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Abstract. Clustering methods are a useful and common first step in
gene expression studies, but the results may be hard to interpret. We
bring in explicitly an indicator of which genes tie each cluster, changing
the setup to biclustering. Furthermore, we make the indicators hierarchi-
cal, resulting in a hierarchy of progressively more specific biclusters. A
non-parametric Bayesian formulation makes the model rigorous and yet
flexible, and computations feasible. The formulation additionally offers
a natural information retrieval relevance measure that allows relating
samples in a principled manner. We show that the model outperforms
other four biclustering procedures in a large miRNA data set. We also
demonstrate the model’s added interpretability and information retrieval
capability in a case study that highlights the potential and novel role of
miR-224 in the association between melanoma and non-Hodgkin lym-
phoma. Software is publicly available.1
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1 Introduction

Unsupervised learning methods are often used as a first step in biological gene
expression studies [1]. The fact that most methods do not provide interpretable
structures as to why the data was grouped as such hinders the subsequent anal-
ysis. Biclustering, where objects are both grouped and associated with feature
subsets, is a natural framework for improving interpretability [2]. Although sev-
eral biclustering approaches exist, few are capable of handling the uncertainty
that necessarily arises for a large enough number of biclusters. We recur to the
probabilistic modelling framework [3] in order to develop a biclustering method
that is interpretable, has flexibility and expressive power, and is efficiently com-
putable. Probabilistic approaches to biclustering in the biological sciences have
already been successfully used in the analysis of chemogenomic studies [4] and
gene expression data [5], although the corresponding models differ significantly
1 http://www.cis.hut.fi/projects/mi/software/treebic/
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from ours. In particular, we propose a method to jointly group microarray sam-
ples hierarchically and assign genes to nodes in the hierarchy, with the node
assignments implying that samples under the scope of a node in the hierarchy
are homogeneous with respect to the genes assigned to it.2 This enables the
method to both provide a tree-structured clustering and explicitly state which
features in the data were responsible for the groupings.

We show how the model yields a natural information retrieval relevance mea-
sure that allows relating samples in a principled manner. We apply the model
to a large miRNA data set [6], compare it to other biclustering approaches, and
illustrate the model’s advantages with a case study about the role of miR-224
on the relation between melanoma and non-Hodgkin lymphoma.

The paper is organized as follows: We first describe the model, its inference
procedure, and an information retrieval relevance measure. We then compare
our model to four other biclustering approaches in a miRNA data set, quantify
the model’s information retrieval performance, and elaborate on a case study.
Finally, we summarize our work and describe potential future directions.

2 Generative Model

2.1 Specification

The research problem is to find a hierarchy of clusters such that the objects
(microarray samples) associated with a cluster are homogeneous for a subset of
features (genes). Child clusters are to be associated with less objects but wider
feature subsets than their corresponding parent clusters.

The proposed model can be seen as a particular instance of a biclustering
method [2], where each bicluster corresponds to a group of samples that behave
like replicates for a subset of genes. Biclusters are arranged as nodes in a tree hi-
erarchy, with nodes closer to the root corresponding to broad sample groups tied
by a low number of genes, and with nodes closer to the bottom of the hierarchy
corresponding to limited but highly homogeneous sample groups. The generative
process for our model consists of three parts: First, samples are partitioned into
a tree structure. Second, genes are positioned along nodes in the tree. Third, the
expression data is generated accordingly.

In order to partition samples into a tree structure, we use a probability distri-
bution over infinitely-branched trees called the nested Chinese restaurant pro-
cess (nCRP) [7]. This process may be defined over infinite-depth or finite-depth
trees. We opt for specifying a maximum depth parameter in advance. Running
the nCRP with a set of samples results in each sample being assigned a unique
path from the root to a leaf node. The tree is initialized with a single node (the
root), to which all samples are assigned. The samples are then probabilistically
partitioned into groups according to the Chinese restaurant process (CRP)[8].3

2 Alternatively, it may hierarchically group genes and assign samples to nodes, al-
though we did not explore that option in the present work.

3 Using the standard gastronomic metaphor associated with the CRP, we will inter-
changeably refer to groups as tables and samples as clients.
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Formally, assume n clients are partitioned into k different tables (k ≤ n), making
each of those tables j contain mj clients. The assignment probabilities for the
(n + 1)-th client are given as follows:

P (cn+1 = j|c1,...,n) =

⎧
⎪⎨

⎪⎩

mj

n + γ
, j ≤ k,

γ

n + γ
, j = k + 1.

(1)

The joint distribution for all clients is exchangeable (i.e. invariant to client order
permutation), with γ controlling the final number of tables. We consider γ to be
a random variable with a vague prior distribution,

γ ∼ Gamma (aγ = 1, bγ = 1) . (2)

The obtained tables become the child nodes of the root. The CRP is again run
for each of the child nodes and corresponding clients. This recursion continues
until the maximum tree depth has been reached. See Fig. 1 for an example.

Fig. 1. Running the nCRP for a set of 6 clients (numbered from 1 to 6) in an infinitely-
branched tree of maximum depth 3. The clients assigned to each node are between
braces.

Given the assignment of samples to paths in the tree, we represent genes
as binary features and provide a feature activation model. First, for each di-
rected edge (u, v) in the tree, we sample an edge length from a uniform Beta
distribution,

l(u,v) ∼ Beta(α = 1, β = 1). (3)

All features (i.e. all genes) are set to 0 at the root node. For each directed edge
from a node u to one of its child nodes v, each feature may switch to 1 with
probability equal to the corresponding edge length. Finally, whenever a feature
switches to 1, it stays at 1 for the remainder of the directed path. More formally,
let zj,u denote the value of feature j at node u. The activation of feature j at
child node v is determined by the following conditional probabilities:

P
(
zj,v = 1|zj,u = 0, l(u,v)

)
= l(u,v), (4)

P
(
zj,v = 1|zj,u = 1, l(u,v)

)
= 1. (5)
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This models the notion that genes may be indicative of either broad or specific
phenotypes. By allowing genes to be activated along different paths, the model
also encompasses the idea that two sample groups may be homogeneous with
regard to the same gene, albeit in different ways, as we shall see below in more
detail. Notice that the above probability rules are defined without recurring to
assignments of samples to paths, that is, they can be formally defined as being
applied on the entire infinite tree. The probability rule in (5) is also a component
of the phylogenetic Indian buffet process (pIBP) model [9]. The scope of the
two models is however disparate, as in the pIBP the authors present a non-
exchangeable prior for representing objects as infinite feature vectors, where
object relations are given in the form of a pre-specified tree.

The path assignment and feature activation patterns determine the distribu-
tion of the expression data. Assume that feature j switches from 0 to 1 at node
u. Denote the set of samples in the subtree that has u as its root by Su, and the
expression data for those samples restricted to feature j as Y j,Su . Then,

Y j,Su ∼ N
(
μj,u1, σ2

j,uI
)
, (6)

μj,u ∼ N(μ = 0, σ2 = σ2
j,u), (7)

σ2
j,u ∼ Inv-Gamma (a = 1, b = 1) . (8)

where μj,u and σ2
j,u are respectively scalar mean and variance parameters, spe-

cific to the group induced by feature j at node u. The prior distribution for each
μj,u assumes adequately normalized data; the random variable σ2

j,u is given a
vague prior distribution. Our choice of prior probability density functions allows
us to analytically integrate out μj,u and σ2

j,u, obtaining a multivariate Student-t
distribution for Y j,Su [10]. This increases the efficiency of the sampler, although
normality assumptions are in practice only an approximation whose usefulness
is ultimately only validated by the results. If, for a given path ending in a leaf
node u, a feature j never becomes activated, then, for every sample s ∈ Su, we
draw the corresponding scalar expression value Yj,s from a baseline Gaussian
distribution, assuming standardized data,

Yj,s ∼ N(μ0 = 0, σ2
0 = 1). (9)

Notice that the same baseline distribution is used when required, regardless of
the actual path or feature.

Figure 2 provides an example of an artificial data set with 3 genes and 4
samples generated using this approach.

2.2 Inference

We are interested in analyzing the joint posterior distribution of the path as-
signment and feature activation variables (respectively, c and z), as well as γ,
given the input expression data, which according to Bayes’ rule is

P (c, z, γ|Y ) =
P (γ)P (c|γ)P (z)P (Y |c, z)

P (Y )
∝ P (γ)P (c|γ)P (z)P (Y |c, z). (10)
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Fig. 2. Illustration of the generative process for a fictitious noise-free data set with
3 genes (A, B, and C) and 4 samples (”healthy 1”, ”healthy 2”, ”leukemia”, and
”melanoma”). The healthy samples share the same path assignment, while each of
the cancer samples has its own unique path. The rounded rectangles represent nodes
and indicate the current feature activation state. Gene A becomes active at both of
the root’s child nodes, leading to homogeneous expression for the healthy samples as
well as for the cancer samples, although the between-group difference in expression is
significant. Gene C exhibits homogeneous expression under both cancer samples, but
not under the healthy samples. Gene B has a specific expression pattern for each of
the samples.

The term P (z) results from integrating out all edge length variables, and the
term P (Y |c, z) results from integrating out all mean and variance variables.
The posterior distribution is intractable and we approximate it by means of a
collapsed Gibbs sampler [11,12].

Sampling path assignments. The posterior distribution for the path assign-
ment of client i is given by

P (ci|c−i, z, Y ) ∝ P (ci|c−i)P (Y ·,i|c, z, Y ·,−i), (11)

where c−i is the collection of path assignments for all clients except i, Y ·,−i is
the expression data for all features and all clients but i, and dependency on γ has
been dropped from the notation for succinctness. See Fig. 3 for an illustration
of path assignments. The number of available paths to choose from is equal to
the total number of nodes in the current tree (discarding any previous path



70 J. Caldas and S. Kaski

(a) (b)

Fig. 3. Two possible paths for a new client, given a tree with 7 nodes. In 3(a), the path
1→3→6 does not involve the creation of new nodes. In 3(b), the path 1→3→8 implies
adding a new node to the tree.

assignments of client i). The first term in (11) can be computed with (1). The
second term can be decomposed into the following product:

P (Y ·,i|c, z, Y ·,−i) =

⎛

⎝
L∏

l=1

G∏

j=1

P
(
Yj,i|Y j,Sul

)zj,ul
(1−zj,p(ul)

)

⎞

⎠
G∏

j=1

P (Yj,i)1−zj,uL .

(12)
Each node ul corresponds to the node at the l-th level on the given path. We
denote the parent of u by p(u). The first term in (12) is interpretable as follows:
For every node ul in the path, we take the features that switch to 1 in that
node. For each of those features j, we consider the clients assigned to paths that
include ul, and compute the predictive probability of the corresponding induced
group generating the observed Yj,i. It is straightforward to derive that the pre-
dictive distribution for each induced group is a univariate Student-t distribution
[10]. The second term in (12) involves the features that are never activated in the
path. For each of those, we must compute the probability that Yj,i was generated
from a baseline Gaussian distribution, as described in (9). For every previously
unpopulated section of a path, there needs to be an instantiation of the corre-
sponding feature activation variables. We choose to draw them from their prior
distribution. Since feature values are formally generated throughout the entire
infinite tree, our approach conceptually corresponds to a type of lazy loading,
where feature values are instantiated from their prior distribution as required.
This implies that, although we are effectively bringing in novel feature variables
into the model, their specific values do not contribute to the probability compu-
tations in (11). Alternative approaches involving simultaneously sampling path
assignments and novel feature values are however possible.

Sampling feature values. The posterior odds for the value of feature j at
node u are given by

P (zj,u = 1|c, z−(j,u), Y )
P (zj,u = 0|c, z−(j,u), Y )

=
P (zj,u = 1|z−(j,u))
P (zj,u = 0|z−(j,u))

P (Y j,·|zj,u = 1, z−(j,u), c)
P (Y j,·|zj,u = 0, z−(j,u), c)

, (13)



Hierarchical Generative Biclustering for MicroRNA Expression Analysis 71

where z−(j,u) is the set of feature values excluding feature j at node u, Y j,· is the
expression data restricted to feature j, and zj,· is the set of feature values for all
nodes but restricted to feature j. Due to the conditional probability distributions
specified in (4) and (5), some feature values are deterministic and thus do not
require sampling. Namely, if a feature is set to 1 at a node u, then all values
for that feature at any node v descendant from u must be equal to 1. This
entails that the process of sampling a feature value corresponds to incrementing
or decrementing the feature’s generality level for a specific path.

The first term in (13) is given by

P (zj,u = 1|z−(j,u))
P (zj,u = 0|z−(j,u))

=
α + n−j

u+

β + n−j
u−

, (14)

where n−j
u+ is the number of features that switched from 0 to 1 when traversing

the edge (w, u) (w being the parent node of u) and n−j
u− is the number of features

that were kept at 0 when traversing that same edge, with both parameters
disregarding feature j. The second term in (13) is given by

P (Y j,·|zj,u = 1, z−(j,u), c)
P (Y j,·|zj,u = 0, z−(j,u), c)

=
P (Y j,Su |zj,u = 1, c)

∏du

i=1 P (Y j,Svi
|zj,vi = 1, zj,u = 0, c)

, (15)

where vi is the i-th child node of u, and du is the total number of child nodes of u.
Both the numerator and the terms in the denominator correspond to multivariate
Student-t distributions. In the numerator, all samples under node u are assumed
to form a group with respect to feature j. In the denominator, samples instead
form subgroups, each of them homogeneous with respect to feature j, but without
assuming between-group homogeneity.

Sampling γ. We sample the variable γ by use of an auxiliary variable scheme
developed for Dirichlet process mixture models [13,14]. The procedure presented
here is identical to the one in the hierarchical Dirichlet process model [14]. For
a given node u in the tree, let du be the number of its child nodes and nu be the
number of samples assigned to it. It can be shown [15] that du is distributed as

P (du|γ, nu) ∝ γdu
Γ(γ)

Γ(γ + nu)
, (16)

where terms that do not depend on γ have been discarded. Multiplying the above
over all nodes in the tree yields

P (d1, . . . , dV |γ, n1, . . . , nV ) ∝
V∏

u=1

γdu
Γ(γ)

Γ(γ + nu)
, (17)

where the product is taken across all nodes u that are not leaf nodes, and V
designates the number of those nodes. The posterior distribution for γ depends
exclusively on its prior distribution from (2) and the above product. The main
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idea behind this sampling scheme is to represent each fraction of Gamma func-
tions as

Γ(γ)
Γ(γ + nu)

=
1

Γ(nu)

∫ 1

0

wγ
u(1 − wu)nu−1

(

1 +
nu

γ

)

dwu, (18)

where wu ∈ [0, 1] is an auxiliary variable. Define w = (wu)V
u=1, introduce an

extra vector of binary auxiliary variables b = (bu)V
u=1, and specify the joint

distribution of γ, w, and b as

q(γ, w, b) ∝ γaγ−1+d·e−γbγ

V∏

u=1

wγ
u(1 − wu)nu−1

(
nu

γ

)bu

, (19)

where we have used dot (·) notation for vector summation. Marginalizing the
auxiliary variables from the above joint distribution yields the original posterior
distribution for γ [14,13]. Gibbs sampling updates are then given by

q(γ|w, b) ∝ γaγ−1+d·−b·e−γ(bγ−
∑ V

u=1 log wu), (20)

q(wu|γ) ∝ wγ
u(1 − wu)nu−1, (21)

q(bu|γ) ∝
(

nu

γ

)bu

. (22)

Visual inspection of the sampled values shows that the sampler converges under
50 iterations.

2.3 Information Retrieval

Generative models offer a natural measure of pairwise object relevance. Consider
an arbitrary probabilistic model parameterized by θ with input data X. Assume
a query object q, corresponding to the data point xq, and a potentially relevant
object r. Denote the parameters relating to r as θr. The relevance of r to q can
be defined as

rel(q, r) def=
∫

θ

P (xq|θr)P (θ|X)dθ (23)

[16]. This measure can be interpreted as the expected probability that the data
point corresponding to object q was generated with the parameters from object
r. A standard approximation is to obtain an estimate θ̂ and compute P (xq|θ̂r).
Notice that this measure is not symmetric.

In our context, the relevance of a sample r to another sample q can be defined
as the expected probability that the expression data Y ·,q was generated with the
path variable cr. This implies that any two samples r1 and r2 with equal path
assignments (cr1 = cr2) are equally relevant to a query sample q. Thus, in this
model the proposed relevance measure works at node granularity. Averaging (23)
over samples yields an estimate of between-node relevance, although we have not
explored this possibility in the present work. We approximate (23) by using only
the sample with the highest posterior probability, generated via the described
Gibbs sampler.
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3 Results

We tested our model on a collection of 199 miRNAs profiled in 218 human
healthy tissues, tumors, and cell lines. We pre-processed the data set and stan-
dardized the resulting expression data in a gene-wise fashion, as originally
described [6]; this makes the data set coherent with the parameter choices
stipulated in the previous section. We ran the Gibbs sampler for 2500 burn-
in iterations and further 2500 iterations, collecting the sample with the highest
posterior probability. The path and feature variables were initialized with a draw
from their prior. The maximum tree depth was fixed at 3, which is the lowest
number that allows the model to form a sample hierarchy. The method took
about 14 hours to run on an AMD Opteron Dual Core Processor with 2.8GHZ.4

This procedure was repeated 30 times. In the following analysis, we considered
the sample with the overall highest posterior probability.

3.1 Comparison to Previous Work

We compared the performance of our method to that of 4 well-established bi-
clustering approaches [17,18,19,20] with default parameterizations. The results
are presented in table 1. As miRNAs are known to have tissue-specific expression
profiles [21], we first tested for the enrichment of specific tissues in the obtained
biclusters. Significance was computed by means of Bonferroni-corrected hyper-
geometric tests with an original p-value of 0.01. Our method, named TreeBic,
had the highest fraction of biclusters enriched for at least one tissue; at the
other extreme, the CC method failed to significantly cluster samples from the
same tissues in any bicluster. Our method, along with Samba, also managed to
obtain the highest number of tissues enriched in at least one bicluster. Next, we
assessed the functional homogeneity of each bicluster. We extracted a collection
of confirmed miRNA targets from the TarBase database [22]. For each bicluster,
we took the corresponding miRNAs and obtained the union of their targets. We
then computed the functional enrichment of Gene Ontology (GO) [23] biological
process terms in each target set, again using a Bonferroni-corrected hyperge-
ometric test with an original p-value of 0.01 (terms with 5 or less genes were
discarded). Our method outperforms all others with respect to the number of
enriched GO categories. The biclusters found by our method also appear to be
overall more functionally homogeneous, as shown by the percentage of biclusters
enriched for at least one GO category. The overall low number of enriched GO
categories is possibly due to the current sparsity of confirmed microRNA targets.
Despite these results, our method has the second-lowest number of biclusters.

4 Preliminary experiments on an artificial data set with 218 samples and 5970 features
indicate that the same simulation takes approximately 250 hours, with the average
number of nodes in the inferred tree being 145. Path variable sampling takes ap-
proximately 95% of inference time, indicating that a combination of heterogeneous
features and high sample size leading to a large tree is the main bottleneck in the
method.
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Table 1. Method comparison with regard to tissue and miRNA target gene functional
enrichment. Our model is named TreeBic; it outperforms 4 standard biclustering meth-
ods both in the fraction of biclusters enriched for at least one tissue/GO category and in
the total number of enriched tissues/GO categories. See text for details on the meaning
of each performance measure.

TreeBic Samba[17] Plaid[18] CC[19] OPSM[20]

# Biclusters 16 54 29 20 10

% Tissue-Enriched Biclusters 63% 50% 41% 0% 40%

% GO Term-Enriched Biclusters 63% 46% 0% 18% 60%

# Enriched Tissues 14 14 8 0 2

# Enriched GO Terms 12 11 0 4 9

This suggests that the inferred hierarchical structure allows for a more efficient
representation of the signal in the data set. Overall, by performing best both
in terms of the fraction of enriched biclusters and the total number of enriched
tissue and GO categories, our method appears to dominate over the other tested
approaches.

3.2 Information Retrieval

In previous work we have shown that graphical models are useful in deriving
object relevance measures that allow performing information retrieval in gene
expression data in both an efficient and interpretable manner [24]. Here, we
performed a feasibility study on the ability of the model to retrieve samples
from the same tissue as a query sample. For a query taken from one of the 218
samples, we defined as positive the samples with the same tissue as the query. We
computed true-positive and false-positive rates at each point in the relevance-
ranked list of leaf nodes, and summarized the measures with the area under the
corresponding ROC curve (AUC) [25]. For each tissue or cell line class, we com-
puted the median of the AUC. Out of 20 classes, 13 (65%) led to a median AUC
higher than the 0.5 baseline. The list of ranked results can provide important
biological insight. As a case study, we queried the system with a follicular cleaved
lymphoma sample. The method considers a sequence of 2 melanoma samples, 7
follicular cleaved lymphoma samples, and 6 large B-cell lymphoma samples as
the most relevant. Although melanoma is a malignancy of a different cell type
than non-Hodgkin lymphoma, there is epidemiological evidence for their asso-
ciation [26], a relation which is highlighted in our results and which we further
investigate below. The practical usefulness of this model for information retrieval
remains to be further assessed.

3.3 Biological Analysis

Figure 4 portrays the inferred sample tree. The method separates samples into
organs from the reproductive system (node 1, with the exception of ovary, which
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falls under node 4), malignancies (nodes 2 and 3), and organs from the gastroin-
testinal tract (node 6). The method isolates the only two brain tissue samples in
the data set, with a potential explanation being that they are the only healthy
samples of ectodermal origin in the data set, in contrast with e.g. organs from
node 6, which are of endodermal origin. On the other hand, node 4 appears to
contain a more heterogeneous set of enriched tissues and pathological entities,

Fig. 4. Inferred tree structure. Nodes are numbered in breadth-first order and labelled
with overrepresented tissues or cell lines (FDR q-value < 0.25). The non-stringent q-
value enables richer node annotations. Some of the tissue types are overrepresented
in more than one leaf node (e.g. T-cell ALL in nodes 10 and 11). Notice that this
annotation approach does not guarantee that significant tissues in a parent node are
also significant in the corresponding child nodes (e.g. nodes 6 and 15). Node 16 did not
have any significantly overrepresented tissues.
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Table 2. Genes differentially over-expressed between two melanoma sample groups
(designated as types A and B) [28]. Genes predicted to be miR-224 targets are in bold
text.

Gene Function Over-Expressed in Type A Over-Expressed in Type B

Pro-Apoptotic APAF1, BAD, BNIP1, BAK1, CASP2, CASP4,
BNIP3L, CASP1, CASP7, ENDOG, HTRA2, PDCD5,

CYCS, VDAC1 PRODH, SEPT4, TNFSF10

Anti-Apoptotic BCL2, BCL2A1, PPARD, API5, FIS1, PPP2CA,
RAF1 PPP2R1A, PPP2R1B, PSEN1

Antioxidant GLRX2, GPX4, GSR, MT3, ATOX1, CAT, GSS,
PRDX3, PRDX5 HSPD1, SOD1

including a combination of healthy (bladder, kidney, and ovary) and cancerous
(mesothelioma, mycosis fungoides) tissues. The method is also able to further
decompose leukemias (node 3) into leukemia cell lines (node 10) and leukemic
tissue (node 11).

The previously mentioned relation between melanoma and non-Hodgkin lym-
phoma is also hinted at by the contents of node 2. In order to find miRNAs with
a role specifically in both melanoma and lymphoma, we computed the set differ-
ence between miRNAs that are activated in the melanoma and lymphoma nodes
and those which are activated in any of the other haematological malignancy
nodes. The single resulting miRNA, miR-224, is known to have a dual function,
conditionally inducing both apoptosis and cell proliferation, and it was found to
be either over or under-expressed in several tumor types [27]. In order to grasp
potential mechanisms by which miR-224 may have a common role in melanoma
and lymphoma, we first analyzed a collection of 38 genes that were found to
be differentially over-expressed between two subsets of melanoma samples in an
independent study (designated as type A and B) [28]. We used a recent miRNA
target prediction algorithm [29] to compute which of those genes are potential
miR-224 targets (Table 2). The prediction that 50% of type-A pro-apoptotic
genes and 67% of type-B anti-apoptotic genes are regulated by miR-224 is evi-
dence of its dual role in cell proliferation and apoptosis, and indicative that it
may have an important post-transcriptional regulatory effect in melanoma. The
role of miR-224 in stimulating proliferation is not well understood [27]. We hy-
pothesize that it may enhance proliferation by targeting some of the predicted
type-A pro-apoptotic genes. The anti-apoptotic gene API-5, recently proposed as
a target for cancer treatment [36], is known to be targeted by miR-224 [30], and
its protein product interacts with FGF-2 [31], which has in turn been observed
to have increased levels of expression in patients with haematological malignan-
cies, including lymphoma [32]. There is also evidence that miR-224 directly binds
CD40 [33], which is known to have an important role both in lymphoma [34] and
melanoma [35]. Together, these results indicate miR-224 may be an important
element in explaining the association between melanoma and non-Hodgkin lym-
phoma. Although this analysis is speculative, it brings out the model’s ability
to generate hypotheses and drive the biological analysis.
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4 Conclusions

We have introduced a graphical model which allows grouping microarray samples
and providing an interpretation basis for that grouping. The model makes the
assumption that samples are grouped in a tree structure, where nodes correspond
to hierarchical subgroups, and where each node is associated with a subset of
genes for which the corresponding samples are highly homogeneous. We applied
the model to a large miRNA data set, where it was shown to outperform other
biclustering approaches. We then provided a case study that depicts how the
model variables and information retrieval formulation can be used to direct the
biological analysis. The case study highlighted the potential role of miR-224 in
the association between melanoma and non-Hodgkin lymphoma.

The current model may be extended in several ways. While in the present
work we fixed the maximum tree depth at a specific level, selection of the ap-
propriate depth may be conducted by recurring to cross-validation measures or
by enhancing the model with an automatic depth selection capability. The as-
sumption that each sample chooses a single path allows for the use of a flexible
prior over trees that also makes computations feasible. This assumption can be
relaxed, although it may lead to slower mixing during inference. Finally, alter-
native feature activation models may be devised, incorporating notions such as
e.g. pathway enrichment among genes activated throughout the same edges.
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