored [44]. The Argos language [36], [37], for
example, combines FSM’s with a SR concurrency model [5].
Jourdanet al. [27] combine the synchronous language Lustre
[22] and Argos.

Many researchers have combined FSM’s with concurrent
models of computation that are significantly different from that
of Statecharts. Specification and description language (SDL)
combines process networks with FSM’s [4]. The codesign
finite state machine (CFSM) model [16] combines FSM’s
with a discrete-event (DE) concurrency model. Pankertet
al. combine synchronous DF [31] with FSM’s [40], [36].
Program-state machines (PSM) combine imperative semantics
with FSM’s [39], [43]. Hybrid systems [1], [24] mix con-
current continuous-time systems (usually given as differential
equations) with finite automata. Simulink, from The Math-
Works, Inc. (Nattick, MA), provides a simulation environment
for such combinations. All of these examples, however, tightly
intertwine the concurrency model with the automata semantics.
Except for Simulink and Statecharts (and some of its variants),
they also have limited compositionality in that they permit
automata only in the leaf cells of the hierarchy (as in SDL), or
only permit automata at the top of the hierarchy (as in hybrid
systems).

With Statecharts, Harel dramatically increased the usability
of FSM’s through two innovations [23]. First, FSM’s can be
hierarchically combined. A single stateat one level of the
hierarchy is interpreted as being in one of several states, e.g.,,
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, or , at a lower level of the hierarchy. These are often called
“or states” because being in stateis interpreted as being in
state , , or . Second, FSM’s can be concurrently combined.
An FSM with states and can be composed with an FSM
with states and , resulting in an FSM that is in state

, or . These are sometimes called “and states” because
the FSM can be in both state and , for example. Both
innovations allow state machines to be represented compactly
and intuitively.

While the static interpretation of “and states” is clear, their
dynamics are far less clear. Given two concurrent FSM’s,
when do they make state transitions, relative to one another?
How should they communicate their state and/or transitions?
These questions greatly complicate the FSM model of com-
putation, and indeed were not completely resolved by Harel
initially. This is part of the reason for the proliferation of vari-
ations of concurrent hierarchical FSM models of computation
[44].

Harel loosely defined state transitions in concurrent FSM’s
to be simultaneous. A state transition could broadcast an
event, visible immediately to all other FSM’s. The other
FSM’s could then make state transitions immediately, and also
broadcast events. As long as there is no circular logic (circular
dependencies among transitions), this notion of simultaneous
transitions is well-defined. Real circular dependencies can
lead to genuine paradoxes and/or to undetermined behavior.
However, apparent circular dependencies prove to be common
in practical systems, primarily because of the use of hierarchy,
so the model had to be refined. The Argos language [37]
and others refine the model by applying the SR principle [5],
which resolves apparent circular dependencies by seeking at
each instant aleast fixed point, a globally consistent behavior.
The SR principle, first developed by Berry in the Esterel
language [8], gives a well-defined and determinate semantics
to simultaneous concurrent actions. But there is no reason to
restrict concurrent FSM’s to SR semantics.

Indeed, all known high-level concurrency models have
their strengths and weaknesses. SR models are good at de-
scribing tightly coordinated control, but overspecify systems
that do not need such tight synchronization. Dataflow and
process networks models are much more loosely synchronized,
but poorly model control logic and resource management.
Discrete-event models are excellent for describing hardware
or other physically disjoint agents, but their physical notion
of time is awkward for more conceptual or abstract concur-
rency.

This paper advocates decoupling the concurrency model
from the hierarchical FSM semantics. We describe a family
of models of computation, calledcharts (pronounced “star-
charts”). Unlike Statecharts and other concurrent hierarchical
FSM’s, charts do not define a concurrency model, but rather
show how to embed hierarchical FSM’s within a variety of
concurrency models. Thus, the concurrency model can be
chosen to match the problem at hand. Is tight synchronization
possible? Desirable? If not, then an SR model is inappropriate,
and perhaps a DF or process network model would be a better
choice. Is there a globally consistent notion of time? If not,
then a DE model will be inappropriate, and perhaps a CSP

model would be a better choice. The same hierarchical FSM
language works with all of these concurrency models.

The hierarchy in charts is arbitrarily deep, and concurrency
models and FSM’s can be placed anywhere within it. An FSM
can be nested within a module in a concurrency model, with
the interpretation that the FSM describes the behavior of the
module. Conversely, a subsystem in some concurrency model
can be nested within a state of an FSM, with the meaning
that the subsystem is active if and only if the FSM is in that
state. The latter is particularly well suited to describingmodal
systems, where modes of operation are modeled as states of
an FSM.

More interestingly, once we have decoupled FSM semantics
from concurrency semantics, heterogeneous combinations us-
ing multiple concurrency models become possible. Systems
can truly be built up from modular components that are
separately designed, and each subsystem can be designed using
the models of computation best suited to it.

The main objective of this paper is to give a scalable
approach to design. By “scalable” we mean that subsystems
can be designed, analyzed, verified, and synthesized relatively
independently of one another, and can then be composed
in a way that the composition can be analyzed, verified,
and synthesized. To achieve these objectives, our models of
computation must satisfy two objectives. First, they must
be compositional. This means that composite modules can
be treated as primitive modules. Second, they must support
heterogeneity. This means that composite modules can be
embedded within a foreign model of computation. To preserve
analyzability, this embedding should be done with a maximum
amount of information hiding.

A side effect of supporting heterogeneity is that more
specialized models of computation become more useful. They
do not need to solve all problems because alternatives are
available. They only need to solve some problems well. Thus,
it becomes practical to use specialized models of computation,
such as FSM’s and synchronous DF, which have strong
formal properties, excellent paths to synthesis, and natural and
intuitive syntaxes.

We begin by adapting a standard notation for FSM’s, which
is compact and efficient when considering an FSM in isolation,
to get a notation more suitable for studying compositions of
FSM’s. To do this, we have to put more emphasis than usual
on the interaction between an FSM and its environment. We
then consider combining FSM’s with three popular concurrent
models of computation: DF, DE, and the SR model. In the case
of DF, we introduce a new subset of DF called heterochronous
dataflow (HDF) that combines particularly well with FSM’s.
We then briefly describe an experimental implementation in
the Ptolemy environment [13], where hierarchical FSM’s can
be combined with DF, DE, and SR concurrency models.

II. FINITE STATE MACHINES

A. The Basic FSM

An FSM is a five-tuple [26]

(1)
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Fig. 1. A basic FSM.

where

finite set of symbols denoting states;
set of symbols denoting the possible inputs;
set of symbols denoting the possible outputs;
transition function mapping to ;
initial state.

In one reaction, an FSM maps a current state and an
input symbol to a next state and an output
symbol , where . Given an inputword,
or sequence of symbols from the input alphabet, and an
initial state, a sequence of reactions will produce a sequence
of states and an output word, or sequence of symbols from the
output alphabet . All sequences are potentially infinite.

A directed graph, called astate transition diagram, is
popular for describing an FSM. As shown in Fig. 1, each
elliptic node represents a state and each arc represents a
transition. Each transition is labeled by “guard/action,” where
guard represents the input symbol that triggers the
transition, andaction represents the output symbol when
the transition is triggered. The arc without a source state points
to the initial state, i.e., state. During one reaction of the FSM,
one transition is triggered, chosen from the set of enabled
transitions. An enabled transition is an outgoing transition
from the current state where the guard matches the current
input symbol. The FSM goes to the destination state of the
triggered transition and produces the output symbol indicated
by the action of the triggered transition.

In this paper, we focus ondeterministicandreactiveFSM’s.
An FSM is deterministic if from any state there exists at most
one enabled transition for each input symbol. An FSM is
reactive if from any state there existsat least one enabled
transition for each input symbol. To simplify notation and
ensure that all our FSM’s are reactive, every state is assumed
to have an implicit self transition, i.e., going back to the same
state, for each input symbol that is not a guard of an explicit
outgoing transition. Each such self transition has as its action
some default output symbol, denoted by, which has to be an
element of . Sometimes, this default symbol is interpreted
to mean “empty” and is omitted from the output word [26].

For example (see Fig. 1), suppose
and is

such that and , then we also
must have the implicit self transitions and

. A possibletrace, or sequence of reactions,
is shown in Fig. 2.

B. Multiple Inputs and Outputs

An FSM is embedded in an environment. The environment
may in fact be part of the overall system under design, or
may be out of the control of the designer. In either case, it

Fig. 2. A possible trace for the basic FSM in Fig. 1.

provides a sequence of input symbols, and the FSM reacts by
providing a sequence of output symbols, meanwhile tracing a
sequence of states.

Frequently, the interaction with the environment needs to be
modeled in more detail. It may not be convenient, for example,
to consider the FSM to have only a single input symbol.
Multiple inputs and multiple outputs may be a more natural
model. To handle this, the input alphabet can be factored and
expressed as a cartesian product .
Here, the input to the FSM consists of signals, where the
th signal is a sequence ofeventsrepresented by symbols

from the signal alphabet . The FSM reacts to a set of
simultaneous symbols from the signals. The output

alphabet can be similarly factored. Reactions emit events on
signals.

C. Pure and Valued FSM’s

A common special case, called apure FSM, is where the
size of the input symbol set is a power of two, , and
each signal alphabet has size two, for . We
interpret this to mean that at a reaction, each signal consists
of an eventthat is eitherpresentor absent(hence, ).
A common notation in this scenario assigns a name to each
signal, such as “”, and denotes the alphabet corresponding to
that signal by , interpreted as is present a, is
absent . Thus, for example, consider an FSM with two input
signals and two output signals . The
input alphabet is written and the output
alphabet is written , where is
the default symbol.

In a valuedFSM, the input and output alphabets are again
factored into signal alphabets, but at least one of these signal
alphabets has size greater than two (it might even be infinite).
We again interpret one element of such an alphabet to denote
absence of an event, while the remaining elements denote
presence of an event and a value for the event. Valued
FSM’s are often used to augment automata with arithmetic
operations, which are awkward to specify directly using pure
FSM’s. In our scenario, this augmentation is not fundamentally
needed because arithmetic operations can be specified instead
in a foreign model of computation better suited to them,
such as DF. Nonetheless, valued FSM’s may provide a more
convenient syntax, even if they add nothing fundamental in
expressiveness, so we will briefly discuss their ramifications.

In a pure FSM, the size of the input alphabet grows
exponentially with the number of input signals. Thus, it
can become quite inconvenient to define a reactive FSM
by explicitly specifying outgoing transitions from every state
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Fig. 3. A pure FSM.

for every input symbol. This may be a very large number
of transitions. To avoid this problem, a single transition
may bear as a guard a subset of rather than a single
symbol. It would, thus, represent an ensemble of transitions
compactly. An arbitrary subset of can be defined by a
boolean expression in the input signals. For example, if

, the boolean expression “ ” (not or
) represents the subset . Thus, for pure FSM’s,

guards will be represented as boolean expressions of the input
signals.

Consider the example in Fig. 3 with states ,
input signal alphabet and output signal alphabet

. The guard “ ” of the transition from to
is enabled by any input in . The guard “ ” of the
transition from to is enabled by any input in .

For valued FSM’s, more complicated boolean-valued ex-
pressions can be used for the guards. For example, suppose
that in a valued FSM, theth signal is named “” and
has the alphabet , the set of real numbers. Then a
guard may contain comparison operators and real numbers, for
example “ ”. This compactly represents an uncountably
infinite number of transitions. However, it also makes it
much more difficult to reason about the FSM. In fact, with
a sufficiently rich expression language, it will make some
questions undecidable. Thus, valued FSM’s carry a high cost:
loss of analyzability.

Fortunately, because our model is heterogeneous, valued
FSM’s add no fundamental expressiveness. Instead of a guard
“ ” we could specify a guard “b” and externally, say in
a DF model, compute the function

true
false otherwise.

(2)

By supporting heterogeneous combinations of models of com-
putation, charts permits us to keep FSM’s pure, simplifying
formal analysis, while not compromising on expressiveness.
Of course, the combined model is no more analyzable than
the valued FSM, but at least we are able to analyze the pure
FSM.

For pure FSM’s, actions are specified with a reasonably
compact notation. The default output for each signal is as-
sumed to denote an absent event. An action, thus, only lists
output signals that are to have present events in the current
reaction. In other words, all output events that are not explicitly
emitted in an action are absent. For example, in Fig. 3, the
action “ ” of the transition from to implies output symbol

, i.e., output signal is present and output signalis absent
event when the transition is triggered. The absence ofis
implicit, not explicit, a fact that will become important for

Fig. 4. A possible trace for the embedded FSM in Fig. 3.

Fig. 5. A hierarchical FSM.

hierarchical FSM’s. If all events in an action are implicitly
absent, the action is omitted altogether. For example, in Fig. 3,
the label of the transition from to consists of just the guard
“ ”, and when this transition is triggered, both output
signals and are implicitly absent.

For valued FSM’s, an action denotes any output value that
is different from the default. The default is again implicitly
emitted, and may denote absence of an event. Since the
number of transitions in an FSM is finite, the possible emitted
values form a finite set and, thus, could be represented by a
finite number of boolean signals. Thus, again, a pure FSM
could be used without fundamental loss of expressiveness.
Externally, in some other model of computation, these boolean
signals could be translated into values. Hence, although valued
FSM’s may provide a more convenient syntax, they are not
fundamentally required for expressiveness.

A possible trace for the FSM of Fig. 3 is shown in Fig. 4.
Note that in state , when both inputs and are absent, an
implicit self-transition is taken and both outputsand are
absent.

D. Hierarchy

The basic FSM, which is flat and sequential, has a major
weakness; most practical systems have a very large number
of states and transitions. Representation and analysis become
difficult. One of Harel’s solutions to this problem ishierarchy.
In a hierarchical FSM, a state may be further refined into
another FSM. We will call the inside FSM theslaveand the
outside FSM themasterin such a composition. For example,
we can let the state in Fig. 3 refined into another FSM but
let the state a not be refined, as illustrated in Fig. 5.

At a fundamental level, hierarchy adds nothing to the model
of computation. Nor does it reduce the number of states.
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Fig. 6. A trace for the hierarchical FSM in Fig. 5.

But it can significantly reduce the number of transitions and
make the FSM more intuitive and easy to understand. The
transition from to in Fig. 5 is simply a compact notation
for transitions from to and to . The state space of the
equivalent flat FSM is simply .

The input alphabet for the slave FSM is a subset of the
input alphabet of its master FSM. In a pure or valued FSM,
the input signals for the slave FSM are a subset of the input
signals for the master. Similarly, the output signals from the
slave FSM are a subset of the output signals from its master.

The hierarchy semantics define how the slave FSM’s reacts
relative to the reaction of its master FSM. A reasonable
semantics defines one reaction of the hierarchical FSM as
follows: if the current state is not refined, the hierarchical
FSM behaves just like a basic FSM. If the current state is
refined, then first the corresponding slave FSM reacts and then
the master FSM reacts. Thus, two transitions are triggered, so
two actions are taken. These two actions must be somehow
merged into one.

In the case of pure FSM’s, it is easy to merge the actions
and avoid conflicting definitions of the output between the
slave and the master. We take an output event to be present if
the action of the master or any slave FSM below it emits an
event on that output. Since an action does not explicitly emit
the symbol for absence of an event, no conflict is possible in
this syntax. For example, if Fig. 5 is in stateand substate

and input signal is present, the triggered action of the
slave FSM is “ ” and the triggered action of the master FSM
is “ ”. Thus, the output of the hierarchical FSM is (both
output signals and are present). A possible trace for the
hierarchical FSM is shown in Fig. 6.

For a valued FSM, we adopt the convention again that an
action makes no explicit mention of an absent event. However,
since two actions can both emit an event with different values,
the syntax permits conflicting definitions of the output. In
Esterel, a function can be specified to combine the conflicting
the definitions [8]. For example, for two reals, the values
might be added. We prefer to consider this an error condition,
because the values can be more conveniently and flexibly
combined externally, in a model of computation better suited
to numerical computation. Thus, for a valued (determinate)
FSM, no two-triggered transitions should emit the same output
signal.

In the example of Fig. 5, the hierarchical FSM has only
two levels. However, the slave FSM can actually be another
hierarchical FSM, so the depth of hierarchy is arbitrary. The
semantics generalizes trivially.

III. H ETEROGENEITY—MIXING FSM’s
WITH CONCURRENCY MODELS

Hierarchical FSM’s are not by themselves adequate for
describing most complex systems. For one thing, numerical
computations are extremely awkward to express within this
model. For practical application to complex systems, the FSM
model of computation has to be combined with others.

One commonly used solution is to generalize the activity
associated with an action. For instance, in the Stateflow tool
from the MathWorks, Inc., an action can invoke a function or
assign a value to a variable. Moreover, FSM’s in this tool can
be embedded within a block diagram system called Simulink,
allowing for numerical computations outside the FSM.

Function calls and variable assignments, by themselves, are
still quite limited. They provide, for example, no concurrency.
One could work around this limitation by using procedures
rather than functions, and permitting them to operate on global
state outside the FSM. If this is done in an undisciplined way,
however, it would provide a very chaotic and poorly char-
acterized programming model. Imposing some discipline on
this model seems essential. It needs a model of computation.
In the most recent version of Simulink (version 2.2), actions
can invoke Simulink block diagrams, allowing a multilevel
hierarchy as in Statecharts. The computation invoked by an
action is specified using the Simulink concurrency model.

Unfortunately, the very richness of possibilities makes it
difficult to decidea priori which models of computation should
be used. Each has its strengths and weaknesses. We advocate
leaving that choice up to the application designer, rather than
building it into the language. Thus, the language should sup-
port heterogeneity. A convenient way to support heterogeneity
is the black box approach. For a system consisting of a set
of interconnected modules, each module can be treated as a
black box. Some model of computation is chosen to govern
the interaction between boxes, but the contents of boxes need
not be governed by this same model of computation. The only
requirement is that the interfaces of boxes must conform to a
standard accepted by the outer model of computation. Thus,
a box may encapsulate a subsystem specified by one model
of computation within a system specified by another. In other
words, heterogeneity allows different models of computation
to be systematically and modularly combined together.

Our hierarchical FSM model of computation is easily ex-
tended to support heterogeneity. A state or transition may be
refined to a black box that reacts to some subset of the input
signals by emitting events on some subset of the output signals.
Internally, this black box need not be an FSM. It could be, for
example, a Turing machine (that halts), a C procedure (that
eventually returns), a DF graph, etc.

In the reverse scenario, the FSM model of computation can
be used to describe a module inside some other model of
computation, as long as that model of computation provides
a way to unambiguously determine the input symbols and
when a reaction should occur. For example, in Fig. 7, three
FSM’s are embedded inside the blocks of a “block diagram
language.” The exact semantics of this embedding (thein-
teraction semantics) needs to be defined in terms of both
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Fig. 7. Three FSM’s are embedded inside the blocks of a block diagram
language.

the semantics of the block diagram language and the FSM.
Most interestingly, however, if the block diagram language
has concurrent semantics (e.g., DF), then the slave FSM’s are
concurrent FSM’s.

In this section, we explore the interaction semantics of
FSM’s with various concurrent models of computation, namely
dataflow(DF), discrete-event(DE), andsynchronous/reactive
(SR). Our objective is to develop semantics that supports
arbitrary nestings of these concurrent models with FSM’s. We
wish for an FSM to be able to define a module in a concurrent
system and for a state to be able to be refined to a concurrent
subsystem. The depth and order of the nesting is arbitrary.
As shown in Fig. 8, we adopt the notation that square boxes
indicate modules in a concurrent model of computation and
ellipses indicate states in an FSM.

A. Termination

In general, the systems of interest may not terminate.
Concurrent models of computation are usually defined with
this in mind [17]. The reaction of an FSM, however, will
usually need to take finite time. This means that if a state
refines to a concurrent subsystem, that subsystem must react
in finite time to the inputs, possibly emitting output events as
a result. This implies a finiteness of computation that is not
intrinsic to many concurrent models of computation.

For some models of computation, there is a simple solution
[15]. The execution of a nonterminating system can often be
divided into a set ofiterations. Each iteration can be associated
with a reaction of the master FSM. We require, therefore,
that any concurrent model of computation that can refine a
state of an FSM have a well-defined finite iteration. We will
explore the implications of this requirement in terms of specific
examples below.

The reaction of an FSM is discrete and for most applications
will be required to take finite time. The sequence of reactions,
however, may not be finite if the input sequence is not finite.
Thus, a model of computation that can include modules refined
to an FSM must be capable of supplying an infinite sequence of
inputs and requesting an infinite sequence of discrete reactions.

This is not a problem for any of the concurrent models of
computation being considered.

B. Dataflow with FSM

The DF model of computation, originally introduced by
Dennis [19], can be thought of as a special case of theprocess
networks (PN) model, originally introduced by Kahn [28].
Lucid is an early language with DF semantics [3], [45]. In
PN, a network of concurrent processes communicate through
unbounded first-in-first-out (FIFO) queues. Formally, a process
in a PN network is a prefix-monotonic function that maps a set
of potentially infinite input sequences into a set of potentially
infinite output sequences [28].

In the DF special case, a process consists of a sequence of
discrete, atomic units of computation calledfirings [19]. In
DF, a process is often called anactor. A denotational formal
semantics for Dennis DF is given in [29]. Our description
here is informal and operational. The DF special case is better
suited to our purposes since the discrete firings map naturally
into reactions of a slave FSM playing the role of a DF actor.

Both DF and PN, however, can easily describe applications
that do not terminate, meeting our objective in this regard. For
DF (but perhaps not for PN), we can invent a natural definition
of an iteration. Specifically, we will define an iteration of a DF
graph to be the minimum set of actor firings (greater than zero)
that return the FIFO queues to the same size that they were at
the beginning of the iteration. Unfortunately, for general DF
graphs, it is undecidable whether a finite iteration exists [12].
Moreover, there may not be a unique minimum set of actor
firings.

To get around these problems, we specialize further to
a subclass of DF calledsynchronous dataflow(SDF) [31],
reviewed below, for which these problems disappear. In SDF,
each time a DF actor fires, it consumes and produces a fixed
number of tokens on its input and output FIFO queues. Even
for this more restricted model, some interesting fundamental
issues arise. We advocate a semantics for combining SDF with
FSM that is much more expressive than either SDF or FSM
alone, but falls short of the full expressive power of general
DF. In exchange for this loss in expressiveness, we can ensure
that intrinsic properties of a design, like deadlock or bounded
memory execution, remain decidable, a very desirable property
for embedded systems.

1) Synchronous Dataflow:Under the SDF model of com-
putation, a system consists of a set of blocks interconnected by
directed arcs. The blocks represent functions that map input
data into output data. The data are divided intotokens, which
are treated as atomic (indivisible) units. An arc represents a
potentially infinite sequence, orstreamof tokens. Streams are
carried by conceptually unbounded FIFO queues. Afiring of a
block is an atomic computation thatconsumesa fixed number
of tokens from each input arc andproducesa fixed number of
tokens on each output arc. The number of tokens consumed
and produced on each input and output can be viewed as
part of thetype signatureof the actor, along with, of course,
the data type of the tokens. These numbers can be used to
unambiguously define aniteration, or minimal set of firings
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Fig. 8. Hierarchical nesting of FSM’s with concurrency models.

that return the queues to their original size, as we will now
explain [31]. This is done by writing for each arc abalance
equation

(3)

where the arc here is assumed to go from actorto actor
, and on this arc, actor produces tokens and actor

consumes tokens. The variables and are defined to
be the number of firings of actorsand , respectively. The
balance equations tell us that the number of tokens produced
by the source actor equals the number of tokens consumed by
the destination actor.

Although in general and may be infinite, in which
case (3) is trivially satisfied, the balance equations may also
be satisfied by a finite number of firings. Indeed, to implement
an SDF systems, we seek a finite solution to the balance
equations, and then construct a finite schedule where actor

is fired times and data precedences are respected. Such
a finite schedule produces and consumes the same number
of tokens on each arc and, thus, can be iterated indefinitely
with bounded resources. Thus, we take the variablesto be
unknown and attempt to solve the balance equations to find
the smallest number (greater than zero) of firings of each actor
such that the balance equations are satisfied.

Assuming there are arcs and actors, then there will
be equations in unknowns, . It can
be shown that for a connected graph, there is either a unique
smallest positive solution for the unknowns, called theminimal
solution, or the only solution is . When the
minimal solution exists, we define an iteration to consist of
exactly firings of each actor. When there is no solution,
the SDF graph is considered defective and an error is reported
(analogous to a type error a strongly typed language). Thus,
for SDF, it is decidable whether an iteration exists. If it does,
it is unique, and the firing schedule for an iteration can be
determined at compile time.

The simplest SDF graphs arehomogeneous, defined to mean
that every actor produces and consumes a single token on
each input and output arc. For such graphs, an iteration always
consists of exactly one firing of each actor, .
The schedule of such firings must obey the data precedences
(a token must be in a queue before it can be consumed). Thus,
to avoid deadlock, all directed cycles in a homogeneous SDF
graph must have at least one initial token (often called adelay)
on at least one arc in the cycle. Arbitrary SDF may require
more than one initial token on some arcs, but unlike general

Fig. 9. Two FSM’s, refining homogeneous SDF blocks, are embedded in an
SDF system.

DF, it is decidable whether a given set of initial tokens is
sufficient to prevent deadlock [31].

2) FSM Inside SDF:When an FSM subsystem is a slave
to an SDF actor, it must externally obey SDF semantics. Thus
it must consume and produce a fixed number of tokens on
every input and every output. In the simplest case, the FSM
subsystem refines a homogeneous SDF actor. Each input to
the SDF actor provides a single data token, which takes on
values from some alphabet. The cross product of these signal
alphabets forms the input alphabet for the FSM, perfectly
matching our FSM model in Section II-B. The actions of
the FSM will be able to emit events on each output signal,
representing each event by a symbol from the corresponding
signal. Any outputs that are not emitted by the FSM in an
action will be assigned the default element of the alphabet,
as usual.

The only subtlety in this approach is that an “absent” event
appears explicitly as a token in the SDF graph, where the
value of this token encodes the “absent” interpretation using
the default symbol. A simple approach would be to encode
presence and absence using boolean-valued tokens. In the other
concurrent models of computation, absence of an event will
correspond to absence of a token. A key property of DF,
however, is that absence of a token is not a well-defined,
testable condition, so the absence of an event must be encoded
in a (present) token.

Consider the example in Fig. 9, where there are two pure
FSM’s refining homogeneous SDF actors. An iteration of the
SDF graph consists of a single firing of each actor. Since there
is no initial token on the arc between them, actorfires before
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Fig. 10. Two FSM’s, behaving like multirate blocks, are embedded in an SDF system.

actor in the iteration. The names on the arcs (“”, “ ”, “ ”,
etc.) indicate the names of the nearest input or output of a
DF actor. Suppose that in some iteration the input tokens have
values indicating that is present and is absent, and that both

and are in state . The SDF system reacts as follows:

Fire ) Since is present, make the transition from
to , and let the output be assigned the value
indicating it is present.

Fire ) Since is present, make the transition back
to state , and let the output be present.

Although this simple example may not look like a concurrent
FSM, it is one, in fact. Within an iteration, and must
fire sequentially. Across iterations, however, they can fire
concurrently. Theth firing of may be concurrent with the

th firing of for any such that .
Of course, with more complicated SDF graphs, there can be
much more concurrency, even within an iteration.

We can easily devise a syntax that permits an FSM to refine
a nonhomogeneous SDF actor. For a nonhomogeneous actor
(i.e., an actor where more than one token of each input/output
can be consumed or produced), we syntactically differentiate
each token of a given input or output by concatenating
its occurrence to its name. Borrowing notation from the

Signal language [6], “” denotes the most recent (last) token
consumed from input , “ $1” denotes the next most recent
token consumed, and “$2” the next most recent. Consider the
example in Fig. 10, focusing for now on levels (d) and (e).
The numbers in parentheses at level (d) indicate the number
of tokens consumed or produced by the corresponding actor.
The guard on the arc from to in on level (e) is $1,
which means that both tokens consumed from theinput must
have the value representing a present event. In, the action

means that the first (oldest) output token on outputwill
have a value representing an absent event (because$1 is
not mentioned), while the second (newest) token on output
will have a value representing a present event (becauseis
mentioned).

By default, state transitions occur whenever a DF actor that
refines to an FSM fires. Sometimes, however, we will prefer
for transitions to occur only between iterations of the DF
graph. This will prove important below where states of the
FSM may themselves be refined. In this case, there are two
types of firings of the DF actor that refines to FSM. In type
A, no transition is taken and no action is performed, but if the
current state is refined, the refinement subsystem is fired. In
type B, the refinement system is fired, a transition is taken,
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Fig. 11. Actor C is not a valid SDF composition of A and B. The actors
produce and/or consume a single token on each firing, as suggested by the
annotations.

and the corresponding action is performed. Type B firings will
always be the last of an iteration.

Consider again the example of Fig. 10, focusing on levels
(a) and (b). Suppose that the schedule for the top-level SDF
system is . The first two firings of actor are
type firings, where only the subsystem refining the current
state (either or ) is fired. The third firing of is a type
B firing, where the refinement system is fired, a transition is
taken according to the values of the inputsand , and the
corresponding action is performed.

The notation described here has an obvious extension to
valued FSM’s. We leave the details to the reader.

3) SDF Inside FSM:If an SDF graph refines a state of an
FSM, when that state is the current state, the next reaction
will consist of one iteration of the SDF graph followed by a
reaction of the FSM. If the slave SDF graph is homogeneous
(consumes a single token from each input and produces a
single token on each output), then it fits the FSM model
naturally. At each reaction, each input has a symbol from
the corresponding signal alphabet. Even if this symbol is
interpreted as denoting an absent event, it nonetheless provides
a token for the SDF graph to consume.

If the slave SDF graph is not homogeneous, the semantics
becomes more subtle. Suppose for example that the SDF
subsystem of Fig. 10(d) is to be used as a slave within another
FSM, say the one at level (b). Solving the single balance
equation for the subsystem at level (d) (there is only one arc
entirely inside the subsystem and, hence, only one balance
equation) indicates that one iteration will consist of two firings
of and one firing of . Thus, as shown at level (c), the
type signature for the subsystem indicates thatfour tokens
will be consumed from input and two from input , and
two tokens will be produced at output, in one iteration of
the subsystem. The semantics we choose is that the resulting
composite SDF type signature becomes the type signature of
the FSM subsystem itself. Thus, whatever system the FSM
at level (b) is embedded in must treat the FSM like an SDF
actor with the given type signature.

There are a number of potential complications. First, com-
posing synchronous DF actors to create a new synchronous DF
actor is not always possible. An example is shown in Fig. 11.
There, if actors A and B are combined to form a synchronous
DF actor C, the behavior changes. If for example actor C is
connected as shown, then the system deadlocks with actor C,
but not with actors A and B. This problem can be resolved

for general DF, which can be made compositional, but not
for synchronous DF [29]. For the purposes of this paper, we
assume that only valid aggregations are specified.

A second complication is that the FSM at level (b) in Fig. 10
might not be embedded within an SDF environment. Suppose
for example that it is embedded within a DE environment. In
this case, the semantics must be that of SDF embedded within
DE, which is covered in [15]. The key, therefore, is that an
FSM that contains slave SDF graphs must itself be treated as
an SDF actor with the type signature determined by the slave
SDF graphs.

A third complication is that the type signature may not be
the same in different states. In this case, the FSM system
cannot be treated as an SDF actor because the number of
tokens it produces and consumes is dependent on its state.
This possibility is extremely interesting, and represents a major
increment in expressive power, if it can be handled cleanly.
We deal with it in Section III-B4.

4) Heterochronous Dataflow:When an FSM system has
more than one state refined to an SDF graph, the simplest case
is where the type signatures of the SDF graphs are identical.
Then the FSM system itself is treated as an SDF actor with this
type signature. Consider however the situation where the type
signatures are different. For example, in Fig. 12, one of the
SDF graphs consumes three tokens and produces one, while
the other consumes one and produces two. In this case, there
are two possible type signatures for the FSM subsystem and,
hence, it cannot be embedded within an SDF graph.

One option is to embed the FSM system within a dynamic
dataflow (DDF) or boolean dataflow (BDF) graph [12]. In DDF
and BDF, the number of tokens consumed and produced need
not be constant for each actor. However, the price we pay
for this approach is high. In DDF and BDF, many questions
about the system are undecidable, such as whether it will
deadlock and whether the memory required by the FIFO
queues is bounded [12]. More importantly, synthesis becomes
more difficult and implementations more expensive. Moreover,
it seems that this choice of semantics provides more generality
than we really need for this application. So we invent a new
model of computation that we callheterochronous dataflow
(HDF).

In HDF, an actor has a finite number of type signatures,
where each type signature specifies the number of tokens
consumed and produced. When such an actor fires, a well-
defined type signature is in effect. But type signatures are
allowed to change between firings.

This model of computation is related tocyclo-static dataflow
(CSDF) [11]. In CSDF, an actor cycles through a finite list of
type signatures. It is easy to generalize the balance equations
so that all such actors complete an integer number of cycles
in an iteration of the overall system. Thus, once again, an
iteration is finite, and static scheduling is possible. In HDF,
however, the order in which type signatures are used is not
cyclic, nor even predictable.

If we allow the type signature of an actor to change between
any two firings, then it is easy to show that this model of
computation has the full expressive power of BDF and DDF
and, hence, of Turing machines. A more modest generalization
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Fig. 12. An FSM with states that refine to SDF subsystems with different type signatures.

is possible by restricting the changes in type signature to occur
at more controlled points in the execution.

When an HDF system starts execution, there is an initial
type signature in effect for each actor. These type signatures
can be used to solve the balance equations, finding an iteration.
The semantics we choose for HDF is that each type signature
must remain constant for the duration of the corresponding
iteration. To ensure this, the FSM components do not change
state until their last firing in an iteration. At the completion of
the iteration, a new set of type signatures is in effect, so the
balance equations must be solved anew to redefine an iteration.

In the example in Fig. 12, the top of the hierarchy is
an HDF system. The middle actor in this system has two
possible type signatures, consuming three and producing one
or consuming one and producing two. Since this is the only
actor refined into an FSM, there are two sets of solutions to
the balance equations. Two corresponding sequential schedules
are and . Since
state is the initial state of the FSM, the HDF system starts by
executing the first schedule. After the second firing of, the
FSM is allowed to change state based on observations of the
inputs. At that point, if the two most recent consumed tokens
(in the iteration) indicated “present,” then the state changes to

. After completion of the HDF iteration, instead of repeating
the a schedule, the schedule is invoked.

There are a number of alternatives for implementing HDF.
If the number of possible type signature combinations is
small, as for the example in Fig. 12, it is probably best to
precompute (at compile time) all balance equation solutions,
and all iteration schedules. Unlike DDF or BDF, it is always
theoretically possible to precompute all schedules for all
possible iterations. In general, however, the number of type
signature combinations is exponential in the number of HDF
nodes, so this approach can become impractical. Fortunately,

the balance equations can be solved in time that is only linear
in the number of arcs plus the number of actors, and a schedule
can be found in time that is linear in the number of firings
and the number of edges [10], so it may not be impractical
to compute schedules dynamically between iterations. We are
currently exploring these implementation alternatives.

Although the number of type signature combinations can be
exponential in the number of actors, it is finite. For each com-
bination, all key questions are decidable (deadlock, bounded
memory), and schedules can be statically constructed. Thus,
we have retained the key advantage of SDF (decidability),
but have dramatically increased its expressiveness. However,
we can construct designs where not all combinations are
reachable. Obviously, we need not worry about scheduling
such combinations. But if the language for expressing guards
is rich enough, then which combinations are reachable will
not be decidable.

HDF has one significant disadvantage. When a state transi-
tion occurs depends on a global solution the balance equations,
rather than a local definition. This could make using it harder,
as it compromises the modularity of a design.

Note that in Fig. 12, in addition to the type signatures
implied by the SDF refinements of the states, there are type
signatures implied by the guards on the transitions. The guard

$1 implies that there are at least two tokens consumed
from input in one iteration (and that this input is pure).
A compiler will have to check that these constraints on the
type signature are consistent with the type signature of the
refinement of the state from which the arc containing the guard
emanates.

5) Dynamic Dataflow:The DDF and BDF models of com-
putation permit actors to consume and produce a variable
number of tokens on each firing. This enhancement by itself
is sufficient to make the models Turing complete (they can
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implement a universal Turing machine) [12]. At a fundamental
level, these models are therefore much more expressive than
SDF or HDF. The price we pay is that deadlock and bounded
memory become undecidable and schedules can no longer
(always) be constructed at compile time.

To combine FSM’s with DDF and BDF, we use the concept
of firing rules, formalized in [29]. For the purposes of this
paper, these firing rules simply imply that any DF actor must
assert, prior to any firing, how many tokens it needs on each
input.1 So if an FSM refines a DDF actor, then in each state
of the FSM, we must determine how many tokens need to be
consumed on each input for the next firing (the next reaction
of the FSM).

The semantics we adopt is simple; at least one token is
consumed on every input signal mentioned in the guard of any
outgoing transition from the current state. If multiple tokens
are mentioned for a single signal, using the notation “$ ”
for any positive integer, then for each such signal, we find
the largest index mentioned, and consume that many tokens
plus one.

Thus, in each state, we know how many tokens will be
consumed at each input in the next reaction. These numbers
become the firing rules for the DDF actor refined by the FSM,
specifying the number of tokens that must be present on the
inputs for the next firing to occur.

The inverse scenario is a bit more complicated. If a DDF
graph refines a state of an FSM, then the firing rules of the
DDF graph are exported to the environment of the FSM. That
is, when the FSM is in the state so refined, the entire FSM
becomes a DDF actor that will only be invoked when the
firing rules of the DDF subsystem,treated as an actor, are
met. This seems simple enough, but in fact, most realizations
of DDF semantics are not compositional, meaning that a DDF
subsystemcannot be treated as an actorand, hence, cannot
have well-defined firing rules. Techniques for making DDF
compositional, and for determining the resulting firing rules,
are covered in [29], and are beyond the scope of this paper. It
is sufficient for our purposes here to know that it can be done.

C. Discrete Events with FSM

DF is a loosely synchronized concurrency model, where
events are partially ordered according to their data prece-
dences. Because of this partial ordering of events, many
realizations of a DF system are possible, so systems are not
overspecified. Moreover, it implies a great deal of concurrency,
which can be exploited through parallel implementations.
However, the resulting loose synchronization is also a key
weakness of DF. Because of it, DF is not well suited for
explicitly modeling resource sharing and resource usage. We
study, therefore, two popular concurrency models that are
more tightly synchronized, DE and SR. The formal relation-
ship among all of these models of computation is studied in
[33].

1In [29], an actor may also assert what the token values must be. It is a
simple exercise to show that omitting this capability does not compromise
Turing completeness. Moreover, for reactive FSM’s, adding this capability
would not increase expressiveness. Thus, we omit it.

The DE model of computation [14] is particularly useful
for modeling distributed or parallel hardware or software
and their communication infrastructure. It carries a notion of
global time, a value, usually a real number, that is known
simultaneously throughout the system. An event in a signal
occurs at a point in time. In a simulation of such a system,
each event carries both a value and atime stampthat indicates
the time at which the event occurs. The time stamp of an event
is typically generated by the actor that produces the event,
and is determined by the time stamp of input events and the
latency of the block. The DE simulator needs to maintain a
global event queue that sorts the events by their time stamps,
and chronologically processes each event by sending it to the
appropriate actor, which reacts to the event (fires).

A formal semantics for DE is given in [30], which also
references other formal treatments. The semantics is based
on constructing a metric space using the so-called Cantor
metric, and defining signals to be elements of this metric space.
Causality turns out to be a key property of operators on signals,
and can be characterized in terms of contraction mappings in
the metric space. Determinacy is ensured if feedback loops
contain a contraction mapping.

1) FSM Inside DE: Since the DE model of computation,
like DF, has well-defined firings, embedding FSM within DE
is straightforward from a control perspective. An FSM that
refines a DE actor reacts when the DE actor fires, which occurs
when there is an event at one of its inputs, and that event has
the smallest time stamp of all events in the event queue.2 If
that event has a value, then that value is made available to the
FSM for testing by the guards. If the other input signals do
not also have events with the same time stamp available for
this reaction, then those signals are assigned an input symbol
indicating the absence of event. Unlike DF, absence of an
event is represented in DE with absence of a token.

In a reaction, an FSM that refines a DE actor may emit
output events. Those output events translate directly into
events in the DE domain. However, in DE, they must be
assigned a time stamp, something that the FSM semantics does
not provide for. We choose semantics where the FSM system
appears to the DE system as azero-delayactor. If an output
is generated in a reaction, it is assigned the same time stamp
as the input that triggered that reaction.

Consider the example shown in Fig. 13. Suppose that an
event for with a time stamp is the next to be processed in
the global event queue, and both FSMand are in state

. Then, the DE system reacts as follow:

Fire ) Since there exists an event for makes the
transition from to , and emits the pure event

. In DE, this event will have time stampand,
thus, will be the next to be processed.

Fire ) Since there exists an event for, makes the
transition back to state, and emits . In DE, the
event on will have time stamps.

2There is some ambiguity when there is more than one event in the event
queue with the same smallest time stamp. Various DE simulators deal with
situation differently. See [15] for a discussion of this issue. For the purpose
of this paper, it makes no difference what technique is used.
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Fig. 13. Two FSM’s that refine DE actors.

Fig. 14. The guard on the upper transition is incomplete, in that eventb

must be present ifa is absent and the FSM is reacting.

Since DE semantics is event-driven, an actor does not fire if
there are no events at its inputs. This leads to some subtleties
with guards. Consider the example in Fig. 14, and suppose
that the FSM is in state . The guard on the only outgoing
transition indicates that must be absent for the transition to
trigger. Implicitly, however, must be present, or the FSM
would not react (there would be no event to trigger a firing).
Thus, it would be clearer to give the guard as . If the
guard were given instead as , the transition would
never fire, since and are the only two inputs and the actor
will not fire when both are absent.

2) DE Inside FSM: Much as we did with DF, if a state in
an FSM refines to a DE subsystem, then the properties of that
subsystem are exported to the environment of the FSM. If
that environment is not DE, but something else, such as DF,
then the semantics of DE within DF apply [15]. If more than
one state of the FSM refines, then all must refine to a DE
subsystem, but the semantics imposes no other consistency
constraint, as we had to do with SDF.3

If the environment of an FSM is DE, the semantics is simple.
The FSM will react when any of the inputs is present. The
input that triggers the firing will have as its time stamp the
current timeof the environment. If the current state refines to
a DE subsystem, then that subsystem will be simulated until its
current time matches that of the environment. In the meantime,
it may emit events, which become outputs to the environment
with time stamps equal to the current time (or later).

As is always the case with DE modeling where zero-delay
actors are permitted, there can be semantic problems with
directed cycles that have zero delay [33]. Consider the example
in Fig. 15. When A reacts to an event on, it starts a process
by which an event will circulate through the cycle forever
with no advance of time. There are a number of solutions to

3A particular programming environment may impose constraints on the
data types of the tokens, but that is not an issue being addressed in this paper.

Fig. 15. As with all DE modeling, zero-delay loops can cause difficulties.

problem, but all of them are intrinsic to DE and not to the
DE/FSM combination and, hence, are beyond the scope of
this paper.

D. Synchronous/Reactive Systems with FSM

Even though time is a real number in a DE system, for
any well-behaved DE simulation, time in fact advances in
discrete steps. Recognizing that, we could instead use a model
of computation where only the discrete steps are modeled,
and not the time continuum. In addition, we can resolve the
problem highlighted above with zero-delay feedback loops by
adopting afixed-point semantics. With these two innovations,
we get the SR model of computation [5]. SR is synchronous
in the same sense as synchronous digital circuits. Time delays
in computations become irrelevant, so a useful conceptual
gimmick is to assume that computations take zero time. SR
has a major advantage over DE in that an SR model can be
compiled into either sequential code or parallel circuits. DE,
in contrast, is difficult to implement efficiently in sequential
code, although it is used routinely to specify circuits, which are
intrinsically parallel (via the VHDL and Verilog languages).

Execution of an SR system occurs at a sequence of global,
discrete, instants calledticks (as in ticks of a clock). At each
tick, each signal either has no event (is absent) or has an event
(is present, possibly with a value). At each tick, signals are
related by functions that have signals as arguments and define
signals. In general, directed cycles are permitted. Fir example,
for signals and , and functions and , we might have

(4)

Thus, at each tick, signals are defined by a set of simultaneous
equations using these functions. A solution is called a fixed
point, and the task of a compiler is to generate code that will
find such a fixed point.

To ensure that the system is deterministic, that the im-
plementation always finds the same solution given the same
inputs, each function is required to bemonotonicin a very
particular sense. Suppose that a functionhas input signal
with signal alphabet . We augment the alphabet
with a special symbol , pronounced “bottom,” that we
interpret to mean “unknown.” The function must be defined
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Fig. 16. Partial orders used to define SR functions.

for input (the output will often, but not always be ).
We then define a “flat” partial order on the augmented set,

, as shown in Fig. 16(a). In this diagram,
is below (“less than”) everything else in the set, and no two
other elements in the set are comparable (neither can be less
than the other). The function is monotonic if

(5)

where the symbol “ ” is interpreted with respect to this
partial order. The partial order and the notion of a monotonic
function is easily generalized to allow functions with multiple
arguments. It is then possible to use a fixed point theorem
based on the Knaster–Tarski fixed-point theorem to show that
any network of such monotonic functions has a least fixed
point, where “least” is with respect to this partial order [18].
The least fixed point is taken to be the semantics of the network
of functions. This basic approach was pioneered by Scott [42],
Manna [34], and others. Many practical implementations of
the SR model have been constructed, starting with the Esterel
language [8].

Finding the fixed point is straightforward, in principle.
The functions are simply evaluated in any order until we
converge to a fixed point. Choosing a good order for evaluating
the functions can greatly impact performance, obviously. In
[20], Edwards proposes and compares several algorithms for
choosing a good order of evaluation.

Functions are allowed to change between ticks. Thus, a
module in SR has two distinct behaviors that we callproduce
and transition. In the produce phase, the current function is
evaluated to determine outputs given the current information
about the inputs. In the transition phase, the function is
changed in preparation for the next tick.

Most familiar functions arestrict, meaning that all argu-
ments must be known before the function output is defined.
Strict functions are always monotonic. A directed loop of strict
functions has the solution (unknown) for all signals.

It is not uncommon, however, to have functions where the
output can be determined even if some of the inputs are not
known. The use of nonstrict functions allows directed loops
with less trivial solutions. We will see that FSM’s can be
described as nonstrict functions that map input events into
output events in each reaction.

1) Simple FSM Inside SR:Embedding an FSM as an SR
module seems straightforward in the following sense. If at
a tick the inputs to the FSM are known, then the FSM can
react to them and possibly assert output events. Any output
events that are not asserted would then be known to be absent.
However, there are two difficulties with SR. First, the current
state of the FSM may refine to an SR or non-SR subsystem.
Second, the inputs may not be completely known. In particular,
if the SR system includes a directed loop, then the inputs

Fig. 17. Two FSM’s are embedded in an SR system.

cannot be known at the start of the tick for all the modules
in the loop.

In this section, assume the states of the FSM are not refined.
Consider the example in Fig. 17, where there are two FSM’s,

and , embedded in an SR system and enclosed in a
directed loop. In , the function mapping the inputs, into
the output in state is

(6)

This function does not depend on, so if the FSM is in state
and is observed to be present or absent, then we specify

whether will be present or absent without observing. Thus,
in state , the SR function defined by this FSM is not strict.
It only needs to observe, not .

The above analysis can be automated to get a simplified
function for each output at each state using standard techniques
from digital logic design. These simplified functions will
indicate for each state what inputs need to be known to define
an output.

We then define two phases of execution of an FSM within
SR, also calledproduceand transition. To complement firing
types A and B used for FSM within DF, we might call these
firing types C and D, respectively. In the produce phase, a type
C firing, the FSM observes the inputs and determines whether
any output function can be evaluated. If so, it is evaluated so
that the output is defined. If not, it indicates that the outputs
are still unknown. The produce phase may be invoked any
number of times in a single tick, as long as the output functions
are monotonic. The transition phase (a type D firing) makes
whatever state transition is enabled by the current inputs, but
ignores the action associated with that transition.

Thus, a run-time scheduler can sequence through function
evaluations, iterating until a fixed point is found. The scheduler
executes in three phases (cf. [20]).

a) First, invoke the produce phase for each FSM (and other
SR blocks) however many times is needed for it to either
define the outputs or reach a fixed point. An algorithm
for ordering these invocations is given by Edwards [20].

b) If any signals remain undefined, signal a causality loop
error.
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c) Invoke the transition function of every FSM in the SR
system.

The iterative procedure in Step 1 may seem costly at first
glance, but experience indicates that with intelligent schedul-
ing, convergence to a fixed point is very fast [20]. Moreover,
the iterative procedure is amenable to embedding in compiled
code, so it does not imply an interpreted execution style.
However, causality loops are only detected at run time and,
hence, can only be reported at run time. This can be a serious
impediment to using such a scheme in embedded systems.

2) Refined FSM’s Inside SR:We consider two cases. If the
current state of an FSM refines to an SR subsystem, then
the produce phase of the FSM should invoke the produce
phase of the SR subsystem. No other change is needed. If the
FSM refines to non-SR subsystem, then we have to be more
cautious. In that case, we assume that the non-SR subsystem
defines a strict function, and modify the SR scheduling as
follows.

a) Same as above.
b) Look at all FSM’s in the SR system where the current

state refines to a non-SR subsystem and that subsystem
has not fired. If there are non, continue to step 3. Other-
wise, if all of these have undefined inputs, then signal a
causality loop error. Otherwise, fire all refinements that
have all inputs defined and repeat steps 1 and 2.

c) If any signals remain undefined, signal a causality loop
error.

d) Invoke the transition function of every FSM in the SR
system.

We do not have enough experience with this doubly iterative
procedure to know how costly it is. This is future work.

3) SR Inside FSM:Embedding SR systems within FSM is
straightforward. If the current state of an FSM refines to an
SR subsystem, then the semantics of SR are simply exported
to the boundary of the FSM.

IV. V ERIFICATION AND SYNTHESIS

Synthesis of hardware or software from FSM’s is standard
practice, and has been supported for many years in widely
used computer-aided design (CAD) packages. Synthesis of
hardware (e.g., [46]) and software (e.g., [10]) from SDF
graphs has been demonstrated. Synthesis of hardware (e.g.,
[9] and [41]) and software (e.g., [8]) from SR has also been
demonstrated. Given our simple composition semantics, it is
not hard to come up with ways to combine independently
synthesized components. Although still somewhat limited,
such combinations have been demonstrated for embedded
software by Edwards [20]. DE is used more for modeling than
synthesis, so synthesis is not much of an issue.

Verification of FSM’s (reachability analysis and model
checking) is well studied. Verification of SDF graphs includes
liveness analysis (or conversely, deadlock detection) [31].
Independent analysis is not compromised by our approach.
However, verification of an SDF/FSM combination, in general,
becomes much more difficult. It is probable that because of
fundamental decidability questions, simulation will remain the

main validation method for most aspects of the combined
system.

One of the advantages of our approach is that it permits the
use of established and reasonably mature synthesis and veri-
fication technologies within each model of computation, and
provides a simple and determinate mechanism for combining
the results. The determinacy of the combination ensures that
validation of the combination by simulation is practical.

V. IMPLEMENTATION

An experimental implementation of several of the combi-
nations discussed here has been implemented in the Ptolemy
software environment [13]. The SDF, DE, and SR models were
already present in the software, and minimal modifications
were required to interface them to FSM. The only significant
complication encountered was that, in order to support arbi-
trary hierarchical combinations of all four models, all four had
to have hooks supporting the produce and transition phases of
execution required for partial evaluation in SR. For SDF and
DE, the “produce” phase does nothing, and the “transition”
phase implements a standard firing. Thus, SDF and DE have
strict behavior. To get a modular software architecture, the
object-oriented principle of polymorphism is used, where the
default behavior of a model of computation is strict, but
specific models can override this behavior.

VI. EXAMPLES

A. The Reflex Game

A commonly used example for control-intensive software
environments is the “reflex game” [7]. Our version of the reflex
game is a two-player game (to introduce more concurrency).

1) Description of the Game:The inputs to the system are
coin, ready, go, stopand time. All but the last are user inputs,
while the last simply counts off time. The outputs areblueLt,
yellowLt, greenLt, redLtand flashTilt, used to control a user
interface. Normal play proceeds as follows.

a) Either player may assertcoin to start the game. A status
light turns blue.

b) When player 1 is ready, he pressesready, and the status
light turns yellow.

c) When player 2 pressesgo, the status light turns green
and player 1 pressesstop as fast as he can.

d) The game ends, and the status light turns red.

The game measures the reflexes of player 1 by reporting the
time betweengreenLt and redLt. There are some situations
where the game ends abnormally, and a “tilt” light flashes.
These are as follows.

a) After coin is asserted, player 1 does not pressready
within time units.

b) Player 1 pressesstop before or at the same instant that
player 2 pressesgo.

c) After player 2 pressesgo, player 1 does not pressstop
within time units.

One additional rule is that if player 2 does not pressgo within
time units after player 1 pressesready, thengo is asserted
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Fig. 18. The system of the reflex game can be hierarchically decomposed into five levels of subsystems.

by the system, and the game advances to wait for player 1
to pressstop.

2) Heterogeneous Realization of the Game:Our realization
of the game is shown in Fig. 18. To simulate the real-time
behavior of the game, we use DE as the topmost level (a),
modeling the environment of the game (including the players).
The DE model contains aclock to generate time ticks, models
of the two players, areflex block modeling the implementation
of the game, and adisplay block. It also contains amerge
block because either player can assert coin.

At the next level of the hierarchy Fig. 18(b), inside the
reflex block, we have a two state FSM. The states aregame
off and game on. Inside thegame onstate, at level (c), we
use an SR model consisting of the two players. These are

interconnected with a zero-delay feedback loop, so we exploit
the fixed-point semantics of SR.

At level (d), the two players are refined into concurrent
FSM’s. Player 1 starts in theidle state, and whenready is
asserted, emits astart event and transitions to thewait go
state. This causes player 2 to transition to thewait state and
emit a yellowLt event. The rest of the behavior at this level
should now be evident from the figure.

In several states, we need to count ticks from the clock
to watch for time outs. This counting is a simple arithmetic
computation that can be performed using the DF graph shown
at level (e). This graph simply counts ticks, compares the
count against a constant, and emits atimeoutevent when the
threshold is exceeded.
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Fig. 19. Esterel realization of the two-player reflex game.

3) Esterel Realization:Fig. 19 shows an Esterel realization
of the two-player reflex game. The description is concise,
taking slightly less space than the one in Fig. 18. This ap-
plication is a good match for the concurrent semantics of
Esterel, which is synchronous/reactive. However, this Esterel
module does not include a model of the environment. Esterel
programs generally specify modules that are intended to reside
within some foreign realization of the environment, such as a
C program. There is no support for DE modeling.

The computational aspects of the reflex game, which involve
only trivially simple arithmetic, are also a good match for
Esterel. For more sophisticated computations, such as signal
processing, it is common for Esterel programs to fall back on
modules written in C for their implementation. By contrast,
in the charts model, a designer could use DF models of the
sophisticated computations, which are somewhat higher level
(more abstract) than C programs.

Which description, Esterel orcharts, is more readable or
understandable will depend heavily on the familiarity of the
reader with the languages involved. We believe that the version
in Fig. 18 will be more easily understood in general.

4) VHDL and C Realizations:Esterel has proven paths to
synthesis of both hardware and software [8], [9]. Code gener-
ation from DF graphs for both hardware and software targets
has also been demonstrated [10], [40], and has appeared in a
number of commercial products, such as SPW from Cadence
and COSSAP from Synopsys. Synthesis of embedded software
for a version of SR semantics that admits heterogeneity has
been demonstrated [20]. Synthesis of hardware from FSM
models is routine in CAD software, and synthesis of embed-
ded software from FSM models has appeared in commercial
products, such as Stateflow from The MathWorks. Thus, all
of the elements are in place for synthesis from thecharts
heterogeneous model. Nonetheless, we have not yet completed
a synthesis tool that performs the entire task, and we do not
wish to imply that this is a trivial task.

Although we have not implemented automatic synthesis for
the charts model, we manually crafted implementations of
the two-player reflex game in both (synthesizable) VHDL
and C. This code is written in a style similar to what would
be generated by a synthesis program. The complete VHDL
implementation is shown in Fig. 20, although not in a read-
able font. VHDL is a relatively verbose language, and this
description, which includes almost no comments, occupies
more than five pages, and like the Esterel program, does
not model the environment. The C description is somewhat
shorter, occupying less than four pages. In Fig. 20 at the right
we show the VHDL and C descriptions of the level (b) FSM
from Fig. 18. The FSM is implemented very directly as if-
then-else clauses in both cases. From these code segments,
we hope the reader is convinced that the translation from the
syntax in Fig. 18 to this syntax is relatively straightforward.
Our conclusion is that C and VHDL should be back-end
languages, synthesized from higher level descriptions for the
purpose of interfacing to lower-level synthesis tools (compilers
and logic synthesis), and thatcharts provides a reasonable
higher-level description.

B. Digital Cellular Telephone

The reflex game example is rich enough to encompass
multiple models of computation, but simple enough to be sum-
marized on a page. A more practical application that exhibits
many of the same features is a digital cellular telephone. It
includes intensive numerical signal processing (a good match
for SDF), in both the speech coder and radio modem. It may
also include features such as speech recognition for hands-free
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Fig. 20. VHDL description of the two-player Reflex game, with the segment corresponding to level (b) in Fig. 18 shown in a readable font at the
upper right. At the lower right is the C version.

dialing. These signal processing components are each quite
sophisticated, and may involve modal models that would be
appropriately constructed by combining SDF with FSM. For
example, equalization of a fading radio channel may involve
the use of distinct algorithms during the establishment of a
connection vs. steady state. Also, power conservation dictates

the use of simpler algorithms when the channel is benign,
suggesting that mode changes would be driven by channel
estimators.

A cellular phone also includes a substantial amount of
embedded control logic for call processing and multiple-access
protocols. Time-division multiple access (TDMA), such as
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that used in GSM phones, requires accurate real-time state
transitions. Such protocols can get quite intricate, so the
ability to systematically verify correctness of FSM models
may become valuable. Even without formal verification, if an
FSM model is more easily understood than a C program, then
a design constructed in terms of FSM’s is more likely to be
correct.

Modeling a cellular phone requires modeling its environ-
ment, which can itself be quite complex. Multiple-access
scenarios, with varying numbers of other users, should be
part of the model. Multipath fading should also be modeled,
although the level of detail of the model will depend on what
question is being asked about the design (a transfer-function-
level model would be used to verify the design of the radio
modem, while a drop-out-event model would be used to verify
the robustness of the protocol implementations). Many of the
features of the environment can be conveniently modeled using
DE. Detailed modeling of multipath fading is well-suited to
SDF.

A cellular telephone also contains analog RF circuitry,
adding a further element of heterogeneity beyond any we
have discussed in this paper. Mixed-signal models that include
FSM’s, DE, and SDF are an active area of research. Commer-
cial systems have already appeared that support subsets of
these, such as Saber from Analogy, which models DE sys-
tems together with continuous-time systems, and HP Ptolemy,
which models SDF systems together with continuous-time
systems.

Finally, a cellular phone development project is a multiteam
effort, and coordination of the diverse tasks of the teams is a
major challenge. In practice, cellular telephone design efforts
use a heterogeneous set of tools and methodologies. Different
techniques are used for each of the embedded DSP software,
the embedded microcontroller software, the custom digital
hardware, and the analog and RF hardware. We believe that the
charts model provides a good framework for coordination of

such efforts.

VII. CONCLUSION

We have described the combination of FSM’s with three dif-
ferent concurrency models, DF, SR systems, and DE systems.
These three concurrency models have different strengths and
weaknesses, and are, thus, applicable in different situations. DF
(Section III-B) is well suited to numerical computation, such
as signal processing, but poorly suited to resource management
and control logic. SR (Section III-C) is well-suited to resource
management and control logic, but overspecifies numerical
computational systems by imposing synchrony. DE (Section
III-D) is well-suited to modeling hardware systems, but poorly
suited to more abstract specifications because of its physical
notion of time. FSM’s complement all three of these with
sequential control that is easily analyzed and synthesized. We
have given semantics for each concurrent model of computa-
tion combined with FSM.

An example is described that uses all four models of
computation. The resulting combination is easily understood
by anyone familiar with all four models of computation, but

obviously would be obtuse to someone familiar with only
a subset. This particular example was chosen precisely to
illustrate our claim for heterogeneity and for multiples models
of computation. However, most designs of similar complexity
would only require a subset of the four models of computation.

There are many issues that are not discussed in this paper.
These include enhancements that are possible in FSM, for ex-
ample to support preemptive transitions, where the refinement
of a state is not fired prior to taking the transition. Another
issue that is not dealt with is what should be done with the state
of a refinement of a state of an FSM. It is possible to support
a “history entry,” where entering a state starts the refinement
subsystem in whatever state it was last in.
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