Hierarchical Hidden Markov M odelswith General State Hierarchy

Hung H. Bui*
Artificial Intelligence Center
SRI International
333 Ravenswood Ave
Menlo Park, CA 94025, USA
bui@ai.sri.com

Abstract

The hierarchical hidden Markov model (HHMM) is an ex-
tension of the hidden Markov model to include a hierarchy
of the hidden states. This form of hierarchical modeling has
been found useful in applications such as handwritten char-
acter recognition, behavior recognition, video indexing, and
text retrieval. Nevertheless, the state hierarchy in the original
HHMM s restricted to a tree structure. This prohibits two
different states from having the same child, and thus does not
allow for sharing of common substructures in the model. In
this paper, we present a general HHMM in which the state
hierarchy can be a lattice allowing arbitrary sharing of sub-
structures. Furthermore, we provide a method for numerical
scaling to avoid underflow, an important issue in dealing with
long observation sequences. We demonstrate the working of
our method in a simulated environment where a hierarchical
behavioral model is automatically learned and later used for
recognition.

Introduction

Hierarchical modeling of stochastic and dynamic process
has recently emerged as an important research issue in many
different applications. The challenging problem is to de-
sign algorithms that are robust in noisy and uncertain dy-
namic environments, and at the same time take advantage of
the natural hierarchical organization common in many real-
world domains. To this end, the hierarchical hidden Markov
model (HHMM) originally proposed by (Fine, Singer, &
Tishby 1998) is an extension of the hidden Markov model
to include a hierarchy of the hidden states. In this paper,
we will refer to this as the FST model. Motivated by the
inside-outside algorithm for probabilistic context-free gram-
mar (PCFG) (Lari & Young 1990), Fine et al. presented
a method for inference and expectation-maximization (EM)
parameter learning in the HHMM with complexity 73562,
where T is the length of the observation sequence, S is the
total number of hidden states, and b is the maximum number
of substates for each state (branching factor). This model has
recently been applied to a number of application domains,
including handwritten character recognition (Fine, Singer, &
Tishby 1998), robot navigation (Theocharous & Mahadevan
2002), behavior recognition (Luhr et al. 2003), video index-
ing (Xie et al. 2003) and information retrieval (Skounakis,

*Supported by DARPA under contract NBCHD030010
Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

324 LEARNING

Dinh Q. Phung, Svetha Venkatesh
Department of Computing
Curtin University of Technology
GPO Box U 1987
Perth, Western Australia
{phungquo, svetha} @cs.curtin.edu.au

Craven, & Ray 2003). In all of these domains, there exists a
natural hierarchical decomposition of the modeled process,
for example, in the way a sentence is written or a planned
behavior is acted out. This property is shared by many other
real-world domains, and thus an effective way of capturing
this dynamic hierarchical abstraction can be very useful.
The original HHMM, however, has limitations that hin-
der its applicability. First, the original model considers only
state hierarchies that have tree structures, disallowing the
sharing of substructures among the high-level states. We
argue here that substructure sharing is common in many do-
mains. For example, in models for hand-written scripts, dif-
ferent word-level states should be able to share the same
letter-level substates; in models of human behavior, differ-
ent high-level intentions should be able to share the same
set of lower-level actions. From a modeling perspective,
sharing the substructures allows us to build more compact
models, which facilitates more efficient inference and re-
duces the sample complexity in learning. Previous work on
HHMM (Fine, Singer, & Tishby 1998; Murphy & Paskin
2001) allows sharing of substates only through explicit pa-
rameter tieing, although doing this is neither elegant nor effi-
cient: one would need to expand a lattice state structure into
a tree, which leads to the unnecessary exponential increase
in the size of the representation and in the complexity of in-
ference. To address this problem, we show that inference
and EM learning can be done directly on the lattice state-
structure, with the same complexity O(T3Sb?). Further-
more, we present a method for numerical scaling to avoid
underflow when dealing with a long observation sequence, a
previously unaddressed issue. We demonstrate the working
of our method in a simulated behavior recognition scenario.
This paper is motivated by earlier work. The idea that
hierarchical decomposition of a stochastic dynamic process
can be modeled in a dynamic Bayesian network (DBN) first
appears in (Bui, Venkatesh, & West 2000; Murphy & Paskin
2001). Murphy and Paskin (2001) convert the HHMM to
a DBN, and apply general DBN inference to the model
to achieve complexity linear in time 7', but exponential in
the depth D of the HHMM. The same analysis applies to
the “flattening” method, that is to convert an HHMM to an
equivalent HMM for inference purposes (Xie et al. 2003).
When the state hierarchy is strictly a tree, the number of
states .S is necessarily exponential in D. However, when
considering a general lattice state hierarchy, the number of
states .S can be much smaller than exp(D), or even linear in

D, depending on how much sharing is in the model. Thus,
methods with complexity linear to the number of states like
ours are useful, especially when the level of substate sharing
is high. The 73 complexity, however, means that our method
is suitable only for batch learning. For online filtering, there
exists an efficient approximate method for the abstract hid-
den Markov memory model (AHMEM) (Bui 2003), which
is directly applicable to the HHMM. This can provide a fast
approximation (linear in time and in the number of states of
the model) for online recognition and classification.

HHMM: Model Definition and Parameters

In this section, we describe the structural model and param-
eter for the HHMM. We also briefly summarize the task in-
volved in doing EM parameter reestimation in this model.
The actual computational method is deferred until later sec-
tions.

Structural model and parameter

An HHMM is defined by a structural model ¢ and a set of pa-
rameters 6. The structural model ¢ specifies the model depth
D, and for each d € 1..D a set of states at level d: Q. For
convenience, we take the set Q9 to be {1..|Q%|}. Level 1 is
the top level and consists of a single state: Q! = {1}, while
level D is the bottom one. For each state ¢* € Q%,d < D,
the structural model also specifies the set of children of ¢<,
denoted by ch(¢?) c Q?*!. From this, the set of parents
of ¢ can be derived and is denoted by pa(¢?). Note that
the original HHMM assumes that pa(q“) always contains a
single state; thus, the state hierarchy is strictly a tree. In ad-
dition to the states, we also specify an observation model. In
the discrete observation case, we let Y = {1..|Y|} be the set
of observation symbols. It is straightforward to generalize to
a Gaussian observation model, although the details are not
shown here. Throughout the paper, the structural model ¢ is
assumed to be known and fixed; thus, we are not concerned
with the problem of model selection.

Given such a structural model ¢, the parameter 6 of the
HHMM is specified as follows. For each level d € {1..D —

1}, p € Q4 i,j € ch(p): wf’p is the initial probability of
the child 4 given the parent is p, Adi’f]’. is the transition prob-
ability from child ¢ to child j, and Aflifénd is the probability
that state p terminates given its current child is . We require
that >, 7P = 1, >, Aflz’; = 1,and AL? < 1. FST tran-

7,end
sition parameters adi’f]’. are slightly different from our defini-
tion, and can be obtained as acé’f; = Afli"g(l — AP). Finally,

2,end
foricQP,yeY, B, i is the probability of observing the
symbol y given that the state at the bottom level is i.

Given the parameter 6, the HHMM defines a joint dis-
tribution over a set of variables that represent the evolu-
tion of the stochastic process over time. Following (Mur-
phy & Paskin 2001), we specify this distribution by a DBN
given in Figure 1. The variable ¢¢ denotes the state at time
t and level d; e is an indicator variable denoting if the

state ¢ has ended (i.e., its child has gone to an end state?).

!Note that ¢ has a different interpretation than the same node

(I% <> “es —
. \ D-1 \ D1 g
A <,\/

\ ces

a

Y1 Y2 Y3 yr

@ o
2

Figure 1: DBN for HHMM

LetV = {q%j?,e}ﬁ?‘l,ym} be the set of all variables.
The HHMM defines a JPD over V following the factoriza-
tion of the DBN?: Pr(¢iiR, e12 " y1r) 2 [Toey Pr(v |
parent(v)). For ease of notation, we also include the set of
ending variables at the bottom level {e”}, and fix their val-
uesto 1.

The conditional probability Pr(v | parent(v)) is defined
from the parameters of the HHMM and captures the evolu-
tion of the variables over time. A state can end only when
the state below it has ended, and then does so with probabil-
ity given by the termination parameter:

Pr(ef =1| ¢/t =i, q! =p,eft)
Aiiifind If 6;5“_1 = l
0 ifeltl =0

A state stays the same until the next time if it does not end.
If it ends and the parent state stays the same, it follows a
transition to a new child-state of the same parent. Otherwise,
it is initialized by a new parent-state:

Pr(gf = j | gy =icaf ' = p,ef21)
6(i,5) ifel =00
AP ifelT =01
T ifeft =11

Sufficient statistics and EM

The previous two equations show that the HHMM parameter
0 ties together different sets of parameters of the DBN. Thus,
it is not surprising that the HHMM can be written in the ex-
ponential family form, with the sufficient statistics vector ~
being the count of the different types of configurations in
the data V. In this case, maximum likelihood estimation of

in (Murphy & Paskin 2001): it takes a value over Q¢ the set of all
states at level d, as opposed to just over the set of children of some
parent state. Thus, in our DBN, ¢¢ depends only on ¢?~* and not
on the entire set of states above it ¢} ¢,

2Since the top-level state does not end during the HHMM pro-
cess, the set of well-defined events is restricted to those instantia-
tions of V such that e, ~* are false. An event that does not satisfy
this property is not associated with any probability mass.

LEARNING 325

6 from a complete data set V reduces to setting the param-
eters to the normalized values of the sufficient statistics 7.
Most of the time, however, we can observe only a subset O
of the variables V so that the remaining variables H = V\ O
are hidden. In this case, doing EM parameter reestimation
reduces to first calculating the expected sufficient statistics
(ESS) T = Ey o 7, and then setting the reestimated param-

eter to the normalized value of 7.

Space restriction prevents giving the full set of sufficient
statistics here. Rather, we describe only a subset of the suf-
ficient statistics that corresponds to the transition parame-

d, . i
ter {Aig}. Imagine the process of going throug_h V e_lnd
counting the number of occurrences of the configuration
{aff! = j.a™ = iqly = p.ef™! = 01}, resulting
in the count T(A)m. . The corresponding ESS is then3:

- B f“’f25 / (O) ()

where the auxiliary variable §‘i (i Jj) is defined as the prob-
ability Pr(g/i! = 4, ¢/ = i,q%, 1= = p, el = 01,0).
Most commonly, what we observe is the sequence y1.7, to-
gether with the implicit fact that the HHMM does not end
prior to T'; thus our observation is O = {y.7, e}.;._; = O}.
In the rest of the paper, we will work explicitly with this set
of observations.* Our method, however, also applies to an
arbitrary set of observations in general.

The Asymmetric Inside-Outside Algorithm

From Equation (1), computing the ESS reduces to evaluating
the set of auxiliary variables and the likelihood Pr(O). We
now present a method for doing this.

Handling multiple parents

nin(p) P, L now(p)
L i ee

i) . (DED.. A0}

1 -1, t t+1 m,m+1 T
Figure 2: FST’s decomposition.

We first describe the main intuition behind the FST
method. Suppose we know that the state ¢¢ = p starts at
time [< ¢ and stops at time m > ¢ (when these times are not
known, we can simply sum over all possible values of [, m).

Fine et al. observe that the auxiliary variable £ (i, j) can
then be factorized into the product of four different parts: the

3When multiple observation sequences are encountered, we
need to also sum over the set of observation sequences in the equa-
tion.

“Note that Fine et al. assume that the observation also includes
eT = 1. This limits training data to the set of complete sequences
of observations from the start to the end of the HHMM generating
process. Removing this terminating condition at the end allows us
to train the HHMM with prefix data, e.g., observed data that does
not have to last until the end of the process.

326 LEARNING

Figure 3: Our asymmetric inside-outside decomposition.

in” part (n;,,) consisting of the observations prior to [, the
“forward” part («) consisting of the observations from [to ¢,
the “backward” part (3) consisting of the observations from
t + 1 to m, and the “out” part (n,.:) consisting of the obser-
vations after m (Figure 2). Although not stated by Fine et
al., implicit in this factorization is the assumption that ¢¢ has
a single parent state. When this does not hold, the unknown
parent state of ¢ destroys the conditional independence be-
tween the “in” and the “out” parts, and thus the factorization
no longer holds.

Our fix requires two modifications to the original method.
First, rather than summing over the stopping time m of the
state ¢, we sum over the stopping time r of the child state
q;”ll Second, we appeal to a similar technique used by the
inside-outside algorithm in the PCFG, and group all the ob-
servations outside the interval [I, r| into one, called the “out-
side” part (A). Thus, the boundary between the inside and
outside parts is not symmetrical, hence the term asymmet-
ric inside-outside. The inside part is further factorized into
an asymmetric inside part (same as FST’s forward «), and
an symmetric inside part (A) (Figure 3). The formal defini-
tions of these newly defined inside-outside variables are as

follows®:

a“()éPr(“’qu Y=l 1:0|QId_P)
7;éPr(inyefr1 =0t =1 qf =4)
)\dp()épr(out | ai'=p,efr_1=0,q4 1 =1) Pr(-qi'=p)
%i;+1()épr(in, q’r+l_l elr_ol (Il =p)

where the dot in front of ¢f represents the event e | = 1,

the dot after ¢ represents the event ¢f = 1, O;, =
y. 1S the set of observations “inside”, and O,,; =
{y1:1-1, Yr+1.17, €1.7_, = O} is the set of observations “out-

side”. Intuitively, the asymmetric inside o{” () contains all
the observations between when a parent state p starts and a

child state ¢ ends; the asymmetric outside Ad’p() contains all

the remaining observations. The symmetric inside Ad ‘ con-
tains all the observations between when a state 4 starts and
when it ends. For convenience we also define a started «,
denoted by q;. T+1(i), which contains the observations from
when a parent d starts at [to just before when a child : starts
at r + 1. A summary of these variables in concise diagram-
matic forms is given in Figure 4.

The definitions for FST’s auxiliary variables include informal
use of words such as “started”, “finished”, and in some cases are in-
correct. For example, the correct definition of their backward vari-
able 3 should be Pr(Qin, ef,_; = 0,ed =1 | qdJrl =4,q =
p). Using the formal definitions of our auxiliary varlables, all the
equations in our paper can be verified formally. Space restrictions,
however, prevent us from showing the detailed derivations.

P (i) alr (i) a P (i)
ﬁ) L{ i i i p p
o @@ @ 9 1o 0l

Figure 4: Diagrams for the inside and outside variables.
Brackets denote the range of observations. Half-shaded cir-
cles denote starting/ending states. Crossed circles denote
nonending states.

An important property of the HHMM s that given the
event {-q' = p,efl._; = 0,¢*! = i}, which we call the
asymmetric boundary event, the observations inside (O;,,)
and outside (O,,,;) of this asymmetric boundary are inde-
pendent. With this property, we can expand the auxiliary
variable £ in terms of the newly defined variables:

ZZ(A

I=1r=t+1

&7,) Neif ML) @)

Calculating the inside-outside variables

The diagrammatic visualization of the inside and outside
variables gives us a good tool for summarizing the recursive
relations between these variables. Imagine trying to con-

struct the diagram associated with «;, p(;) using the other
diagrams in Figure 4 as the building blocks. Let ¢ be the
starting time of the child state 4 that ends at . We can then

break the diagram of ad’p(1) into two subdiagrams: one cor-
responds to a /*(¢) and another one corresponds to VAR

! 7 _ % x 1 1
— ——

d d,p; d+1,i
o) P (i) a P (i) Att K

~sl:t

The conditional independence property in the HHMM al-
lows us to simply take the product of the two parts. Sum-
ming over the unknown time ¢ then gives us the precise re-

cursion formula for o? (i):

d+1 7
al o E al i) Ay

Recursion formulas for other variables can be derived in-
tuitively in a similar way. The appendix provides a sum-
mary of all the formulas. Although not shown here, rigorous
derivations can be worked out for each of them. Intuitively,
each inside variable depends on other inside variables with
smaller ranges, or variables at the lower level. The initial-
ization of these variables can be derived straight from their
definitions:

Q{d,p() 77po ADZ - B

T yrli

Based on this, dynamic programming can be used to com-
pute all the inside variables bottom-up. Similarly, the out-
side variables can be computed top-down.

The remaining problem is to compute the likelihood
Pr(O). Similar to FST, we sum over the asymmetric inside
variable at the top level to yield

ayip(i) = Pr(O,ep = 1] -qf = 1) = Pr(O, e} = 1)
1€Q?
Unfortunately, this is not enough to give us the likelihood
Pr(O). The missing term is Pr(O, et = 0), and we have
not discussed how this can be obtained. To do this, we need
to define a new variant of the asymmetric inside variable

when the child state does not end at the right time index r.
We call this the continuing «, denoted by o

d, .
alP(i) £ Pr(Oin, ¢t = i,edt = 0,¢fl,_, = 0] -¢f' =p)

Similar recursion formulas can be established for o (see the
appendix), which allow us to compute these “variables
bottom-up. It is then straightforward to verify that

> (agip(i) + gyp(i) = Pr(0) 3)

1€Q?

Numerical Scaling

It is well-known that as the length of the observation se-
guence increases, naive implementations of the HMM will
run into a numerical underflow problem. For this, a method
for numerical scaling for the HMM has been derived (Ra-
biner 1989). It is thus imperative to address this same is-
sue in the HHMM. Equation (1) reveals the source of the
problem: both the numerator and the denominator of the
RHS are joint probability of O(T") variables that quickly go
to zero as T' becomes Iarge We can rewrite Equation (1)

as 7(A) = Zt 2§t (i, 7), where the scaled auxiliary
variable gt P(i,) is defined as €47 (i, j)/Pr(©), which is
Pr(qf+1 =p, qu_rll = j,q;”l =1 ef 1 — 01 | O). Itis
thus desirable to compute £ directly.

To do this, define the scaled factor at time ¢ as follows:
cr = Pr(y)™ " e = Pr(ysef 1 =0 | yru-1,ely o =
0)~! fort > 2, so that [[,_, cx = Pr(y1.c,el, 4 = 0)~L.
We proceed to scale up each inside and outside variable by
the set of scaled factors in the observation range, that is,

~dp _ d,i d,i
alr alr Hck’Al: A Hck
-1

e 11 o

k=1 k=r+1

(@) =X

and similarly for the other variables. Since each of the scaled
variables effectively carries all the scaled factors within its
range of observations, their product would carry the product
of all the scaled factors. Thus, Equation (2) still holds if we
replace each of the variables by its scaled version. By the
same reason, the recursion formulas for the unscaled vari-
ables in the appendix also hold for their scaled counterparts.

We will now show that the scaled variables can be com-
puted via dynamic programming in a bottom-up and left-
right fashion. Assume that we have computed all the scaled
inside variables up to the right index » — 1. We can simply

LEARNING 327

apply the recursion formulas to calculate the scaled variables
with the right index r. However, the remaining difficulty is
in the initialization step A:¢ = B, |;c,. that requires knowl-
edge of the scale factor ¢,.. Fortunately, we can get around
this by a two-stage procedure. In the first stage, we calculate
the new scaled variables from their usual recursion formu-
las, however, using the unscaled initialization AD:f = B, ;.
The variables computed at this stage are partially scaled, i.e.
they carry all the necessary scale factors except c,.. When we
reach the top level, the partially scaled variables, denoted by
G, are

r—1 r—1
1,1 1,1 .. 1,1
(@) = (i) [T ews @10 = a1 (@) [T e
k=1 k=1

Substituting these into Equation (3), we obtain

r—1
> @G0 + @) =PrO) [Ta = @
1€Q? k=1

In the second stage, once ¢, is obtained, it is multiplied into
all the partially scaled variables calculated in the first stage.

This gives us the final scaled variables at time index r.
Finally, the log likelihood log Pr(©) can be obtained

from the set of scale factors: log Pr(Q0) = — Z;‘::l log c.

Experimental Results

The first simulation is designed to to verify the EM parame-
ter estimation in the presence of shared structures in the hi-
erarchy (Figure 5). Based on a randomly initialized param-

Figure 5: A 4-level hierarchy topology used in the simula-
tion

eter 6, we generate 40 sequences of observation of length

T = 50. Using the data, we estimate 6. We found 6 to
be very close to 6. In general, the accuracy increases from
top to bottom. This is not surprising because recovering the
parameters at the higher hidden level is more difficult. An
example is shown for the transition matrix A2 (estimated
values in RHS).

0.0459 0.2620 0.2475 0.4446 0.0472 0.2686 0.2549 0.4292
0.3716 0.2851 0.3233 0.0201 0.3682 0.2868 0.3272 0.0176
0.2296 0.2907 0.1835 0.2962 0.2324 0.3012 0.1896 0.2768

The second experiment demonstrates the advantage of
our proposed method in comparison with the linear time
method (Murphy & Paskin 2001). We construct two dif-
ferent topologies for testing. The first topology has 4 levels
containing 3 states each (a total of 12 states excluding the
top-level dummy state); the topology is fully connected, that
is a state at each level is the parent of all the states at the level
below. The second topology is similar except that it has five

328 LEARNING

Mp,D=5 <~

AlO, D=5

MP, D=4
AIO, D=4

0
sequence length T

Figure 6: Computation time of MP method (Murphy
& Paskin 2001) versus Asymmetric Inside-Outside (AlO)
method

"‘; air-pad

AIRPORT

'F
:

|
carousel
0 |

foyéf'('D)' cojridor\(‘B)ﬂ ”

Figure 7: Airport simulation environment.

levels (and thus has 15 states). Figure 6 shows the computa-
tional time of the forward pass in one EM iteration using the
two methods on two different topologies. While our method
exhibits O(T3) complexity, it scales linearly when we in-
crease the depth of the model. Adding an extra level means
that our method only has to deal with an extra 3 states, where
as the linear time method has to deal with 3 times the num-
ber of states due to its conversion to a tree structure.

The third experiment demonstrates the use of our method
in learning a hierarchical model for movement trajectories in
a simulated “airport” environment, shown in Figure 7. The
airport is divided into four subregions: (A) the airpad, (B)
the corridor, (C) the carousel, and (D) the foyer for entry and
exit. At the top level, we are interested in three behaviors:
(1) leaving the plane and exit the airport without collecting
luggage (exit-airport), (2) collecting the luggage before ex-
iting the airport (pickup-luggage-exit), and (3) friends pick-
ing up passengers (meet-pickup). This behaviors are built
from a set of 9 behaviors at the lower level: exit-airplane(re-
gion A); turn-left-foyer, turn-right-carousel, pass-left-right,
pass-right-left (region B); collect-luggage, leave-carousel
(region C); and enter-foyer, leave-foyer (region D). The pro-
duction level includes all the grid cells as its state space
(1 — 32). This results in a 4-level HHMM where each state
corresponds to a behavior in the hierarchy. The lattice struc-
ture allows us to model sharing of subbehaviors among the
high-level behaviors. For example, exit-airport and pickup-
luggage-exit would share most of the lower-level subbehav-
iors, except that exit-airport does not involve entering the
carousel.

A manually-specified HHMM is used to generate 30 se-
quences (length = 30) of observations as the training data
set. The generating model is then thrown away, and the data
is used to train a new HHMM. Except for prior knowledge

= |eave-airplane
collect-luggage
= exit—foyer

08 0.8
06 = exit-airport 06
pickup-lugg-exit
= meet-—pickup
0.4 0.4
0.2 0.2
0 O - e ——————
0 2 4 6 8 10 0 2 4 6 8 10

Figure 8: Online tracking result for top-level behaviors (left)
and subbehaviors (right)

about the topology of the state hierarchy, learning is done
completely unsupervised. Results similar to the first exper-
iment are observed when comparing the original and esti-
mated parameters. This allows us to then relabel the states
of the learned model using “semantic” labels from the origi-
nal model. To see how the learned model can be used for on-
line tracking, we randomly generate trajectories for behav-
iors at the top level and examine the filtering distributions.
For example, a random trajectory generated for exit-airport
is shown in Figure 7. The filtering probability for this trajec-
tory at two levels of behaviors is plotted in Figure 8. At the
top level, the behavior exit-airport wins at the end, although
the middle part is uncertain when it is not clear if the pas-
senger will pick up the luggage (left diagram). For tracking
lower-level behaviors, the graph shows a high probability
for leave-airplane at the beginning, and a high probability
for exit-foyer at the end (right diagram).

Conclusion

We have presented a method for parameter reestimation for
the HHMM in the case where the state hierarchy is a general
lattice. This allows us to learn models where the high-level
states could share the same children at the lower level. Fur-
thermore, we address an important issue when dealing with
long observation sequences by providing a method for nu-
merical scaling for the HHMM. Experimental results with
simulated data show the potential of our method in build-
ing a hierarchical model of behavior from a data set of ob-
served trajectories. We are currently applying our method to
a real-world environment for learning hierarchical models of
human movement behavior.

Appendix : Summary of the Formulas

We present the set of all formulas for computating the aux-
iliary variables defined for the HHMM. In all cases, except
where explicitly stated, the level index d will range from 1
to D — 1, where D is the depth of the model.

azi;p(l) = Pr(yl:7'7 Q'?rl:i: 62117'71:0 | ’qld:p)

S

Ql (i)Ad+1 .

alhr(i) £ Pr(ym,qﬁ“ =i,ef™ =0,ef,_1=0]q=p)

Il
e}
~a

S
—
<
=
o[>&

+
-

alP(i) & Pr(yir_1,-qt =i, ef 1 = 0] -g'=p)

d, A :
— ZjGCh(p) al:ffl(-])aj,}; ifr>1
TP ifr =1

[1>

Atli‘:‘ Pr(yl:raeﬁrfl = 0 eg =1 | 'qzi: 7’)

i
_ {Zsech(i) 'r(s)A; .end

yrli
Ad»; 2 Pr(yztr, eﬁr =0 | .qzi — ’L)

— {ZSEch(i) [O‘;l’vz(s) (Aflszend) + (3‘7772(5)]
0 ifd=D

Define Oout é {yl:lflz,yrﬁ*liTy e}:T*l = O}
AP & Pr(Oou | -qi'=p, efr—1=0, 7= 1) Pr(-g'=p)
)\Cll:f(l) = Pr(oout | ‘QLd:pv 621'7'71:07 q’(ri-+1:i) Pr('qld:p)
1,1 1,1 /.
A1;T 17)‘1;T(7') Al end
RB(1,1)
1,1 o 1,1 2, At
Al;r(z) - Z Z)\l 7“’ Aril @i
r'=r4+1 j
LB(d,l)
d, d— d—
AL = D0 D0 i PXi ()
gepa(p) U'=1
rRB(d,r)
d,p: d d+1, B
)‘l;f(z) = Z Z)\ pAr+1Jr’ + A pAz end

r’=r+1 jech(p)

where LB(d,) and RB(d,r) are two functions used to compute

the appropriate index boundary: LB(d,l) = 1 if [> 1,d >
2, and £ 1 otherwise; RB(d,r) & Tifd < D — 1,2 (r +
Hifd=(D-1),and £rifr=T

References

Bui, H. H.; Venkatesh, S.; and West, G. 2000. On the recognition of abstract Markov policies. In
Proceedings of the National Conference on Artificial Intelligence (AAAI-2000).

Bui, H. H. 2003. A general model for online probabilistic plan recognition. In Proceedings of the
Eighteenth International Joint Conference on Atrtificial Intelligence (IJCAI-03).

Fine, S.; Singer, Y.; and Tishby, N. 1998. The hierarchical Hidden Markov Model: Analysis and
applications. Machine Learning 32.

Lari, K., and Young, S. J. 1990. The estimation of stochastic context-free grammars using the
Inside-Outside algorithm. Computer Speech and Language 4:35-56.

Luhr, S; Bui, H. H.; Venkatesh, S.; and West, G. 2003. Recognition of human activity through
hierarchical stochastic learning. In IEEE International Conference on Pervasive Computing and
Communication (PERCOM-2003).

Murphy, K., and Paskin, M. 2001. Linear time inference in hierarchical HMMs. In NIPS-2001.

Rabiner, L. R. 1989. A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE 77(2):257-286.

Skounakis, M.; Craven, M.; and Ray, S. 2003. Hierarchical hidden Markov models for infor-
mation extraction. In Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03).

Theocharous, G., and Mahadevan, S. 2002. Learning the hierarchical structure of spatial en-
vironments using multiresolution statistical models. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Xie, L.; Chang, S.-F.; Divakaran, A.; and Sun, H. 2003. Unsupervised discovery of multilevel
statistical video structures using hierarchical hidden Markov models. In International Conference
on Multimedia and Exhibition (ICME-2003).

LEARNING 329

