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Hierarchical Hidden Markov models enable
accurate and diverse detection of antimicrobial
resistance sequences
Steven M. Lakin 1, Alan Kuhnle 2, Bahar Alipanahi2, Noelle R. Noyes 3, Chris Dean1, Martin Muggli4,

Rob Raymond4, Zaid Abdo1, Mattia Prosperi 5, Keith E. Belk6, Paul S. Morley7 & Christina Boucher 2

The characterization of antimicrobial resistance genes from high-throughput sequencing data

has become foundational in public health research and regulation. This requires mapping

sequence reads to databases of known antimicrobial resistance genes to determine the genes

present in the sample. Mapping sequence reads to known genes is traditionally accomplished

using alignment. Alignment methods have high specificity but are limited in their ability to

detect sequences that are divergent from the reference database, which can result in a

substantial false negative rate. We address this shortcoming through the creation of Meta-

MARC, which enables detection of diverse resistance sequences using hierarchical, DNA-

based Hidden Markov Models. We first describe Meta-MARC and then demonstrate its

efficacy on simulated and functional metagenomic datasets. Meta-MARC has higher sensi-

tivity relative to competing methods. This sensitivity allows for detection of sequences that

are divergent from known antimicrobial resistance genes. This functionality is imperative to

expanding existing antimicrobial gene databases.
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A
ntimicrobial resistance (AMR) continues to be a critical
concern in medical treatment, environmental manage-
ment, and food safety1–5. AMR in bacteria occurs either

by mutation or acquisition of genes that circumvent or counteract
an antimicrobial’s biological mechanism of action or decrease the
concentration of antimicrobial compounds within bacterial cells.
The collection of these AMR genes in both pathogenic and non-
pathogenic microbes is commonly referred to as the resistome
and defines a population’s potential resistance to known
antimicrobials.

To better understand the relationship between antimicrobial
use and the resistome, great effort has been spent on determining
the global effects of antimicrobial use on resistome composition6,
the retention of AMR genes in soil, food-production, and hospital
environments3,5,7–9 and the molecular mechanisms of action and
transmission of AMR genes10. As a result, the characterization of
AMR has moved away from culture-dependent methods in favor
of application and analysis of high-throughput sequence data,
which allows for increased resolution in characterizing the
microbiome and resistome—particularly in an ecological con-
text11. Traditionally, analysis of high-throughput sequence data
in this context involves mapping the sequence reads to databases
of known AMR genes, then post-processing the alignment to
predict which AMR genes are contained in the sample12. Short-
read sequence aligners—such as the Burrows Wheeler Aligner
(BWA)13 and Bowtie14—have most commonly been used for
mapping the sequence reads. For example, AMRPlusPlus uses the
Burrows Wheeler Aligner to align metagenomic sequence reads to
the MEGARes database and classifies each read according to the
gene to which it aligns12.

However, short-read aligners are only capable of identifying
genes from sequence reads that differ by at most 10 or 12
nucleotides from the corresponding reference sequence15; there-
fore, sequence reads with even a small divergence from the
reference remain unmapped and are eliminated from further
analysis. This results in a high proportion of unmapped sequence
data, and a high likelihood of false negatives. Recent studies
related to microbiome genus-level taxonomic classification
showed that upwards of 60% of sequence reads cannot be clas-
sified to known DNA reference sequences16–18 these results may
similarly affect functional characterization (such as the
resistome).

The low sensitivity of alignment-based methods for char-
acterizing the resistome is especially problematic when analyzing
high-throughput sequence datasets with low-read abundance;
such datasets occur when shallow sequencing is performed, or
when samples with a low abundance of DNA are investigated19.
Machine learning classifiers present an opportunity for increasing
the sensitivity of classification over alignment20, and thus have
been previously used with high-throughput sequence data to
characterize the resistome21. For example, Resfams uses Hidden
Markov Models (HMMs) to classify AMR-related protein
sequences from high-throughput sequence data by assembling the
sequence reads using a standard genome assembler, translating
the resulting contigs into amino acid sequences, and classifying
these translated sequences21.

In this paper, we present Meta-MARC, which is a machine
learning classifier that predicts the contents of the resistome for a
given high-throughput sequence dataset from DNA sequences,
removing the necessity of assembling or translating the data.
Meta-MARC is constructed from the MEGARes database and is
built by clustering all AMR genes based on sequence similarity
and then training a model for each cluster. Using the hierarchical
structure of MEGARes, the AMR Class, Group and Mechanism
can be inferred from the sequence annotations. Thus, Meta-
MARC predicts an AMR model for each input sequence, which

corresponds to an AMR Class, Group(s), and Mechanism(s).
Since Meta-MARC is developed and trained on a DNA AMR
database, it eliminates the need for translation from DNA to
amino acid sequence. We show that this advancement from
existing machine learning classification methods (e.g., Resfams)
provides a substantial increase in the percentage of classified
high-throughput sequence data and the number of AMR classes
identified.

We demonstrate the effectiveness of Meta-MARC on simu-
lated, functional metagenomic, and shotgun metagenomic data by
comparison with current state-of-the-art resistome classifiers and
using robust validation. The results show that Meta-MARC has
extremely high sensitivity and specificity on simulated data
(≥98% sensitivity and ≥99% specificity), classifies a higher pro-
portion of the high-throughput sequence data than competing
methods, and is robust to genetic variation—making it invaluable
for analysis of high-throughput sequence datasets with low-read
abundance.

Results
Cross-validation of Meta-MARC using simulated data. To
evaluate performance, we performed leave-one-out cross-
validation22 on the Meta-MARC models that were constructed
using more than two sequences. For each such model, we ran-
domly selected a sequence from the set of sequences used to train
the model, removed it from training set, and retrained the model.
The removed sequence was added to the test set for that model,
along with AMR sequences published in CARD between August
2016 and January 201723 (See https://github.com/lakinsm/meta-
marc-publication/blob/master/analytic_data/mmarc_test_set.
fasta). These additional sequences were chosen because they were
not included in the construction of the Meta-MARC HMMs but
were annotated by AMR Class, Mechanism and Group. Next, 150
bp reads were simulated from the sequences in the test set. The
sequence reads were simulated with a mean insert size of 250 bp
and standard deviation of 10 bp at 2x coverage over the AMR
gene with a HiSeq Illumina error profile using ART24. This
simulation resulted in a total of 20–100 sequence reads for each
left-out sequence (depending on its length), and 44,700 total
sequence reads from CARD sequences. Each model was then
tested with the corresponding simulated data.

We calculated the sensitivity/recall, specificity, and precision
for each annotation level (Class, Mechanism, Group, and Model)
at E-value thresholds in the range of [1e–50, 10] in base 10
increments. Next, we calculated the receiver operating character-
istic (ROC) and Precision-Recall curves and quantified the area
under the curve (AUC) for both ROC and Precision-Recall using
linear interpolation between points. Hence, the sensitivity/recall,
specificity, precision, and ROC-AUC and Precision-Recall AUC
for all annotation levels are given in Table 1. The mean sensitivity
and mean specificity were high across all levels of classification
(between 97.5 and 100%) and thus, the resulting ROC-AUC was
high (99.94 and 100%) for all classification levels. Therefore,
Meta-MARC demonstrated both high sensitivity and specificity
for the simulated data from leave-one-out cross-validation. The
mean Precision-Recall AUC metric increased from the Model
annotation level to the Class annotation level. The mean
Precision-Recall AUC for the Model classification was 79.8%,
for the Mechanism it was 87.2%, for the Group level it was
99.92% and for the Class level it was 99.97%. Supplementary
Fig. 1 illustrates the increase in the mean Precision-Recall AUC
over the different annotation levels. The Precision-Recall AUC
improves in this manner due to the hierarchical nature of the
annotation graph underlying the Meta-MARC model structure;
as model annotation levels become less specific, the accuracy of

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0545-9

2 COMMUNICATIONS BIOLOGY |           (2019) 2:294 | https://doi.org/10.1038/s42003-019-0545-9 | www.nature.com/commsbio

https://github.com/lakinsm/meta-marc-publication/blob/master/analytic_data/mmarc_test_set.fasta
https://github.com/lakinsm/meta-marc-publication/blob/master/analytic_data/mmarc_test_set.fasta
https://github.com/lakinsm/meta-marc-publication/blob/master/analytic_data/mmarc_test_set.fasta
www.nature.com/commsbio


the annotation improves. At the Model annotation level, the
mean Precision-Recall AUC was 79.8%, whereas at the Class
annotation level the mean Precision-Recall AUC was 99.97%,
demonstrating a marked increase.

Description of functional metagenomic datasets. Functional
metagenomics is an experimental design that allows for the
characterization of metagenomic sequences that contribute to a
given bacterial function17,25–28. In the case of AMR, this involves
cloning fragments of metagenomic DNA into antibiotic-
susceptible bacterial vectors that are grown on antibiotic-laden
media. The bacteria that survive are then sequenced, resulting in a
clonally amplified high-throughput sequence library containing
one or more AMR genes.

We evaluated the performance of Meta-MARC on two
functional metagenomic datasets, which we refer to as Soil and
Pediatric, consisting of 169 samples and 219 samples with an
average of 1.12 million and 1.98 million paired-end short reads,
respectively (NCBI BioProject Accessions PRJNA215106 and
PRJNA244044). The Soil and Pediatric datasets were generated
by fragmenting metagenomic DNA into several-kb fragments,
preparing fosmid libraries in Escherichia coli DH10B, growing
these clones on various types of antibiotic-laden culture media at a
concentration inhibitory to wild-type Escherichia coli, and
sequencing any growing colonies (which are by definition
phenotypically resistant to the antibiotic in the culture media)29.
In this way, each sequenced colony represents phenotypically
resistant bacteria, and the sequences within that fosmid
necessarily contain one or more AMR genes (or other as-yet-
unidentified sequences). As the antibiotic included in the culture
media is known, each sequence from the surviving colony
therefore has a resistance phenotype label; the classifier should,
therefore, classify these sequences as AMR gene(s) known to
confer phenotypic resistance to the specific class of antibiotics
used in the corresponding culture media. However, because the
original metagenomic fragments are longer than a single AMR
gene, it can happen that a single fosmid contains multiple AMR
genes; or alternatively, a phenotypically resistant fosmid may
contain an AMR gene that has not yet been discovered, and thus

is not included in the Meta-MARC model set. It follows that the
phenotypic resistance profile for a functional metagenomics
dataset is known, yet the specific AMR gene(s) from which each
sequence read originated is not.

Meta-MARC identifies more on-target sequences than com-
peting methods. We compared the performance of the following
methods using the Soil and Pediatric datasets: Meta-MARC on
unassembled high-throughput sequence reads (Meta-MARC HTS
Reads), Meta-MARC on assembled contigs (Meta-MARC
Assembly), paired-end alignment to the MEGARes database
using BWA13 (Alignment), and Resfams on assembled and
translated contigs (Resfams). For Meta-MARC Assembly and
Resfams, reads were assembled using IDBA-UD30. MetaGene-
Mark31 was used to translate the contigs into amino acid
sequences using default parameters. The Meta-MARC E-value
threshold for these experiments was set to 10, which was chosen
based on the leave-one-out cross-validation results from the
previous section. Since the phenotypic antimicrobial susceptibility
information for the functional metagenomic samples is known (as
discussed above), we refer to sequence reads as being classified
on-target if the predicted AMR Class matched the known phe-
notypic resistance label; conversely, classifications are off-target if
the predicted AMR Class did not match the phenotypic resistance
label. We note that other standard performance metrics would be
misleading because the sequence reads could have originated
from the cloned E. coli genome, multiple AMR gene sequences on
the same fragment, and/or a novel AMR gene sequence, thus
obscuring whether off-target classification were true or false
positives.

We illustrate the performance of Meta-MARC and competing
methods on the Soil and Pediatric datasets as shown in Figs. 1
and 2, respectively. Meta-MARC Assembly had the highest on-
target classification rate for both the Soil and Pediatric datasets
(Fig. 1). Furthermore, the on-target classification rate of Meta-
MARC high-throughput sequence reads was comparable to that
of Resfams on assembled data, and higher than that of Alignment
for every AMR Class. We note that both Alignment and Meta-
MARC high-throughput sequence reads performed better on the

Table 1 Summary statistics as percentages for sensitivity, specificity, precision, recall, ROC-AUC, and PR-AUC for the predicted

annotation

Annotation level Performance metric 1st quartile Median Mean 3rd quartile

Class Sensitivity/recall 99.01 99.50 99.31 99.96

Specificity 99.95 99.98 99.96 100.00

Precision 77.73 88.33 87.56 100.00

ROC-AUC 99.94 99.98 99.97 100.00

PR-AUC 80.32 92.86 88.95 100.00

Group Sensitivity/recall 99.76 100.00 98.91 100.00

Specificity 99.93 100.00 99.92 100.00

Precision 74.74 100.00 85.65 100.00

ROC-AUC 99.98 100.00 99.92 100.00

PR-AUC 78.30 100.00 88.90 100.00

Mechanism Sensitivity/recall 99.72 100.00 97.50 100.00

Specificity 99.94 99.98 99.95 100.00

Precision 73.79 88.17 85.58 100.00

ROC-AUC 99.98 100.00 99.81 100.00

PR-AUC 76.39 94.57 87.21 100.00

Model Sensitivity/recall 99.72 100.00 97.50 100.00

Specificity 97.43 99.93 100.00 100.00

Precision 49.98 100.00 75.73 100.00

ROC-AUC 99.97 100.00 99.91 100.00

PR-AUC 52.78 100.00 79.80 100.00

All metrics excluding the AUC were calculated at the E-value threshold of 1e-25, which optimized the PR curve. We note that other thresholds might be useful depending on the false-positive tolerance of

the use-case
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identified AMR targets in 161 samples (41.5%), Meta-MARC HTS identified 305 samples (78.7%), Meta-MARC Assembly identified 384 samples

(98.9%), and Resfams identified 377 samples (97.2%)
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Fig. 2 On-target classification rate of each method for each confirmed resistance class in the Pediatric and Soil datasets. Alignment and Meta-MARC HTS

had improved performance on the Pediatric data than the Soil data, as evidenced by the higher quantiles of sample-wise classification rates shown here for

the Pediatric data. Meta-MARC Assembly performed comparably to Resfams. Although alignment and Meta-MARC HTS classified fewer sequence reads

overall, their on-target classification rates are comparable to Resfams and Meta-MARC Assembly on the Pediatric dataset

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0545-9

4 COMMUNICATIONS BIOLOGY |           (2019) 2:294 | https://doi.org/10.1038/s42003-019-0545-9 | www.nature.com/commsbio

www.nature.com/commsbio


Pediatric than the Soil datasets. Of the 388 samples that
comprised the Soil and Pediatric test sets, Alignment identified
AMR targets in 161 samples (41.5%), Meta-MARC high-
throughput sequence reads305 samples (78.7%), Meta-MARC
Assembly 384 samples (98.9%), and Resfams 377 samples (97.2%)
(Table 2).

Pairwise comparison of each method’s performance on
individual samples in the Soil and Pediatric datasets is presented
in Tables 2 and 3. Table 2 shows the percentage of samples where
one method had a higher percentage of on-target classifications in
comparison to another method. Whereas, Table 3 shows the
percentage of samples where one method had a greater number of
on-target classifications in comparison to another—thus, the total
number of classifications is not normalized by the total reads
identified for Table 3. These results demonstrate that Meta-
MARC Assembly classified a greater number of sequences
correctly when compared to the competing methods. Meta-
MARC had a higher on-target classification rate in comparison to
Alignment in 98.2% of the samples, 97.7% in comparison to
Meta-MARC high-throughput sequence reads, and 96.4% in
comparison to Resfams (Table 2). Yet, it is worth noting that
Resfams had a greater number of on-target classifications in 70%
of the samples in comparison to Meta-MARC Assembly (Table 3).
In comparison to the competing methods, Resfams and Meta-
MARC Assembly performed comparably when the number of
on-target classifications was considered. Lastly, we note that
Alignment (which is arguably one of the most common forms of
resistome classification) classified fewer sequence reads in each
dataset but had high accuracy in those classifications, demon-
strating high specificity due to its relatively low tolerance for
sequence divergence from the reference. Furthermore, Alignment
classified a negligible number of reads in the Soil dataset, showing
poor performance on this specific dataset.

Description of shotgun metagenomics data. To assess the per-
formance of Meta-MARC on standard (i.e., non-functional)
metagenomic data, we utilized a dataset consisting of 87 samples
that were collected from various phases and various sample
matrices throughout beef cattle production (NCBI BioProject

Accession PRJNA292471)32. The dataset was chosen due to the
diversity of sample types and the fact that the samples originated
from environments and host populations that have not been
extensively studied. The data therefore likely contain a greater
proportion of sequences that are divergent from those used to
train the Meta-MARC HMMs. The 87 samples in this dataset
were processed for total DNA extraction and sequenced on an
Illumina HiSeq, resulting in 407.7 Gb of sequence data (average
46.3 M reads per sample, range 12.0–93.4 M.

Meta-MARC tolerates more genetic variation in shotgun
metagenomic data. Each of the 87 samples in the shotgun
metagenomic dataset were analyzed by each comparative classi-
fication method, and the number of sequence reads classified
within each Class is presented in Fig. 3. Meta-MARC Assembly
achieved a 42-fold increase in total number of sequences classified
compared to Alignment and a 1.5-fold increase compared to
Resfams across all 87 samples. Whereas Alignment and Resfams
primarily classified sequences into the tetracycline and macrolide,
lincosamide, and streptogramin (MLS) Classes, both Meta-
MARC high-throughput sequence reads and Meta-MARC
Assembly were able to identify sequences from a diverse and
variable number of resistance Classes. In particular, Meta-MARC
classified a substantial number of reads into six resistance Classes
that Alignment and Resfams did not. Furthermore, Meta-MARC
Assembly classified the greatest number of reads in 11 out of 13
resistance Classes.

In addition to comparing the number of reads that aligned to
each resistance Class, we assessed the amount of genetic variation
that each method tolerated in its classification. To perform this
assessment, we first calculated the number of single nucleotides
that differed between each sequence read, and the respective
contig (Meta-MARC Assembly and Resfams), model (Meta-
MARC high-throughput sequence reads) or reference sequence
(Alignment). For Alignment, this calculation was accomplished
by counting all mismatches identified in the CIGAR field of the
sequence alignment map (SAM) file obtained from BWA13. For
Meta-MARC high-throughput sequence reads, this calculation
was accomplished by identifying the sequence read alignment

Table 2 True positive pairwise comparison for soil and pediatric data

Compared to:

Alignment Meta-MARC HTS Reads Meta-MARC Assembly Resfams

Method Alignment – 8.2% 0.8% 17.5%

Meta-MARC HTS Reads 79.6% – 1.3% 42.5%

Meta-MARC Assembly 98.2% 97.7% – 96.4%

Resfams 81.4% 56.7% 3.1% –

The table shows the percent of samples where a given method had a percentage of on-target classifications compared to another method. For example, Meta-MARC Assembly had a greater percentage

of on-target classifications in 97.7% of the Soil and Pediatric samples compared to Meta-MARC high-throughput sequence reads

Table 3 Positive predictive value pairwise comparison for soil and pediatric data

Compared to:

Alignment Meta-MARC HTS Reads Meta-MARC Assembly Resfams

Method Alignment – 31.4% 33.8% 30.4%

Meta-MARC HTS Reads 55.7% – 64.7% 44.6%

Meta-MARC Assembly 65.2% 33.8% – 29.1%

Resfams 68.3% 50.0% 70.1% –

The table shows the percent of samples where a given method had a higher number of on-target classifications (regardless of total number classified) compared to another method. For example, Meta-

MARC Assembly had a greater number of on-target classifications in 33.8% of the Soil and Pediatric samples compared to Meta-MARC high-throughput sequence reads
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start and end positions in the respective model consensus string
(i.e., the consensus of the alignment profile used to create the
model), comparing the read to the model consensus string at each
nucleotide position within this region, and counting the number
of nucleotides that mismatched. We note that the start and end
positions of the alignment to the consensus string is given as
output from HMMER. This calculation was performed similarly
for Meta-MARC Assembly and Resfams, with the main difference
being that the alignment between the sequence read and the
consensus string was not given as output from HMMER because
the contigs—and not the individual reads—had been classified.
Therefore, the start and end position of each read to the
consensus string had to be inferred via alignment to the contig.
Thus, for Meta-MARC Assembly and Resfams, the calculation
was accomplished by aligning the sequence reads to the
assembled contigs using the Burrows Wheeler Aligner13 in order
to determine the position in the contig where each read aligned.
This information was then combined with the start and end
position of the contig with respect to the model consensus string
to obtain the start and end positions of each read within the
consensus string. Finally, each nucleotide position within this
region was compared and the number of mismatches was
obtained. After counting the total number of mismatches for each
model, we determined the mean for each method, and analyzed
these means using a linear mixed effects regression model with
the following independent covariables: the method type as a
categorical fixed effect (with alignment as a reference value), and
class annotation level as a random effect (varying intercept). The
same data were also analyzed using a two-sided Wilcoxon rank

sum test and corrected for multiple test correction using the
Bonferroni method33.

We determined that Alignment, Meta-MARC Assembly, and
Resfams all exhibited sample-wise median genetic variation
allowance between 5 and 7 nucleotides per read (Fig. 4), with
Meta-MARC Assembly and Resfams being the least tolerant of
genetic variation. This is unsurprising, as both of these methods
rely on short sequence alignment to calculate the genetic
variation, and both require assembly. Since the goal of genome
assembly is to construct a single consensus sequence from high-
throughput sequence reads as a representation of the genome,
genetic variation will not be represented in the assembled contigs.
The difference in sequence divergence tolerance between
Alignment and Meta-MARC high-throughput sequence reads
was calculated as a coefficient of 22.42 (0.72 Std. err.), controlling
for the resistance Class as a random effect. This can be interpreted
as an average increase of 22 mismatches per read using Meta-
MARC high-throughput sequence reads over Alignment, which is
a threefold increase. Hence, Meta-MARC high-throughput
sequence reads allowed for significantly more genetic variation
than any other method as assessed by the Wilcoxon rank sum test
(adjusted P < 0.001 for all pairwise comparisons).

Meta-MARC recovers highest percentage of sequences in
divergent simulated data. The classification of a false positive is
nontrivial in this context since the goal of Meta-MARC is to
identify genes that are divergent from MEGARes (or any other
database). Thus, in this section, we created in silico genes that
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have increasing divergence from the genes in MEGARes and
simulated sequence reads from these and other additional pro-
karyote genomes. The addition of other prokaryote genomes
allows for background noise that is common in shotgun meta-
genomics experiments. Specifically, we did the following: (1) we
randomly selected gene X from the MEGARes database, (2) we
replaced a fraction (equal to [Y × length of gene X]) of nucleotides
for gene X both contiguously (at a random location) and non-
contiguously at random without replacement, where the insertion
or random mutation was generated from selecting A, C, G, T with
equal probability, (3) we made Z copies of the modified gene, (4)
we added these copies to six genomes of Escherichia coli
(Accession numbers: AP009048, CP009789, CP010441,
CP010445, U00096), and lastly, (5) we simulated sequence reads
from these sequences using ART with parameters as previously
described. We assessed all methods using various values of X, Y,
and Z, i.e., we repeated this generation for Y= 0.1, 0.25, 0.5, 0.7,
and Z= 5, 25, 50 and 70 different genes (of varying sizes). In
total, there were 70 × 24= 1680 experiments. Lastly, we ran all
four methods for each experiment. For each method, we deter-
mined whether the gene was identified correctly at the Class,
Mechanism, Group, and Model levels. All data and source code
for these experiments are available at the publication GitHub
repository.

The results show that Meta-MARC Assembly recovers the
highest percentage of simulated sequences even when the target
sequences had high mutation rates (Fig. 5). For the contiguous
mutations, all four methods demonstrated a negative linear trend,
decreasing in their ability to recover simulated sequences with
increasing length of the mutated region. For the noncontiguous
random mutations, Meta-MARC Assembly performed with
> 90% average recovery rate at all mutation levels examined.
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Meta-MARC high-throughput sequence reads performed with >
90% average recovery rate as high as 50% mutation level in the
target sequences, however, its performance dropped substantially
at the 70% mutation level. Alignment and Resfams had quickly
declining recovery rates as mutation level increased. Recovery
rates were comparable across annotation levels (Class, Mechan-
ism, Group, and Model) (see Supplementary Figs. 2–4). Gene
copy number did not affect recovery rate.

Comparison of CPU-time and memory usage. In this section,
we evaluate Meta-MARC’s ability to scale with input size. To
accomplish this evaluation, sequence data were first filtered to
exclude host (i.e., Bos taurus) DNA; next, we selected five test
datasets with varying numbers of sequence reads. All experiments
in this section were performed on a server running Debian Linux
3.16 with Intel(R) Xeon(R) CPU E5–2680 v2 @ 2.80 GHz with
324 GB RAM. The parallelized portions of each algorithm were
run with 40 threads.

In Fig. 6, we list the wall time versus data input size for each
method. It is important to note that the wall times for Resfams
and Meta-MARC Assembly do not include the time required for
assembly. As expected, Meta-MARC high-throughput sequence
reads was the slowest algorithm; it required up to 28 h on the
largest dataset, in comparison with Alignment, which required
less than an hour. Thus, the increased sensitivity of Meta-MARC
high-throughput sequence reads over its competitors comes with
a computational cost.

In Supplementary Fig. 5, the peak memory of each algorithm is
shown versus the size of the input. Meta-MARC high-throughput
sequence reads uses more memory than its competitors; although
the memory requirements of assembly are not shown. Meta-

MARC high-throughput sequence reads uses up to 250 times
more memory than Alignment. The largest dataset was size 13 GB
on disk; for this input, Meta-MARC high-throughput sequence
reads required less than 24 GB of memory, which is within a
factor of 2 of the disk size of its input.

Discussion
Resistome classification from metagenomic data is increasingly
utilized to better understand AMR ecological dynamics and to
track AMR dissemination and evolution across time and space.
Given the importance of this task, the research community
urgently needs more accurate tools to detect and classify short-
read sequences originating from AMR genes. By combining
machine learning classification with a well-annotated and struc-
tured database, we have demonstrated that a high level of AMR
classification sensitivity and specificity can be achieved. Using
simulated data for leave-one-out cross-validation, we showed that
our method (named Meta-MARC) reached mean sensitivity and
specificity values >97% for all levels of the annotation. We
emphasize that the focus of this work is on the sensitivity and
precision of the methods assessed, since these are the more dif-
ficult metrics to optimize in a classification problem with many
classes. Specificity in such problems will be high by random
chance, however detecting (sensitivity) and correctly classifying
(precision) sequences to one of many categories is much more
difficult.

In addition, Meta-MARC achieved a higher on-target classifi-
cation rate than comparable, existing methods when used to
classify AMR sequences obtained from two functional metage-
nomic studies. Of particular note was the difference in on-target
classification rate among the various methods when comparing
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results for the Pediatric and Soil datasets. While the Pediatric
dataset enjoyed a higher on-target classification rate than the Soil
data across all methods, the largest discrepancy was witnessed
between Alignment and the two assembly-based methods (i.e.,
Resfams and Meta-MARC Assembly). When analyzing the
Pediatric dataset, the Alignment method classified a comparable
number of reads to the other methods (Table 2). However,
Alignment was ineffective for the majority of samples in the Soil
dataset. We hypothesize that the reason for this discrepancy could
be that the pediatric resistome is better represented in current
AMR databases because of study bias in the literature, and thus
AMR genes in the Pediatric samples were more homologous with
database sequences in MEGARes. In contrast, the Soil samples
likely contained a higher diversity of less well-characterized AMR
genes17,24,25. As the Alignment method requires a near-exact
match between sequence read and reference, this method there-
fore performed much better on the Pediatric than the Soil sam-
ples, whereas the more probabilistic methods were able to tolerate
such divergence and thus performed less discrepantly on the
Pediatric and Soil datasets.

To further assess the classification capability of Meta-MARC
for sequences with high divergence from reference databases, we
evaluated the performance of Meta-MARC and competing
methods on shotgun metagenomics data collected and sequenced
from beef production facilities. Since this environment has not
been a frequent source of AMR sequences deposited in reference
databases, we expected this data to be divergent from the cur-
rently available AMR databases. In our experiments, Alignment
classified far fewer reads than all other methods and in certain
instances this difference was dramatic, e.g., Meta-MARC
Assembly classifying 42-fold more reads than Alignment
(Fig. 3). Moreover, for most Classes of AMR, Meta-MARC
Assembly identified more putative AMR sequences than did
Resfams. This latter point illustrates the performance gained by
using a well-structured DNA AMR database, as the only major
differences between the Resfams and Meta-MARC Assembly
approaches were the database used to construct their respective
HMMmodels and the DNA versus amino acid level classification.

Meta-MARC Assembly, Resfams, and Alignment relied on a
short-read aligner for either read classification or read alignment
to the models or contigs. This resulted in a significant reduction
in the amount of genetic variation identified in sequence reads
compared to Meta-MARC high-throughput sequence reads, the
latter of which was able to identify threefold higher genetic var-
iation (Fig. 4). However, the total number of reads identified by
Meta-MARC high-throughput sequence reads was frequently
lower than Meta-MARC Assembly and Resfams. Meta-MARC
Assembly had the highest sensitivity of the four methods assessed
here, whereas Alignment was the least performant but had high
specificity with regard to reads identified. Meta-MARC’s high-
throughput sequence reads classification rate was intermediate
between Alignment, Resfams, and Meta-MARC Assembly, but it
identified significantly more genetic variation than the other
methods. These findings are relevant for metagenomic investi-
gations of AMR ecology because the use of classification methods
with low sensitivity could result in a biased understanding of the
important dynamics regarding the control of AMR in populations
—particularly in environments where selective pressure for
genetic divergence from known AMR sequences is high. Future
investigations utilizing a resistome approach should weigh the
benefits and limitations of each of these methods with respect to
the specific research questions being asked.

The Meta-MARC Assembly and high-throughput sequence
reads methods were shown to be robust to sequence divergence
away from the reference database (Fig. 5). In particular, these
methods were able to recover mutated target sequences

containing many single-nucleotide polymorphisms that occurred
noncontiguously at random throughout the target sequence. We
observed that the ability of alignments to recover these same
mutated sequences quickly decreased as mutation rate increased,
further supporting the view that Alignment is a specific method
but lacking in sensitivity in the face of divergence away from
reference. Resfams showed poor recovery rates in the face of
random mutations. We hypothesize that this is due to the
introduction of premature stop codons and substantial amino
acid changes that single nucleotide polymorphisms can cause.
DNA-based classifiers like Meta-MARC and Alignment appear to
be more robust to noncontiguous random mutation. However, all
methods were impacted negatively by mutation of contiguous
regions of the target sequence. This is expected, since HMMs
detect target sequences by finding contiguous regions of high
similarity/probability; thus, when large contiguous regions are
mutated, the algorithm does not perform well.

We note that the increased sensitivity gained by running the
Meta-MARC HMMs with a sensitive E-value threshold (e.g., E-
value 10) may also lead to an increased number of false-positive
classifications. This limitation of Meta-MARC, and machine
learning classifiers in general, necessitates careful consideration of
the read classifications by Meta-MARC. It would be prudent to
consider additional methods to confirm that the reads identified
by Meta-MARC are, in fact, related to AMR genes. Yet, condi-
tions that lead to either shallow sequencing coverage or divergent
sequences frequently necessitate the use of a more sensitive
classification method. For example, several water samples from
the Noyes et al. dataset used in this study31 contained relatively
small numbers of reads (<13M) and thus may require a more
sensitive classification method than alignment. In this analysis,
we have demonstrated that the method used for AMR classifi-
cation from metagenomic sequence data has a substantial impact
on the number of predictions made, with short-read alignment-
based methods consistently exhibiting the lowest classification
rates and the lowest tolerance for genetic variation. Conversely,
probabilistic machine learning methods consistently identify
more AMR-originating sequence reads while tolerating a higher
level of sequence divergence. These differences are particularly
stark when the sequence data originate from environments not
commonly represented in current AMR databases and/or from
highly divergent sequences compared to those already reported.
These findings mirror widely acknowledged low classification
rates from high-throughput sequence data with respect to
microbiome sequencing15,26,27.

While classification will likely be improved with the develop-
ment of more comprehensive AMR databases, immediate
improvement in AMR identification rate can be made through
the use of probabilistic classifiers, as demonstrated here with
Meta-MARC. Lastly, we note that although the methods here
were compared separately on the same datasets, it would be
possible to combine some of the methods into an integrated
pipeline for AMR classification. One possible combination is to
first align all sequence reads to an AMR database using a short-
read aligner (high specificity), and then to classify remaining
unaligned reads using Meta-MARC (high sensitivity). Combina-
tions such as these warrant further investigation and should be
considered as viable options for future resistome research. Ulti-
mately, however, choice of classification method should be driven
by study objectives, sampling environment (i.e., well-studied or
novel), and the appropriate trade-off of sensitivity, specificity, on-
target classification and computational resources.

Methods
Overview of Meta-MARC. Meta-MARC accepts as input one or more sequences
and predicts the AMR sequence of origin. The input sequences can be high-
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throughput sequence reads from shotgun metagenomics, functional metagenomics,
whole-genome sequencing, or assembled contigs. Meta-MARC was constructed
using the MEGARes database, which is a DNA database of AMR genes that was
manually curated from existing AMR databases and annotated for the purpose of
creating machine learning classifiers, including use of an acyclic ontological
structure12. Meta-MARC itself is a group of HMMs, where each HMM corre-
sponds to a set of AMR genes clustered by sequence similarity and annotated using
MEGARes. Thus, the models are constructed by clustering the genes in MEGARes
based on sequence similarity and training an HMM for each cluster. This produces
a set of machine-learning models that together classify sequence data by AMR
model. Figure 7 gives a schematic view of Meta-MARC.

Meta-MARC maintains the annotation structure found in MEGARes, allowing
for classification of sequences at the AMR Class, Mechanism, and Group levels.
The graph underlying the annotation of each gene in MEGARes is a tree structure
with the following four levels (starting from the highest level): AMR Class,
Mechanism, Group, and sequence. Each level refers to a specific pharmaceutical or
biological classification group. For example, a bla-SHV gene might be classified as:
beta-lactams (Class level), Class A beta-lactamase (Mechanism level), SHV (Group
level), and the specific gene sequence (sequence level). The tree structure of the
annotation graph implies that no cycles exist in the underlying graph, meaning that
no parent nodes share the same child node. For example, the sequences associated
with Class A beta-lactamase Mechanisms can belong to two different beta-
lactamase Groups, but a single bla-SHV gene cannot belong to two (or more) Class
A beta-lactamase Mechanisms. The implication of this structure is that the
corresponding machine-learning method classification can be accomplished by
making a prediction at the lowest level (AMR sequence) and then aggregating up
the graph without correcting for dependencies and without ambiguities in
determining the higher level annotations.

Ideally, clustering based on sequence similarity would result in self-consistent
clusters, i.e., groups of sequences that belong to the same AMR Class, Mechanism
and Group. While most of the Meta-MARC models are independent in this
manner, several models contain sequences from multiple groups and mechanisms.
This is a result of a necessary compromise between AMR sequence similarity and
the current classification scheme utilized by biologists engaged in AMR research.
For example, some sequences are currently annotated by biological classification

schema as bla-SHV and bla-TEM beta-lactamase genes but contain >80%
nucleotide sequence identity; such sequences have been included in the same model
to reduce classifier confusion and false-positive classification rate. At the Class
level, however, all clusters were self-consistent, i.e., contained only sequences
annotated within the same Class. As a result, to avoid dependence between model
classifications, all analyses described here were evaluated at the class annotation
level, but results for the lower levels were made available as well for completeness.

Construction of the Meta-MARC models. Sequences from the MEGARes data-
base v1.00 in August 2016 were used as the foundation for the construction of the
Meta-MARC models. Prior to multiple-pairwise sequence alignment using
USEARCH34, the sequences were separated into three categories based on biolo-
gical relevance and bioinformatics requirements:

Group I (284 models, 2905 MEGARes sequences). Group I models correspond
to clusters of sequences that contain more than two unique sequences belonging to
a single type of antimicrobial resistance (and therefore Group I models exclude
multi-drug resistance genes). Group I models represent the ideal scenario for
machine-learning classification, because robust HMM construction necessitates
more than two sequences, and each of the sequences belong to the same AMR
Class. Therefore, Group I are the high-confidence models in Meta-MARC.

Group II (108 models, 307 MEGARes sequences). Group II models contain
sequences that require single- or multi-locus mutational verification to confirm the
presence of potential AMR properties. Like Group I, this group of models excludes
multi-drug resistance genes. These sequences are typically allelic variations of so-
called “housekeeping” genes, such as the beta-subunit of the bacterial ribosome
(rpoB) or a subunit of DNA topoisomerase IV (parC). Since these genes are
commonly found in non-resistant strains of bacteria, it would be inappropriate to
include them in the resistome without further identification of specific single-
nucleotide polymorphisms (SNPs) and/or mutation(s) associated with a resistant
phenotype. The literature regarding such SNPs/variants is of variable quality and
quantity, and there currently exists no centralized, validated catalog of all potential
resistance-conferring SNPs for these house-keeping genes; this makes it impossible
to perform robust SNP-level verification. Therefore, all sequences identified by the
Group II models were excluded from our analysis and results. However, we include
this group of models so that Meta-MARC users have the option to detect these
genes and perform their own post-processing mutational verification.

Group III (675 models, 1073 MEGARes, 28,603 BLAST sequences). The third
group of models includes sequences belonging to the multi-drug resistance genes,
such as resistant porin proteins or Major Facilitator Superfamily (MFS) efflux
pumps. Additionally, all models that contained only a single sequence after clus-
tering were included in this group. Since robust HMM classifiers cannot be
developed based on a single representative sequence, these singleton sequences
were augmented by performing a nucleotide BLAST against the non-redundant
nucleotide database. Sequences from BLAST results that fell between 95 and 99%
identity to the query (singleton) sequence at the nucleotide level were then included
in the clustering and model construction process for the Group III models. Each
sequence added by BLAST search to these models was labeled as “blas-
t_augmented” in its FASTA header. Group III models, therefore, represent resis-
tance genes that could cause resistance but likely have other purposes in the target
organisms, such as efflux of other, non-antimicrobial molecules.

After sequences were separated into these groups, and each group was clustered
at 80% nucleotide identity using USEARCH34 with the command-line flags cluster-
fast, id 0.8, sort length, msaout, and uc. Eighty percent nucleotide identity was
selected based on a non-comprehensive analysis of how well the sequences
clustered while still maintaining the integrity of the MEGARes annotation graph.
Next, the multiple-pairwise alignments resulting from USEARCH clustering were
used as input to the HMMER hmmbuild command. The individual HMM files
were then combined into the Groups I, II, and III model files using the HMMER
hmmpress command. The source code for performing the model building, as well
as all sequence and intermediate files for the model construction process, can be
found on the build branch of the Meta-MARC source code repository. Production
HMM files can be found in the master branch of the Meta-MARC repository.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets used in this study are publicly available at the National Center for

Biotechnology Information BioProject Accessions PRJNA215106, PRJNA244044, and

PRJNA2924710.

Code availability
Code involved in the construction and running of the Meta-MARC hidden Markov

models is publicly available on GitHub (https://github.com/lakinsm/meta-marc)35. Code
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Fig. 7 Meta-MARC utilizes two workflows to classify and count HTS data:

Meta-MARC HTS Reads and Meta-MARC Assembly. Meta-MARC HTS

Reads Pipeline: HTS reads are input as FASTQ files to be classified by the

HMMER software against the pre-built Meta-MARC Models. Resulting

counts are processed to correct for multiple classifications; for example, if a

single input read is classified to multiple models, the count for that read is

divided evenly between the models to maintain a 1:1 input to output ratio.

Meta-MARC Assembly Pipeline: HTS reads are de novo assembled to

produce contigs. The HTS reads are then aligned back to these assembled

contigs to produce an alignment file. The assembled contigs are annotated

by HMMER against the Meta-MARC Models. Using the alignment

information, HTS reads that also overlap a Meta-MARC model annotation

in the assembled contigs are counted. The resulting counts are processed

to correct for multiple classifications as described above. The final output of

both pipelines is a corrected count file, listing the number of HTS reads

classified to each Meta-MARC Model
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involved in data analysis and preparation of the manuscript is also publicly available on

GitHub (https://github.com/lakinsm/meta-marc-publication)36.
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