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Abstract

A case study of the di�culties associated with the design of hybrid control systems is
presented. We use the Intelligent Vehicle Highway System (IVHS) architecture of [1, 2], a
system that involves both continuous state and discrete event controllers as our example
of a hierarchical hybrid system. We point out that even though conventional analysis
tools suggest that the proposed design should ful�ll certain performance requirements
simulation results show that it does not. We consider this as an indication that the
conventional tools currently in use for the design and veri�cation of control systems may
be inadequate for the design of hierarchical control of hybrid systems.

1 Introduction

The term hybrid system is used to describe a large and varied class of systems. A large class
of hybrid systems can be described by the architecture of Figure 1. A typical hybrid system is
arranged in two (or more) layers [3, 4]. Di�erent levels of abstractions of the plant model are
used at each layer of the hierarchy. In the bottom layer the plant model is usually described
by means of di�erential and/or di�erence equations. This level contains the actual plant and
any conventional controllers working at the same level of abstraction. In the top layer the
plant description is more abstract. Typical choices of description language at this level are
�nite state machines, fuzzy logic, Petri nets etc. Typically the controllers designed at this
level are discrete event supervisory controllers (see e.g. [5]). The two levels communicate by
means of an interface that plays the role of a translator between signals and symbols. As
the techniques for control design and veri�cation are well developed for the continuous and
discrete systems, the design of the interface is of the utmost importance because it determines
the way in which the combined system behaves.

�Research supported by the PATH program, Institute of Transportation Studies, University of California,
Berkeley, under MOU-100
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Figure 1: Hybrid System Architecture

Of course in a general hierarchical structure more than two levels may exist. If this
is the case the structure of Figure 1 can be viewed as the interaction between any two of the
layers. Alternatively the Discrete Event layer can be assumed to be a lumped version of all
the layers that are not part of the continuous domain. Typically in a multilayered hierarchy
as we move up the hierarchy system description gets more abstract (e.g. closer to linguistic),
information is condensed (i.e. a signal in the higher levels codes many facts about the lower
levels) and commands become more descriptive (i.e. a single command at a high level induces
many actions at the lower levels).

The control architecture described above appears in wide variety of applications
and forms the heart of most hybrid system formalisms. Switching controllers [6, 7], Intelligent
Control [8, 9], Expert Control [10], Motion Control [11], among others, make use of the
structure of Figure 1. For most of these systems the design approach has been \divide and
conquer", that is the continuous and discrete controllers are designed independently and then
combined by an interface which is designed with the speci�c problem. This is not a rule
however as the literature also contains examples of systems that show active (on-line) design
of the hybrid controllers (e.g. [12] and [13]) as well as attempts of formulating a consistent
interface that is not case speci�c (e.g. [14]). In addition to theoretical formalisms a lot of work
has also been done on techniques for simulating hierarchical, hybrid systems (e.g. [15] and
[16]).

In this paper we present a case study in the design of hybrid control systems. We
illustrate the problems associated with their design and veri�cation by means of an exam-
ple, the Intelligent Vehicle Highway System (IVHS) designed in the framework of the PATH

2



project. Our goal is to illustrate that the \divide and conquer" approach to design is not
always e�ective. The results we present indicate that for multilayered control structures there
is a need for an independent proof of the combined system in addition to the usual proofs in
the discrete and continuous domain. In the next Section we will outline the overall structure
of the IVHS architecture that we are using in this study. More details on the parts of the
design that are relevant to this study will be given in Section 3.

2 Intelligent Vehicle Highway System Architecture

One example where the hybrid system structure of Figure 1 can be found is the Intelligent
Vehicle Highway System described in [1, 2]. The goal is to design a system that can signif-
icantly increase safety and highway capacity without having to build new roads, by adding
intelligence to both the vehicles and the roadside. In order to achieve this the notion of \pla-
tooning" is introduced in [2]. It is assumed that tra�c on the highway is organized in groups of
tightly spaced vehicles, which are given the name platoons. Intuition suggests that doing this
should lead to an increase in the capacity and throughput of the highway; indeed theoretical
studies indicate that the capacity increase if such a scheme is implemented successfully will
be substantial (as high as four times the current capacity). What may be more surprising is
that this will be done without a negative impact on passenger safety. By having the vehicles
within a platoon follow each other with a small intra-platoon separation of about 1 meter,
we guarantee that if there is a failure and an impact is unavoidable, the relative speed of
the vehicles involved in the collision will be small, hence the damage will be minimized. The
inter-platoon separation, on the other hand, is large (of the order of 30 meters) to physically
isolate the platoons from each other. The idea behind this is that, if needed, the platoons
will have enough time to come to a stop before they collide. In addition a large separation
guarantees that transient decelerations will be attenuated as they propagate down the freeway.

Clearly implementation of such a scheme would require the vehicles to be auto-
matically controlled, as human drivers are not fast and reliable enough to be able to form
platoons. The design of such a large scale control system pauses a formidable problem. In
the architecture outlined in [2] the system is organized in �ve layers. The top layer, called the
network layer, is responsible for the ow of tra�c on the entire highway system1. Its task
is to prevent congestion and maximize throughput by dynamic routing of tra�c.

The block diagram of Figure 2 shows the remaining four layers of the hierarchy. The
second layer, called the link layer, coordinates the operation of whole sections (links) of the
highway. Its primary concern is to maximize throughput while maintaining safe conditions of
operation. With these criteria in mind, it calculates an optimum platoon size and an opti-
mum velocity for each highway section. It also decides which lanes the vehicles should follow
to get to their destination as fast as possible. Finally, it monitors incidents on the highway
and diverts tra�c in order to minimize the impact of the incident on tra�c ow and safety.
Because the link layer bases its control actions on large numbers of vehicles, it inevitably
has to use some form of aggregate information. Therefore it treats the vehicles in a section
statistically rather than by considering the state of individual vehicles or platoons. Likewise,

1The highway system might consist of interconnection of several highways around an urban metropolis.
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Figure 2: IVHS Architecture

the commands it issues are not addressed to individual vehicles but rather to all the vehicles
in the section as a whole; a typical command would be \30% of the vehicles who wish to
get o� the highway at the next exit should change lane now" or \all platoons in this section
should try to be 10 vehicles long".

The next level of hierarchy below the link layer is the coordination layer. It's
task is to coordinate the operation of platoons with their neighbors. It receives the link layer
commands and translates them to speci�c maneuvers that the platoons need to carry out.
For example, it will ask two platoons to merge to a single platoon whose size is closer to the
optimum or, given a command like \30% of the vehicles going to the next exit change lane
now", it will decide which vehicles will comprise this 30% and split the platoons accordingly
in order to let them out. The current design [17] uses protocols, in the form of �nite state
machines, to organize the maneuvers in a systematic way. They receive the commands of the
link layer and aggregated sensor information from the individual vehicles (of the form \there
is a vehicle in the adjacent lane"). They then use this information to decide on a control
policy and issue commands to the regulation layer. The commands are typically of the form
\accelerate to merge to the preceding platoon" or \decelerate so that another vehicle may
move into your lane ahead of you".

Below the coordination layer in the control hierarchy lies the regulation layer. It's
task is to receive the coordination layer commands and translate them to throttle, steering
and breaking input for the actuators on the vehicle. For this purpose it utilizes a number of
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continuous time feedback control laws ([18, 19, 20, 21]) that use the readings provided by the
sensors to calculate the actuator inputs required for a particular maneuver. The regulation
layer occasionally needs to communicate with the coordination layer to inform it of the out-
come of the maneuver.

The bottom layer is not part of the control hierarchy. It is called the physical layer
and it contains the actual plant (in this case the vehicles with their sensors, actuators and
communication equipment and the highway topology). For the purposes of simulation it can
be assumed that the physical layer contains models of the actual physical quantities. From a
hybrid systems point of view, the physical layer is merged with the regulation layer.

2.1 Hybrid control problem

The current paper focuses on the coordination and regulation layers and their interaction.
Our aim is to demonstrate that the behavior of the overall hybrid control system may display
characteristics, possibly undesirable, that are not predicted by analyzing the individual layers.
In order to do this we will �rst describe briey a possible IVHS design for which a dedicated
simulation tool has been developed. In Section 3.1 the results in [21] that describe a possible
design for the regulation layer will be presented while in Section 3.2 we will give an outline of
the results in [17] where the design of the coordination layer is described. Finally in Section 3.3
we will discuss the results in [22] where an interface between these two layers is presented.
References to alternative designs are also provided.

The references provide proofs of performance bounds for the individual layers. Still
however no proof of performance for the overall design exists. The only means available for
testing it at the moment is the SmartPath simulator [23]. In Section 4 of this report we will
present the results of extensive simulations performed using this tool. It turns out that the
performance of the combined system is not quite the expected. In particular, situations arise
indicating limitation of the design that were not predicted by the individual layer analysis.
Even though ways of designing around these shortcoming exist in most cases, it becomes
apparent that if any faith is to be placed in the overall design some way of systematically
determining its performance and limitations must be found. Unfortunately the failure of the
standard tools (both in the �nite state and the continuous domain) to predict the limitations
discovered by means of simulation indicates that new, more powerful tools are needed to
achieve this goal. Our current work focuses on the development of such tools.

3 Design of Individual Layers

In this Section we will give a brief description of the multilayered control design that was
implemented in the SmartPath simulator. We will focus our attention on the regulation
(continuous) and coordination (discrete) layers and their interface.

It should be noted that extensive work has also been done in the link layer design
(see [24]) while work is already in progress for the network layer. The link layer control
scheme has also been added to the SmartPath simulator. However, the simulation results
presented here were obtained using a simpli�ed version of SmartPath where the detailed link
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layer design is substituted by a small number of simple abstractions; for example such an
abstraction might be \all vehicles coming in the freeway should move to the fast lane and
stay there until they are one mile from their exit". The justi�cation for this simpli�cation is
that we are interested in the interaction of the two bottom layers of the control architecture
and the problems it pauses as a hybrid system and do not want the link layer intelligence to
\pollute" their behavior. A few more thoughts on the merits of a simplistic abstraction for
the link layer are given in the concluding Section.

It should also be noted that the IVHS design presented here is by no means unique
or optimal, but is su�cient to illustrate our point. References to possible alternative designs
will be given throughout the paper.

3.1 Continuous Layer

Conventional di�erential equation models are used to design continuous time control laws
at this level, which contains both the regulation and the physical layer of Figure 2. The
advantage of this framework is that it supports well established veri�cation techniques in the
form of mathematical proofs. The procedure used for the design of most of the control laws
that appear in the IVHS architecture in question is to approximate the dynamics of a vehicle
by a linear or feedback linearizable system for which controllers are designed that are robust
enough to take care of any unmodeled dynamics. This process simpli�es the task of analyzing
the stability and performance of the algorithms. The regulation layer contains six such control
laws:

� Leader Control law:
We assume that the platoon leaders will implement an Autonomous Intelligent Cruise
Control2 (AICC) law like the one presented in [21]. The goal of this controller is to
maintain safe inter-platoon spacing (which in [21] is taken as a constant time headway
of 1 second) and track the optimal velocity determined by the link layer (typically 60-65
miles per hour) if possible. Because the objectives of this controller are very similar to
the objectives of human drivers, this control law is used as the default for a leader, i.e.
it is the law implemented unless there is a speci�c command to do otherwise.

� Follower control law:
This is the default control law for the followers in a platoon (see [18, 20]). Its task
is simply to track the velocity of the vehicle in front of it in the same platoon, while
keeping a close distance behind it (1 meter in this case).

� Merge control law:
Merge is the action taken by two platoons that want to become one. The following
platoon, that requests the merge, accelerates to catch up with the leading platoon and
join it. This acceleration is done according to a reference trajectory which is calculated
based on the assumption that the preceding platoon will be moving at constant velocity
throughout the entire maneuver. State feedback is then used to stabilize the closed
loop system about this trajectory and hence eliminate the e�ect of any acceleration or
deceleration of the leading platoon (see [21]).

2See [25] for a di�erent design of AICC control law.
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� Split Control law:
Split is exactly the opposite of merge. A follower becomes the leader of all the cars that
follow it (in the same platoon) and decelerates until it reaches safe inter-platoon distance
from the mother platoon. Like the merge control law, a reference open loop trajectory
is calculated and then state feedback is used to guarantee asymptotic tracking.

� Change lane control law:
Apart from the obvious lateral (steering) action, change lane also requires longitudinal
action in terms of aligning the vehicle that wishes to change lane with a proper gap in
the target lane. This action is in principle similar to a split as discussed in [21]. Both
the longitudinal and lateral components of this maneuver are carried out by controllers
that are designed in the same way as the merge or split controllers.

� Lateral control law:
The objective of this law is to keep the vehicle in the center of the lane. This is done
by means of a frequency shaped linear quadratic (FSLQ) regulator ([19]).

It can be shown that individually all the control laws described above lead to a closed loop
system that is stable and capable of performing the desired task adequately. The proofs and
simulation results of this claim can be found in the references. In addition, some of these
controllers have been tested experimentally on actual vehicles with satisfactory results.

The continuous layer in the sense of Figure 1 also contains the physical layer of
Figure 2. The work presented here was carried out under the assumption that the operation
of the sensors and actuators of the physical layer of all vehicles is perfect, i.e. there are no
time delays, no steady state tracking error, no false measurements, etc. The only restrictive
assumption we make is that we impose limits on the ranges of the sensors and actuators. These
limits are based on experimental data and assume perfect external conditions (dry road, and
perfect weather). Therefore they are, if anything, optimistic given the current technology.
They are summarized in table 3.1.

Table 1: Constraints on Actuators and Sensors

Max. Acceleration 3 m/s2

Max. Deceleration �5 m/s2

Distance Sensor Front 60 m

Distance Sensor Rear 30 m

Distance sensor Adjacent Lane, Front 30 m
Distance sensor Adjacent Lane, Rear 30 m

As will become apparent in Section 4 these limits play a crucial role in the behavior
of the combined system. In particular, we can identify a region in the state space of the lead
vehicle, corresponding to certain severe disturbances, from which the lead control can not
recover. (see [21] for details.)
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3.2 Discrete Layer

The discrete layer works at a more abstract level than the continuous layer. Many di�erent
formalisms exist for describing this layer; standard choices include �nite state machines, Petri
or Neural Nets and Fuzzy Logic among others. The framework of most of these techniques
supports methods of carrying out proofs of correctness. For example, a very e�ective proof
method is the one used for the veri�cation of �nite state machines. It is based on the fact that,
because of the �niteness of the state, it is possible to enumerate all possible traces that the
machine accepts and hence verify that all possible sequences of events possess certain desirable
properties. Tools exist in the form of computer programs that perform this veri�cation task
automatically. Of course the actual tools are a lot more sophisticated than the simplistic
description given above and are designed to be computationally e�cient, a very useful property
as the machines in question often have hundreds of thousands or even millions of states.

In our example we will assume that the discrete layer contains only the coordination
layer. As mentioned in the introduction a simple abstraction will be used for the link layer.
The task of this discrete layer is to provide a consistent way of coordinating the maneuvers
of adjacent platoons so that they are e�ective (vehicles get to their destination) and e�cient
(capacity is maximized) without compromising safety. To facilitate the analysis and keep the
problem tractable, the design in [17] distinguishes only three maneuvers: Merge to form a
single platoon from two platoons, Split to do the opposite and Change to move a vehicle from
one lane to the other. To further simplify the situation it is assumed that each platoon can
only be involved in one maneuver at a time and that only free agents, that is one car platoons,
can change lane. Clearly these assumptions lead to a rather restricted set of possible behaviors.
It may be possible to obtain better designs by relaxing some of them (see for example [26]).
However, the restrictions allow us to keep track of the problem and prove that the design
possesses certain desirable properties.

The coordination layer controller is supposed to carry out these three maneuvers
e�ciently and safely. To accomplish this, the coordination layer of each vehicle exchanges
messages with neighboring vehicles according to certain protocols (which in [17] are modeled
by �nite state machines). When mutual agreement (coordination) is reached, it commands the
regulation layer to carry out the appropriate maneuver. The protocols were veri�ed, to posses
certain desirable properties using an automated software veri�cation tool, COSPAN [27]. For
the purpose of this veri�cation, the behavior of the continuous layer was abstracted by a
set of �nite state machines, that are supposed to model the behavior of the sensors and the
conventional controllers from the protocol point of view. So the veri�cation proved that the
protocol logic is \correct" when coupled with the abstraction of the continuous layer. How
closely the abstractions match the behavior of the actual system is still an open question
however.

3.3 Interface

Interface design is the most challenging part of a hybrid system since it straddles both the
continuous and the discrete world. Good interface design is very important as it determines
to a large extend what one can prove about the combined system. It may also help us extend
advantages of the discrete event system theory (e.g. ease of computation) to the continuous
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domain and conversely (e.g. derive mathematical proofs in discrete space from equivalent
proofs on continuous state spaces).

In applications such as ours, the interface is usually designed last. The disadvantage
of this approach is that it leads to interfaces that are case speci�c and whose performance
is limited by the limitations of the rest of the design. One of the goals of this research is
to develop a technique for systematically designing interfaces with desirable properties for
general systems.

In our example the interface is a �nite state machine whose transitions depend
upon the commands from the coordination layer, the readings of the sensors (physical layer
responses) and the state of the continuous controllers. It plays a dual role. On the one side
it acts as a symbol to signal translator and therefore directly inuences the evolution of the
continuous system. It receives the coordination layer commands (symbols) and uses them to
switch between the di�erent continuous layer controllers (signals). In addition it keeps track
of which of these controllers needs to be initialized (symbol) and carries out this initialization
by directly changing the controller state (signal). In the other direction the interface acts
as a signal to symbol translator. It processes the sensory information (signal) and presents
it to the coordination layer in an aggregate form compatible with the �nite state machine
formalism (symbol). It also monitors the evolution of the continuous system (signal) and
decides if the maneuver in progress is safe or not. If at any stage the maneuver becomes
hazardous it aborts it, noti�es the coordination layer of its decision (symbol) and switches to
a di�erent continuous control law that will get the system back to a safe con�guration.

Unfortunately there is no systematic way of verifying the complete interface. [22]
describes the veri�cation of the discrete part of the interface, where the continuous state con-
siderations are ignored or abstracted. However, the addition of the actual continuous e�ects
to the framework in a consistent way is not supported by the current theory.

The only way of testing the behavior of the combined system at the moment is by
simulation. Even though successful simulation results are not nearly as good as a mathematical
proof of the properties of the system, a failure in the simulation can be considered as a proof
of a shortcoming of the actual design. This approach will be used in the next section to point
out problems in the current IVHS design presented here and try to determine their causes.

4 Properties of Combined System

The design described above was put to test by implementing it in simulation. The result was
a dedicated simulator, SmartPath, which is described in [23]. An e�ort was made to make the
simulator as exible and modular as possible so that changes in the design (e.g. alternative
regulation layer controllers) can be implemented easily. Using this tool, long simulations for
a variety of initial conditions and inputs and a few choices of simpli�ed link layer design
were carried out. Contrary to our expectation we observed quite a few scenarios where the
performance of the system was inferior to the one predicted by the individual level analysis,
for example unpredicted car crashes occurred. We now document these di�erent scenarios.
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Figure 3: Change lane from a slow to a fast lane

4.1 Changing from a slow to a fast lane

According to the coordination layer design, only free agents (single vehicle platoons) are
allowed to change lane. Before a vehicle initiates a lane change it looks (through its sensors)
to the adjacent lane to make sure that there is room for it there. If no vehicle is visible in the
sensor range the move is initiated immediately. If a vehicle is found and its distance is less
than the safe inter-platoon spacing communication is established to coordinate the maneuver.
This goes on until a gap twice as large as the safe inter-platoon spacing is found. Then the
lane change takes place in the middle of this gap.

In most situations this arrangement should cause no problems. Indeed both the
protocol that coordinates the maneuver and the regulation layer controllers that align the free
agent with a gap in the next lane have been proven to perform well. Consider however the
scenario shown in Figure 3. Free agent A switches from a slow lane to a fast lane. During
the change a gap big enough for A to move into is present in the fast lane (for example no
vehicle is visible in the sensor range). It is conceivable however that a vehicle (denoted by
B) is present in the fast lane behind A, which, after the lane change is complete, �nds itself
just outside A's rear sensor range (say 35m) and moving a lot faster than A (say 30m=s as
opposed to 10m=s). It turns out that the AICC lead controller is incapable of recovering from
such drastic initial conditions, so a crash is inevitable.3

We were able to recreate this kind of crash in a relatively light tra�c situation by
asking many vehicles to change lane at the same time in order to leave at an intersection.
As the vehicles need to be free agents before they change lane many splits were carried out,
which inevitably lead to a large deceleration in the lane of origin. This deceleration was not
present in the target lane however, so, after a few seconds, the vehicles in the target lane
found themselves moving a lot faster than the vehicles in the origin lane. Crashes of the kind
described above were then observed. An example of this scenario is given in Figures 7 (where
each point represents the position of a vehicle at the given time instant).

3Note that the safe inter-platoon spacing for a vehicle is a�ne in its velocity. In �gure 3, the safe inter-
platoon spacing is 20 m for vehicle A but 40 m for vehicle B.
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Figure 4: Change lane from a fast to a slow lane

4.2 Changing from a fast to a slow lane

This is a mirror image of the situation of previous case. In this case (Figure 4), the vehicle
B changes lane and hits a slow moving (or stalled) vehicle A from behind. During the lane
change vehicle A was just outside the range of the forward adjacent lane sensor of B. After the
change was complete the front sensor of B reveals the presence of A but it is already too late
to stop. The scenarios that might lead to such a crash are the same as the ones of Section 4.1,
with the origin and target lanes interchanged.

It turns out that it is very di�cult to recreate a crash like this using the current
version of SmartPath. Figure 13 shows an extreme case where a stalled vehicle is seen at the
edge of the front sensor range (60 m). The optimum velocity commanded by the link layer is
too high for the second vehicle to stop in time and therefore a crash is unavoidable.

4.3 Merging to a decelerating platoon

With the merge control law described in Section 3.1, changes in the velocity of the front
platoon should cause no problem as the state feedback should take care of any deviations
from the desired trajectory. However, the actual trajectory will deviate from the desired
one if the limits of the actuators (throttle and brake) are reached. To avoid this possibility,
the interface aborts the maneuver when it detects the danger of actuator saturation (see
[22]). After aborting the maneuver the system should �nd itself in a position from which it
can continue safely under the AICC lead control law. The simulation indicates that under
extreme conditions this may not be true and merging may cause a major hazard. We were
able to recreate two such scenarios.

In the �rst case we created a large deceleration in a lane by making the simpli�ed
link layer ask many of the vehicles in the adjacent lanes to move to the lane in question. The
vehicles already in the lane were then forced to decelerate to create space for the incoming
vehicles. In the second scenario we caused a large deceleration by asking many of the vehicles
in a densely occupied lane to exit. As already discussed this caused a number of splits in
the platoons as the vehicles tried to become free agents in order to change lanes. In both
situations the deceleration built up enough to cause saturation of the actuators. Therefore
merging vehicles upstream of the disruption were forced to abort their maneuvers. This led to
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Figure 5: Crash during Merge maneuver

a situation where vehicles (like vehicle A in Figure 5) found themselves close to the preceding
platoon (B-B2) which is already decelerating at the maximum rate, while moving faster than
it. Hence, even though A decelerates at saturation level as well, a crash is unavoidable.

A situation where such a crash is observed is shown in Figures 9 and 10.
Note: Vehicle crashes associated with merge maneuver were also predicted by A. Hitchcock
(See [28]) using Fault Tree analysis method.

4.4 Multiple lane changes from a single platoon

The situation described above, where many vehicles wish to change out of a lane thus creating
multiple splits, caused yet another kind of crash. The scenario is outlined in Figure 6.

A platoon breaks up so that vehicles B, C and D can leave the lane. The current
interface declares a split maneuver complete the moment the deceleration begins. This allows
the coordination layer to initiate a lane change maneuver while the split deceleration is taking
place. This is done to improve the rate at which vehicles leave the lane. However, it is
conceivable that three splits will occur before a lane change is initiated. So B, C and D will
all become free agents one after the other. This will cause no problem as long as the vehicles
stay in the lane. Suppose though that all three of them want to move to the next lane. As
discussed above they will all look at the target lane through their sensors, and, assuming they
�nd it empty will all start moving over at roughly the same time. If D reaches the target lane
�rst it will start accelerating to get back to the optimum speed. In the meantime C, which
has been decelerating because of the split maneuver, reaches the lane fractions of a second
later. As a result D �nds itself very close to C and moving slightly faster. It is very likely
that this situation might lead to a crash. Indeed Figure 11 shows the results of a simulation
where such a crash was observed.
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Figure 6: Multiple Change Lane

4.5 Crash Analysis

The common feature of all the crashes described above is that they are caused by continuous
layer performance not accounted for by the discrete layer. In all cases this leads to the discrete
layer making requests that are incompatible with the current situation of the continuous
layer, such as a potentially dangerous maneuver. The situations in Sections 4.1 and 4.2
arise because the limits on the sensor range and the continuous time controller performance
are not represented adequately by the corresponding coordination layer abstractions. The
same is true for the situation in 4.3, only instead of the sensor limits the problem here arises
because of the actuator limits. Finally the problem in Section 4.4 is caused by the fact that
the coordination layer implicitly assumes that during a lane change vehicles in the origin lane
will already be at a safe distance, an assumption related to the continuous layer. As a result
it does not establish communication with them and therefore is oblivious of their intend to
change lanes.

Clearly most of these crashes could have been avoided by changes in the control
design. For example to exclude the scenario in Section 4.4 we could ask the interface to
declare the split maneuver complete (and allow the initiation of a new maneuver) after the
splitting platoon has decelerated all the way to safe spacing. This fact however is besides the
point. For one, ad-hoc changes like that might have unpredictable e�ect on other aspects of the
system performance (e.g. capacity). More importantly the simulation results demonstrated
that, even though the individual layers have been veri�ed independently to exclude certain
undesirable kind of behavior, the combined system is capable of producing them. It should
also be noted here that the list of faults presented above is by no means exhaustive. The fact
that we were able to identify only the above scenarios as dangerous does not mean that there
do not exist other situations that may lead to unpredictable catastrophes. These observations
naturally lead to the question to what extend can one trust the conventional discrete and
continuous veri�cation techniques when it comes to hybrid systems. Clearly if any faith is to
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be placed in the IVHS design presented here a proof of its performance claims is needed. The
above indicates that such a proof is not possible using conventional tools.

As already mentioned the link layers used in the above simulation were extremely
simple. One might feel that the crashes could have been avoided with a more realistic and
intelligent link layer design. Even if this is true it still does not change the fact that the
coordination-regulation layer interaction needs to be studied more, as the performance claims
made by the veri�cation of the individual layers are independent of the link layer design.

It should be noted here that the above discussion should not give the impression that
car crashes are a common occurrence in the proposed IVHS design. In fact they are rather rare
and occur only under special, extreme conditions, which we mostly set up speci�cally in order
to observe the crashes. Statistically speaking the crash of the kind described in Section 4.3
are the most common. Crashes of the kind described in Section 4.1 are rather rare and only
happen under extreme conditions. The same is true for the crashes described in Section 4.4
which are even more rare. Finally crashes like the ones in Section 4.2 are very rare indeed
and are only observed under scenarios that were arti�cially created.

5 Concluding Remarks

Summarizing the above results, the regulation and coordination (continuous and discrete)
layers of the IVHS architecture shown in Figure 2 were independently developed and were
then combined by an interface. At each level (discrete, continuous and interface) veri�cation
of desirable properties was carried out using the appropriate tools. However, contrary to
expectations, problems were detected in the combined system performance by simulation.
The problems were due to the fact that the discrete layer can only comprehend abstractions
of the continuous layer. As a result it can not take su�ciently into account certain continuous
layer parameters, which in our case were the sensor and actuator ranges and the controller
performance bounds. These observations led to the conclusion that in order to fully trust the
design we need veri�cation tools that test the performance of the combined hybrid system.

Computer aided veri�cation of timed [29] and hybrid systems [30, 31] is currently an
active area of research. For veri�cation, the actual behaviors of the hybrid systems are usually
abstracted into a �nite set of behaviors. Thus one trajectory of the abstraction will include
many possible system trajectories which are \close" to it in some sense. This is a promising
development as for example it could be used in the context of IVHS to prove that a particular
design will not produce any crashes in normal mode. It should be noted however that the
application of such a technique to the current design may be inconclusive as the failure of the
veri�cation may be attributed to either a faulty design or over-abstraction.

In terms of progress in the IVHS part of the problem, the simulation results may also
suggest considerations to be taken into account by the link layer. For example, while dealing
with an accident downstream, it might seem natural to declare all vehicle in a platoon to be
free agents in order to try and get as many of them out of this lane as possible. But this will
create successive splits and excessive decelerations for vehicles further upstream. Under these
conditions crashes like the ones described in Sections 4.1 and 4.3 will be possible. Similarly,
downstream from an accident vehicles will want to move from the congested (free) lane to
the nearly empty lane (where the accident was). This may again lead to the same type of
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crashes. Finally, the risks associated with the merge maneuver may be unavoidable without
extensive redesign, as the cause of deceleration (e.g. splitting of platoons downstream etc) are
uncontrollable and can occur any time during the merge 4. These results also indicate that
the performance of the current design, even with the link layer, may not be robust enough
to deal with certain situations. We collectively refer to such extreme conditions as \degraded
modes of operation". More work is currently in progress to provide alternatives to the current
design in order to deal with these scenarios.

Acknowledgment: The authors would like to thank Farokh Eska�, Delnaz Khorramabadi,
Dr. Bobby Rao and Prof. Pravin Varaiya for helpful discussions providing insight into the
problem.
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A Simulation Results

Crash During Lane Change
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Figure 7: Lane change from slow to fast lane: the crash occurs at 86.91 seconds at a distance
of 1870 meters. The next �gure shows a close up view of the crash
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Crash During Lane Change
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Figure 8: Lane change from slow to fast lane: close up view of the crash
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Crash During Merge Maneuver
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Figure 9: Distance-Time plot of lane 2 showing crashes related to merge maneuvers: there is
a four car pile-up at 82 seconds and 1880 meters whose close up is presented in the next plot.
There is another crash at 94.8 seconds and 1780 meters
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Crash During Merge Maneuver
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Figure 10: Both the crashes mentioned above can be seen in this plot clearly. The crashes
during the merge maneuver occur because of a large deceleration created upstream by the
highway junction
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Crash during Multiple Lane Change
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Figure 11: Distance-Time plot of lane 1 showing problems associated with multiple lane change
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Crash during Multiple Lane Change
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Figure 12: Multiple lane change close up: All three followers of last platoon want to change
lane around 101 seconds. All of them split from each other successively and decide to change
lane in the same space on adjacent lane. As they are independent platoons, they are not
communicating with each other. The third car in this platoon can be seen to crash into the
second car at 104.61 seconds and 1825 meters

23



Crash during Multiple Lane Change
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Figure 13: Distance-Time plot of lane 1: crash at 94.31 seconds and 1880 meters is similar in
nature to the case of "changing from a fast to a slow lane"
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