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Abstract. We present a Hierarchical Identity Based Encryption (HIBE)
system where the ciphertext consists of just three group elements and
decryption requires only two bilinear map computations, regardless of
the hierarchy depth. Encryption is as efficient as in other HIBE systems.
We prove that the scheme is selective-ID secure in the standard model
and fully secure in the random oracle model. Our system has a number
of applications: it gives very efficient forward secure public key and iden-
tity based cryptosystems (with short ciphertexts), it converts the NNL
broadcast encryption system into an efficient public key broadcast sys-
tem, and it provides an efficient mechanism for encrypting to the future.
The system also supports limited delegation where users can be given
restricted private keys that only allow delegation to bounded depth. The
HIBE system can be modified to support sublinear size private keys at
the cost of some ciphertext expansion.

1 Introduction

An Identity Based Encryption (IBE) system [24, 5] is a public key system where
the public key can be an arbitrary string such as an email address. A central
authority uses a master key to issue private keys to identities that request them.
Hierarchical IBE (HIBE) [17, 14] is a generalization of IBE that mirrors an or-
ganizational hierarchy. An identity at level k of the hierarchy tree can issue
private keys to its descendant identities, but cannot decrypt messages intended
for other identities (details are given in Section 2.1). The first construction for
HIBE is due to Gentry and Silverberg [14] where security is based on the Bilin-
ear Diffie-Hellman (BDH) assumption in the random oracle model. A subsequent
construction due to Boneh and Boyen [1] gives an efficient (selective-ID secure)
HIBE based on BDH without random oracles. In both constructions, the length
of ciphertexts and private keys, as well as the time needed for decryption and
encryption, grows linearly in the depth � of the hierarchy.
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There are currently two principal applications for HIBE. The first, due to
Canetti, Halevi, and Katz [9], is forward secure encryption. Forward secure en-
cryption enables users to periodically update their private keys so that a message
encrypted at period n cannot be read using a private key from period n′ > n.
To provide for T = 2t time periods, the CHK construction uses a HIBE of depth
t where identities are binary vectors of length at most t. At time n, the encryp-
tor encrypts using the identity corresponding to the n-th node of this depth t
binary tree. Consequently, using previous HIBE systems [14, 1], ciphertexts in
this forward secure construction are of size O(t); private keys are of size O(t2)
but can be reduced to size O(t) by using updateable public storage. The second
application for HIBE, due to Dodis and Fazio [11], is using HIBE to convert the
NNL broadcast encryption system [22] into a public-key broadcast system. Un-
fortunately, the resulting public-key broadcast system is no better than simpler
constructions because ciphertext length in previous HIBE constructions is linear
in the depth of the hierarchy.

Our Contribution. We present a HIBE system where the ciphertext size as
well as the decryption cost are independent of the hierarchy depth �. Ciphertexts
in our HIBE system are always just three group elements and decryption requires
only two bilinear map computations. Private keys in our basic system contain �
group elements as in previous HIBE constructions.

Our system gives a forward secure encryption system with short ciphertexts
consisting of only three group elements, for any number T = 2t of time periods.
With our basic HIBE system, the private key size in this forward secure encryp-
tion system is O(t2). In Section 4 we describe a hybrid system that borrows
some features from the Boneh-Boyen HIBE [1] and results in a forward secure
encryption scheme where private key size is reduced to O(t3/2) and ciphertext
size is O(

√
t). By using updateable public storage as in CHK [9], private key

size in these systems can be further reduced to size O(t) and O(
√

t) respectively.
In addition, instantiating the Dodis-Fazio [11] system with our HIBE system
results in a public-key broadcast system that is as efficient as the NNL subset
difference method.

It is worth noting that private keys in our system shrink as the identity depth
increases; this shrinkage is the opposite behavior from previous HIBE systems
where private keys become larger as we descend deeper down the hierarchy tree.
This behavior leads to “limited delegation” where an identity at depth k can be
given a restricted private key that only lets it issue private keys to descendants
of limited depth (as opposed to any descendant).

Security of our system is based on a natural assumption that is closely related
to the Diffie-Hellman Inversion assumption [1, 19]. We describe the assumption
in Section 2.3. In the full paper [3], we prove a lower bound on the computa-
tional complexity of the problem in the generic group model and also discuss
its relation to existing assumptions in bilinear groups. We present the system
in Section 3 and prove its security in the selective identity model without using
random oracles. We then observe that a selective-ID secure HIBE results in a
fully secure HIBE in the random oracle model. In Sections 4 and 5 we discuss



442 D. Boneh, X. Boyen, and E.-J. Goh

several extensions and applications of the system. For example, in addition to the
applications already mentioned, we show how private keys can be further com-
pressed to sublinear size and also describe an efficient mechanism for encrypting
to the future.

2 Preliminaries

We briefly review the definition of HIBE and bilinear groups, and introduce the
Bilinear Diffie-Hellman Exponent assumption in such groups.

2.1 Fully Secure HIBE Systems

Like an Identity Based Encryption (IBE) system, a Hierarchical Identity Based
Encryption (HIBE) system consists of four algorithms [17, 14, 1]: Setup, KeyGen,
Encrypt, Decrypt. In HIBE, however, identities are vectors; a vector of dimen-
sion k represents an identity at depth k. The Setup algorithm generates system
parameters, denoted by params, and a master key master-key. We refer to the
master-key as the private key at depth 0 and note that an IBE system is a HIBE
where all identities are at depth 1. Algorithm KeyGen takes as input an identity
ID = (I1, . . . , Ik) at depth k and the private key dID|k−1 of the parent identity
ID|k−1 = (I1, . . . , Ik−1) at depth k − 1, and then outputs the private key dID for
identity ID. The encryption algorithm encrypts messages for an identity using
params and the decryption algorithm decrypts ciphertexts using the private key.

Chosen ciphertext security for HIBE systems is defined under a chosen iden-
tity attack where the adversary is allowed to adaptively chose the public key
on which it will be challenged. More precisely, HIBE security (IND-ID-CCA) is
defined by the following game between an adversary A and a challenger C:

Setup: The challenger C runs the Setup algorithm and gives A the resulting
system parameters params, keeping the master-key to itself.

Phase 1: A adaptively issues queries q1, . . . , qm where query qi is one of the
following:

– Private key query 〈IDi〉. C responds by running algorithm KeyGen to generate
the private key di corresponding to the public key 〈IDi〉 and sends di to A.

– Decryption query 〈IDi, Ci〉. C responds by running algorithm KeyGen to gen-
erate the private key d corresponding to IDi. It then runs algorithm Decrypt
to decrypt the ciphertext Ci using the private key d and sends the resulting
plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity ID∗ and
two equal length plaintexts M0,M1 ∈ M on which it wishes to be challenged.
The only restriction is that A did not previously issue a private key query for
ID∗ or a prefix of ID∗. C picks a random bit b ∈ {0, 1} and sets the challenge
ciphertext to CT = Encrypt(params, ID∗,Mb), which is sent to A.
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Phase 2: A issues additional queries qm+1, . . . , qn where qi is one of:

– Private key query 〈IDi〉 where IDi �= ID∗ and IDi is not a prefix of ID∗.
– Decryption query 〈Ci〉 �= 〈C〉 for ID∗ or any prefix of ID∗.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins if b = b′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define the
advantage of the adversary A in attacking the scheme E as

AdvE,A = |Pr[b = b′] − 1/2| .
The probability is over the random bits used by the challenger and the adversary.

Canetti, Halevi, and Katz [9, 10] define a weaker notion of security in which
the adversary commits ahead of time to the public key it will attack. We refer
to this notion as selective identity, chosen ciphertext secure HIBE (IND-sID-
CCA). The game is exactly the same as IND-ID-CCA except that the adversary
A discloses to the challenger the target identity ID∗ before the Setup phase.
The restrictions on private key queries from phase 2 also hold in phase 1.

Definition 1. We say that a HIBE system E is (t, qID, qC , ε)-secure if for any
t-time IND-ID-CCA (respectively IND-sID-CCA) adversary A that makes at most
qID chosen private key queries and at most qC chosen decryption queries, we have
that AdvE,A < ε. As shorthand, we say that E is (t, qID, qC , ε)-IND-ID-CCA (resp.
IND-sID-CCA) secure.

Semantic Security. As usual, we define chosen plaintext security for a HIBE
system as in the preceding game, except that the adversary is not allowed to
issue any decryption queries. The adversary may still issue adaptive private key
queries. This security notion is termed as IND-ID-CPA (or IND-sID-CPA in the
case of a selective identity adversary).

Definition 2. We say that a HIBE system E is (t, qID, ε)-IND-ID-CPA secure
(resp. IND-sID-CPA) if E is (t, qID, 0, ε)-IND-ID-CCA secure (resp. IND-sID-CCA).

2.2 Bilinear Groups

We briefly review bilinear maps and bilinear map groups. We use the following
notation [18, 8]:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e is a bilinear map e : G × G → G1.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G → G1

with the properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.
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We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists both a group G1 and an efficiently computable bilinear
map e : G × G → G1 as above.

2.3 Bilinear Diffie-Hellman Exponent (BDHE) Assumption

The �-BDHE problem in G is as follows: given g, h, and g(αi) in G for i =
1, 2, . . . , �−1, �+1, . . . , 2� as input, output e(g, h)(α

�) ∈ G1. Since g(α�) is missing
from the list of powers, the bilinear map seems to be of no help in computing
e(g, h)(α

�). As a shorthand, let yi = g(αi) ∈ G. An algorithm A has advantage ε
in solving �-BDHE in G if

Pr
[
A(

g, h, y1, . . . , y�−1, y�+1, . . . , y2�

)
= e(g, h)(α

�)
]
≥ ε,

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, and the random bits used by A. The decisional ver-
sion of the �-BDHE problem in G is defined in the usual manner. Let −→y g,α,� =
(y1, . . . , y�−1, y�+1, . . . , y2�). An algorithm B that outputs b ∈ {0, 1} has advan-
tage ε in solving decision �-BDHE in G if

∣∣∣∣ Pr
[
B(

g, h,−→y g,α,�, e(g, h)(α
�)

)
= 0

]
− Pr

[
B(

g, h,−→y g,α,�, T
)

= 0
]∣∣∣∣ ≥ ε,

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
consumed by B. We refer to the distribution on the left as PBDHE and the
distribution on the right as RBDHE .

Definition 3. We say that the (decision) (t, ε, �)-BDHE assumption holds in G

if no t-time algorithm has advantage at least ε in solving the (decision) �-BDHE
problem in G.

For conciseness we occasionally drop the t and ε and simply refer to the (deci-
sion) �-BDHE in G. In the full version of this paper [3], we show that a broad
class of assumptions, including the �-BDHE assumption, hold in generic bilinear
groups [25]; we also discuss the relation between these assumptions. We show
that the �-BDHE is a natural extension of the Bilinear Diffie-Hellman Inversion
problem, which was previously used in various constructions [1, 12, 19].

3 A HIBE System with Constant Size Ciphertext

Let G be a bilinear group of prime order p and let e : G × G → G1 be a
bilinear map. For now, we assume that public keys (that is, identities ID) at
depth k are vectors of elements in (Z∗

p)
k. We write ID = (I1, . . . , Ik) ∈ (Z∗

p)
k.

The j-th component corresponds to the identity at level j. We later extend the
construction to public keys over {0, 1}∗ by first hashing each component Ij using
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a collision resistant hash H : {0, 1}∗ → Z
∗
p. We also assume that the messages

to be encrypted are elements in G1. The HIBE system works as follows:

Setup(�): To generate system parameters for an HIBE of maximum depth �,
select a random generator g ∈ G, a random α ∈ Zp, and set g1 = gα. Next, pick
random elements g2, g3, h1, . . . , h� ∈ G. The public parameters and the master
key are

params = (g, g1, g2, g3, h1, . . . , h�) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate a private key dID for identity ID = (I1, . . . , Ik) ∈
(Z∗

p)
k of depth k ≤ �, pick a random r ∈ Zp and output

dID =
(
gα
2 · (hI1

1 · · ·hIk

k · g3

)r
, gr, hr

k+1, . . . , hr
�

)
∈ G

2+�−k.

Note that dID becomes shorter as the depth of ID increases. The private key for ID
can be generated just given a private key for ID|k−1 = (I1, . . . , Ik−1) ∈ (Z∗

p)
k−1

as required. Indeed, let

dID|k−1 =
(
gα
2 · (hI1

1 · · ·hIk−1
k−1 · g3

)r′
, gr′

, hr′
k , . . . , hr′

�

)
= (a0, a1, bk, . . . , b�)

be the private key for ID|k−1. To generate dID, pick a random t ∈ Zp and output

dID =
(
a0 · bIk

k · (hI1
1 · · ·hIk

k · g3

)t
, a1 · gt, bk+1 · ht

k+1, . . . , b� · ht
�

)
.

This private key is a properly distributed private key for ID = (I1, . . . , Ik) for
r = r′ + t ∈ Zp.

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key
ID = (I1, . . . , Ik) ∈ (Z∗

p)
k, pick a random s ∈ Zp and output

CT =
(
e(g1, g2)s · M, gs,

(
hI1

1 · · ·hIk

k · g3

)s
)

∈ G1 × G
2.

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik). To decrypt a given ci-
phertext CT = (A,B,C) using the private key dID = (a0, a1, bk+1 . . . , b�), output

A · e(a1, C)
/

e(B, a0) = M.

Indeed, for a valid ciphertext, we have

e(a1, C)
e(B, a0)

=
e
(
gr, (hI1

1 · · ·hIk

k · g3)s
)

e
(
gs, gα

2 (hI1
1 · · ·hIk

k · g3)r
) =

1
e(g, g2)sα

=
1

e(g1, g2)s
.

Observe that for identities at any depth, the ciphertext contains only 3 ele-
ments and decryption takes only 2 pairings. In previous HIBE systems, cipher-
text size and decryption time grow linearly in the identity depth. Also, note that
e(g1, g2) used for encryption can be precomputed (or substituted for g2 in the
system parameters) so that encryption does not require any pairings.



446 D. Boneh, X. Boyen, and E.-J. Goh

3.1 Security

We first show that our HIBE scheme is selective identity secure (IND-sID-CPA)
under the decisional Bilinear Diffie-Hellman Exponent assumption. We later de-
scribe how to provide both chosen ciphertext security (IND-sID-CCA) and full
HIBE security (IND-ID-CCA).

Theorem 1. Let G be a bilinear group of prime order p. Suppose the decision
(t, ε, � + 1)-BDHE assumption holds in G. Then the previously defined �-HIBE
system is (t′, qS, ε)-selective identity, chosen plaintext (IND-sID-CPA) secure for
arbitrary �, qS, and t′ < t − Θ(τ � qS), where τ is the maximum time for an
exponentiation in G.

Proof. Suppose A has advantage ε in attacking the �-HIBE system. Using A, we
build an algorithm B that solves the decision (� + 1)-BDHE problem in G.

For a generator g ∈ G and α ∈ Zp let yi = g(αi) ∈ G. Algorithm B is given as
input a random tuple (g, h, y1, . . . , y�, y�+2, . . . , y2�+2, T ) that is either sampled
from PBDHE (where T = e(g, h)(α

�+1)) or from RBDHE (where T is uniform and
independent in G1). Algorithm B’s goal is to output 1 when the input tuple is
sampled from PBDHE and 0 otherwise. Algorithm B works by interacting with
A in a selective identity game as follows:

Initialization. The selective identity game begins with A first outputting an
identity ID∗ = (I∗1, . . . , I

∗
m) ∈ (Z∗

p)
m of depth m ≤ � that it intends to attack. If

m < � then B pads ID∗ with � − m zeroes on the right to make ID∗ a vector of
length �. Hence, from here we assume that ID∗ is a vector of length �.

Setup. To generate the system parameters, algorithm B picks a random γ in
Zp and sets g1 = y1 = gα and g2 = y� · gγ = gγ+(α�). Next, B picks random
γ1, . . . , γ� in Zp and sets hi = gγi/y�−i+1 for i = 1, . . . , �. Algorithm B also picks

a random δ in Zp and sets g3 = gδ · ∏�
i=1 y

I∗
i

�−i+1.
Finally, B gives A the system parameters params = (g, g1, g2, g3, h1, . . . , h�).

Observe that all these values are distributed uniformly and independently in
G as required. The master key corresponding to these system parameters is
gα
2 = gα(α�+γ) = y�+1y

γ
1 , which is unknown to B since B does not have y�+1.

Phase 1. A issues up to qS private key queries. Consider a query for the private
key corresponding to ID = (I1, . . . , Iu) ∈ (Z∗

p)
u where u ≤ �. The only restriction

is that ID is not ID∗ or a prefix of ID∗. This restriction ensures that there exists
a k ∈ {1, . . . , u} such that Ik �= I∗k (otherwise, ID would be a prefix of ID∗).
To respond to the query, algorithm B first derives a private key for the identity
(I1, . . . , Ik) from which it then constructs a private key for the requested identity
ID = (I1, . . . , Ik, . . . , Iu).

To generate the private key for identity (I1, . . . , Ik), B first picks a random r̃

in Zp. We pose r = αk

(Ik−I∗k) + r̃ ∈ Zp. Next, B generates the private key

(
gα
2 · (hI1

1 · · ·hIk

k g3)r, gr, hr
k+1, . . . , hr

�

)
, (1)
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which is a properly distributed private key for the identity (I1, . . . , Ik). We show
that B can compute all elements of this private key given the values at its
disposal. We use the fact that y

(αj)
i = yi+j for any i, j.

To generate the first component of the private key, first observe that

(hI1
1 · · ·hIk

k g3)r =

(
gδ+

∑ k
i=1 Iiγi ·

k−1∏
i=1

y
(I∗i −Ii)
�−i+1 · y(I∗k−Ik)

�−k+1 ·
�∏

i=k+1

y
I∗i
�−i+1

)r

. (2)

Let Z denote the product of the first, second, and fourth terms. That is,

Z =

(
gδ+

∑ k
i=1 Iiγi ·

k−1∏
i=1

y
(I∗i −Ii)
�−i+1 ·

�∏
i=k+1

y
I∗i
�−i+1

)r

.

One can verify that B can compute all the terms in Z given the values at its
disposal. Next, observe that the third term in Eq (2), namely y

r(I∗k−Ik)
�−k+1 , is:

y
r(I∗k−Ik)
�−k+1 = y

r̃(I∗k−Ik)
�−k+1 · y

(I∗k−Ik) αk

(Ik−I∗
k
)

�−k+1 = y
r̃(I∗k−Ik)
�−k+1 /y�+1.

Hence, the first component in the private key (1) is equal to:

gα
2 (hI1

1 · · ·hIk

k g3)r = (y�+1y
γ
1 ) · Z · (yr̃(I∗k−Ik)

�−k+1 /y�+1) = yγ
1 · Z · yr̃(I∗k−Ik)

�−k+1 .

Since y�+1 cancels out, all the terms in this expression are known to B. Thus, B
can compute the first private key component.

The second component, gr, is y
1/(Ik−I∗k)
k gr̃ which B can compute. Similarly,

the remaining elements hr
k+1, . . . , h

r
� can be computed by B since they do not

involve a y�+1 term. Thus, B can derive a valid private key for (I1, . . . , Ik).
Algorithm B uses this private key to derive a private key for the descendant
identity ID and gives A the result.

Challenge. When A decides that Phase 1 is over, it outputs two messages
M0,M1 ∈ G1 on which it wishes to be challenged. Algorithm B picks a random
bit b ∈ {0, 1} and responds with the challenge ciphertext

CT = (Mb · T · e(y1, h
γ), h, hδ+

∑ �
i=1 I∗i γi)

where h and T are from the input tuple given to B. First note that if h = gc (for
some unknown c in Zp) then

hδ+
∑ �

i=1 I∗i γi =

(
�∏

i=1

(gγi/y�−i+1)I
∗
i · (gδ

�∏
i=1

y
I∗i
�−i+1)

)c

= (hI∗1
1 · · ·hI∗�

� g3)c, and

e(g, h)(α
�+1) · e(y1, h

γ) =
(
e(y1, y�) · e(y1, g

γ)
)c = e(y1, y�g

γ)c = e(g1, g2)c.

Therefore, if T = e(g, h)(α
�+1) (i.e., when the input tuple is sampled from

PBDHE), then the challenge ciphertext is a valid encryption of Mb under the
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original (unpadded) identity ID∗ = (I∗1, . . . , I
∗
m) chosen by the adversary, since

CT =
(

Mb · e(g1, g2)c, gc, (hI∗1
1 · · ·hI∗m

m · · ·hI∗�
� g3)c

)

=
(

Mb · e(g1, g2)c, gc, (hI∗1
1 · · ·hI∗m

m g3)c
)
.

On the other hand, when T is uniform and independent in G1 (when the input
tuple is sampled from RBDHE), CT is independent of b in the adversary’s view.

Phase 2. A issues queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = e(g, h)(α

�+1). Otherwise, it outputs 0 meaning T is random in G1.
When the input tuple is sampled from PBDHE (where T = e(g, h)(α

�+1)),
then A’s view is identical to its view in a real attack game and therefore A
satisfies |Pr[b = b′] − 1/2| ≥ ε. When the input tuple is sampled from RBDHE

(where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore, with g, h uniform
in G, α uniform in Zp, and T uniform in G1 we have that
∣∣∣∣ Pr

[
B(

g, h,−→y g,α,�, e(g, h)(α
�+1)

)
= 0

]
− Pr

[
B(

g, h,−→y g,α,�, T
)

= 0
]∣∣∣∣

≥ |(1/2 ± ε) − 1/2| = ε

as required. This completes the proof of the theorem.

Chosen Ciphertext Security. Canetti et al. [10] show a general method of
building an IND-sID-CCA secure �-HIBE from a IND-sID-CPA secure �+1-HIBE.
A more efficient construction is given by Boneh and Katz [7]. Applying either
method to our HIBE construction results in a IND-sID-CCA secure �-HIBE for
arbitrary � where the ciphertext length is independent of the hierarchy height.

Arbitrary Identities. We can extend our HIBE to handle arbitrary identities
ID = (I1, . . . , I�) with Ii ∈ {0, 1}∗ for i = 1, . . . , � by hashing each Ii with a
collision resistant hash function H : {0, 1}∗ → Z

∗
p during key generation and

encryption. A standard argument shows that if the original HIBE scheme is
IND-sID-CCA secure, then so is the HIBE scheme using H.

3.2 Full HIBE Security

Theorem 1 shows that our HIBE system is selective-ID secure without random
oracles. Thus, the system is secure when the adversary commits ahead of time to
the identity he intends to attack. Boneh and Boyen [1] observed that IBE systems
that are selective-ID secure are also fully secure (i.e., secure against adversaries
that adaptively select the identity to attack) as long as one hashes the identity
prior to using it. The reduction, however, is not tight. Let H : {0, 1}∗ → {0, 1}d

be a hash function (where, e.g., d = 160 bits). Assuming H is collision resistant,
the reduction introduces a 2d multiplicative security loss factor in the standard
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model. When H is viewed as a random oracle, the reduction introduces a qH

multiplicative security loss factor where qH is the number of the hash oracle
queries.

A similar observation applies to HIBE systems. Let E be a selective-ID secure
HIBE of depth �. Let EH be an HIBE system where an identity ID = (I1, . . . , Ik)
is hashed to IDH = (H(I1), . . . , H(Ik)) before using it in KeyGen and Encrypt.
Then, if H is collision resistant, it follows that EH is a fully secure HIBE, but
the reduction introduces a loss factor of 2�d. In the random oracle model, EH is
a fully secure HIBE and the reduction introduces a loss factor of q�

H .
We remark that in the random oracle model, the public parameters are of

constant size and contain only the two group elements (g, g1); the other param-
eters (g2, g3, h1, . . . , h�) need not be specified as they can be derived by applying
the oracle on a predetermined input string.

We also note that the construction of Waters [26], for a fixed depth �, applied
to our HIBE could give a constant ciphertext HIBE with a polynomial time
reduction to the underlying complexity assumption. The resulting private keys
are much larger, namely of size d�, as opposed to � in our system.

4 Extensions

We discuss a number of extensions to the HIBE system of the previous section.

4.1 Limited Delegation

Let dID = (a0, a1, bk, . . . , b�) be the private key for the identity ID. Note that the
Decrypt algorithm uses only the terms a0 and a1, and the KeyGen algorithm
uses only the remaining terms bk, . . . , b�.

By removing any number of bk, . . . , b�, an identity ID at depth k can be given
a restricted private key that only lets it issue private keys to descendants of
bounded depth. For example, if the private key for ID only contains bk, bk+1, bk+2

(instead of all bk, . . . , b�), then ID can only issue private keys for three generations
of descendants, and those descendants’ private keys will be limited even further.

4.2 HIBE with Short Private Keys

Certain applications, such as the time lock encryption (to be described in Sec-
tion 5), are better served by using a HIBE system with short private keys rather
than ciphertexts. We show how to construct a HIBE system whose private key
size grows only sublinearly with hierarchy depth.

The idea is to construct a hybrid of the HIBE in Section 3 and the Boneh-
Boyen HIBE [1]. Recall that in the former system the private key shrinks as the
identity depth increases, while in the latter system the private key grows with the
depth of an identity. The hybrid is based on the algebraic similarities between
both systems, and exploits their opposite behavior with regard to private key
size, to ensure that no private key ever contains more than O(

√
�) group elements.
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Specifically, for ω ∈ [0, 1], the hybrid scheme achieves O(�ω+�1−ω) private key
size and O(�ω) ciphertext size at every level in a hierarchy of depth �. The setting
ω = 0 corresponds to our HIBE, whereas ω = 1 corresponds to the Boneh-Boyen
HIBE [1]. The most efficient hybrids are obtained when ω ∈ [0, 1/2]. For example,
when ω = 1/2, private keys and ciphertexts are of size O(

√
�).

Hybrid Scheme. As before, we assume a bilinear group G and a map e :
G×G → G1, where G and G1 have prime order p. Let �1 = 	�ω
 and �2 = 	�1−ω
.
The basic idea is to partition levels of the hierarchy into �1 consecutive groups
of size �2. Within each group we use the system of Section 3. Between groups
we use the Boneh-Boyen HIBE [1].

Let ID = (I1, . . . , Ik) ∈ (Z∗
p)

k be an identity of depth k ≤ �. We will represent
ID as a pair (k, I) where I ∈ (Z∗

p)
�1×�2 is an �1 × �2 matrix filled using the

elements I1, . . . , Ik in typographic order: one row at a time starting from the
top, in each row starting from the left (note that �1 · �2 ≥ � ≥ k; the unfilled
matrix entries are undefined). For convenience, we decompose the indices k =
1, . . . , � into row-column pairs (k1, k2) such that k = �2 · (k1 − 1) + k2 where
k1, k2 > 0. For shorthand, we write (k1, k2) = k. It follows that in the above
matrix representation of ID we have I(i1,i2) = Ii for all i = 1, . . . , k. Or, pictorially,
for an ID at the maximum depth � with I = I1, . . . , I� and � = �1�2:

I =

⎛
⎜⎜⎜⎝

I1 I2 . . . I�2
I�2+1 I�2+2 . . . I2 �2

...
...

. . .
...

I(�1−1)�2+1 I(�1−1)�2+2 . . . I�1�2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

I(1,1) I(1,2) . . . I(1,�2)

I(2,1) I(2,2) . . . I(2,�2)

...
...

. . .
...

I(�1,1) I(�1,2) . . . I(�1,�2)

⎞
⎟⎟⎟⎠ .

Using this convention, we can now describe the hybrid HIBE system as follows.

Setup(�, ω): For a HIBE of maximum depth �, first determine �1 and �2 as above
so that � ≤ �1 · �2. Next, select a random generator g in G, a random α ∈ Zp,
and set g1 = gα. Then, pick random elements g2, f1, . . . , f�1 , h1, . . . , h�2 ∈ G.
The public parameters params and the secret master-key are given by

params = ( g, g1, g2, f1, . . . , f�1 , h1, . . . , h�2 ) , master-key = gα
2 .

KeyGen(dID|k−1, ID): To generate private key dID for identity ID = (I1, . . . , Ik) ∈
(Z∗

p)
k of depth (k1, k2) = k ≤ �, where k1 ≤ �1 and k2 ≤ �2, pick random

r1, . . . , rk1 ∈ Zp, and output

dID =

(
gα
2 ·

(
k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,�2)

�2
· fi

)ri

)
· (hI(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r′
k1 ,

gr1 , . . . , grk1−1 , gr′
k1 , h

r′
k1

k2+1, . . . , h
r′

k1
�2

)
∈ G

1+k1+�2−k2 .

(3)

Note that the factors (. . .)ri under the
∏

sign contain �2 identity terms each,
whereas the last factor (. . .)rk1 only has k2 such terms. The size of dID grows with
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k1 and shrinks with k2; the private key thus becomes alternatively shorter and
longer as the depth of ID increases, but never exceeds �1 + �2 elements of G.

The private key for ID can be generated with a private key for ID|k−1 =
(I1, . . . , Ik−1) ∈ (Z∗

p)
k−1 as required. Decompose k as (k1, k2) according to our

convention. There are two cases:

1. If k − 1 is written (k1, k2 − 1), namely k and k − 1 have the same row index
k1, then we know that the private key for ID|k−1 is of the form:

dID|k−1 =
(

gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,�2)

�2
· fi

)ri · (hI(k1,1)

1 · · ·hI(k1,k2−1)

k2−1 · fk1

)rk1 , gr1 ,

. . . , grk1 , h
rk1
k2

, . . . , h
rk1
�2

)
= (a0, b1, . . . , bk1 , ck2 , . . . , c�2) ∈ G

2+k1+�2−k2 .

In this case, to generate dID from dID|k−1, pick a random r∗ ∈ Zp and output

dID =
(

a0 · cI(k1,k2)

k2
· (hI(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)r∗
, b1, . . . , bk1−1, bk1 · gr∗

,

ck2+1 · hr∗
k2+1, . . . , c�2 · hr∗

�2

)
∈ G

1+k1+�2−k2 .

This tuple is of the same form as Eq (3) where r′k1
= rk1 + r∗.

2. If the row indices differ, then necessarily k − 1 = (k1 − 1, �2) and k = (k1, 1),
and the private key for ID|k−1 must be of the form:

dID|k−1 =
(

gα
2 ·

k1−1∏
i=1

(
h

I(i,1)
1 · · ·hI(i,�2)

�2
· fi

)ri
, gr1 , . . . , grk1−1

)

= (a0, b1, . . . , bk1−1) ∈ G
k1 .

In this case, to generate dID from dID|k−1, pick a random r ∈ Zp and output

dID =
(

a0 ·
(
h

I(k1,1)

1 · fk1

)r
, b1, . . . , bk1−1, gr, hr

2, , . . . , hr
�2

)
∈ G

k1+�2 .

Again, this tuple conforms to Eq (3) in which rk1 has been set to r.

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public key
ID = (I1, . . . , Ik) ∈ Z

k
p where k = (k1, k2), pick a random s ∈ Zp and output

CT =
(

e(g1, g2)s · M, gs,
(
h

I(1,1)
1 · · ·hI(1,�2)

�2
· f1

)s
, . . . ,

(
h

I(k1−1,1)

1 · · ·hI(k1−1,�2)

�2
· fk1−1

)s
,

(
h

I(k1,1)

1 · · ·hI(k1,k2)

k2
· fk1

)s
)

∈ G1 × G
1+k1 .

Decrypt(dID,CT): Consider an identity ID = (I1, . . . , Ik) with k = (k1, k2). To
decrypt a ciphertext CT = (A,B,C1, . . . , Ck1−1, Ck1) using the private key dID =
(a0, b1, . . . , bk1 , ck2+1, . . . , c�2), output
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A ·
k1∏

i=1

e(bi, Ci)
/

e(B, a0) = M.

Note that the private key components ck2+1, . . . , c�2 are not used for decryption.

Complexity. It is easy to see that in a hierarchy of depth �, private keys at
all levels contain at most �1 + �2 elements of G, while ciphertexts contain at
most 1 + �1 elements of G and one element of G1. Encryption, decryption, and
one-level-down key generation, all require O(�1 + �2) operations, or O(

√
�) for

the choice ω = 1/2 as claimed. We note that the combination of having a se-
lectable parameter ω together with the option of using an asymmetric bilinear
group geared toward reducing the ciphertext or the private key size (described
in Section 4.3), gives great flexibility toward achieving the optimal trade-off for
a given application.

Security. We prove security based on the (�2 + 1)-BDHE assumption (observe
that the BDHE assumption implies the BDH assumption). We note that for
ω = 1/2, security for a �-level hierarchy is based on the O(

√
�)-BDHE assumption.

Theorem 2. Let G be a bilinear group of prime order p. Consider a hybrid
�-HIBE system with identity hierarchy partitioned into �1 groups each of size
�2. Suppose the decision (t, ε, �2 + 1)-BDHE assumption holds in G. Then the
hybrid �-HIBE system is (t′, qS, ε)-selective identity, chosen plaintext (IND-sID-
CPA) secure for arbitrary �, qS, and t′ < t − Θ(τ � qS), where τ is the maximum
time for an exponentiation in G.

The proof is similar to that for Theorem 1 and is in the full paper [3].

4.3 Asymmetric Bilinear Groups and MNT Curves

It is often desirable to use bilinear maps e : G × G
′ → G1 where G and G

′ are
distinct groups. Such maps let us take advantage of certain curves called MNT
curves [20]. Typically, elements of the group G tend to afford a particularly
compact representation compared to elements of G

′. This property is used for
constructing short signatures [8, 2, 4]. For our system, we can use this property
to shrink either the private keys or the ciphertexts. Details are in the full paper.

5 Applications

We now discuss applications of our compact HIBE system and its extensions.

5.1 Forward Secure Encryption

The main purpose of a forward secure encryption scheme is to guarantee that
all messages encrypted before the secret key is compromised remain secret.

An elegant public key encryption scheme with forward security was proposed
by Canetti, Halevi, and Katz (CHK) [9]. Let T = 2t be the number of distinct
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time periods in the forward secure system. When implemented with previous
HIBE systems [14, 1], the CHK framework results in ciphertexts of size O(t)
and private keys of size O(t2). Using public updateable storage, Canetti et al.
reduce private key size to O(t) without affecting ciphertext length — the idea
is to encrypt the private key for time period i under the public key of time
period i − 1 and store the resulting ciphertext, of size O(t2), in public storage;
consequently, only one HIBE private key of size O(t) is kept in private storage.

Using the HIBE system of Section 3 in the CHK framework, we obtain a for-
ward secure encryption scheme with O(1) ciphertext size and decryption time —
independent of the number of time periods. Private keys using our basic system
are of size O(t2). Alternatively, using the hybrid HIBE of Section 4.2 in which
we set ω = 1/2, we obtain a forward secure encryption scheme with private key
size O(t3/2); in this case ciphertext size and decryption time become O(

√
t).

Following Canetti et al. [9], we can store most of the private key in updateable
public storage in order to lessen the private storage requirement. Applied to our
basic forward secure system, using O(t2) public storage we can reduce the private
key size to O(t) while keeping the ciphertext size constant. Using the hybrid
HIBE system (for ω = 1/2), the private storage requirement can be similarly
reduced to O(

√
t) at the cost of O(t3/2) updateable public storage; ciphertext

size in this case remains O(
√

t).

5.2 Forward Secure HIBE

Recently, a forward secure HIBE scheme was proposed by Yao et al. [27]. Their
scheme essentially uses two HIBE hierarchies in the manner of Canetti et al. [9]
to obtain forward security together with the ability to derive subordinate keys.
Their system has ciphertexts of size O(� · t) where � is the depth of the identity
hierarchy and T = 2t is the number of time periods. Indeed, they pose as an open
problem if a forward secure HIBE scheme with “linear” complexity is possible.

Instantiating both hierarchies in their construction with our HIBE system
immediately gives a forward secure HIBE scheme with ciphertexts of size O(1),
which resolves this question.

We also propose a more specific forward secure HIBE construction that
achieves “linear” O(� + t) size for all components, including private keys and
public parameters (ciphertexts are no longer constant size in that construction).
The construction is a hybrid between the HIBE given in Section 3 and the
Boneh-Boyen HIBE from [1]; it is described in detail in the full paper [3].

5.3 Public Key NNL Broadcast Encryption

Broadcast encryption schemes, introduced by Fiat and Naor [13], are cryptosys-
tems designed for the efficient broadcast of data to a dynamic group of users
authorized to receive the data. Naor, Naor, and Lotspiech [22] considered broad-
cast encryption in the stateless receiver setting; they provided a general “subset
cover” framework for such broadcast encryption schemes and gave two instances
of the framework — the Complete Subtree (CS) method and the more efficient
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Subset Difference (SD) method. Further improvements have been proposed such
as the Layered Subset Difference (LSD) [16] and the Stratified Subset Differ-
ence (SSD) [15]. In the symmetric key setting, only a “center” that possesses
the secret keys can broadcast to the users. In a public key broadcast encryption
system, anyone is allowed to broadcast to selected subsets of users.

Using the HIBE framework, Dodis and Fazio [11] showed how to translate
the SD and LSD methods to the public key setting. For N users and r revoked
users, their SD and LSD constructions based on previous HIBE systems give
ciphertexts of size O(r · log N), which is no better than the basic CS method.
Substituting the HIBE system of Section 3 restores the full benefits of both SD
and LSD, which results in ciphertexts of size O(r).

5.4 Encrypting to the Future

Mont et al. [21] observed that an IBE system gives a mechanism for encrypting
to the future using a trusted server. Let D be a certain date string. We view D as
a public key in an IBE system. Every day, a trusted server publishes the private
key corresponding to that day, which enables messages encrypted for that day
to be decrypted. Methods for encrypting to the future without a trusted server
were proposed by Rivest, Shamir, and Wagner [23].

One problem with the IBE timelock mechanism is that after n days have
passed, the server has to publish a bulletin board with n private keys on it (one
private key for each day). The amount of data on the bulletin board can be
greatly reduced by using the CHK forward secure encryption scheme in reverse.
Suppose the CHK framework is set up for a total of T time periods (using a tree
of depth log2 T ). To encrypt a message for day n < T , use the CHK public key
for time period T −n. Similarly, on day n the trusted server publishes the CHK
private key corresponding to time period T − n. This single private key enables
anyone to derive the private keys for CHK time periods T −n, T −n + 1, . . . , T .
Anyone can thus decrypt messages intended for days in the range 1, . . . , n.

Implementing this encoding using our O(1) ciphertext HIBE, the trusted
server on any day only needs to publish a single private key comprising O(log2 T )
group elements. Using the hybrid HIBE system of Section 4.2, the private key
posted by the server is further reduced to O(log3/2 T ) group elements for cipher-
texts of size O(

√
log T ). These parameters are much better than the IBE based

mechanism [21], where the bulletin board contains as many as T group elements.

6 Conclusions and Open Problems

We presented a new HIBE system where the ciphertexts consist of three group
elements and decryption only requires computing two bilinear maps, both of
which are independent of the hierarchy depth. Encryption time is as efficient as
other HIBE systems. For a hierarchy of depth � we proved security based on the
(�+1)-BDHE assumption. We expect �-BDHE to be very useful for constructing
cryptosystems with short ciphertexts. For example, �-BDHE was recently used to
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construct a broadcast encryption system [6] where both ciphertexts and private
keys are short.

We discussed several applications of our system, including efficient forward
secure encryption, an efficient public key version of the NNL broadcast encryp-
tion system, and an efficient mechanism for encrypting to the future. Our HIBE
system allows for limited delegation and can be combined with the Boneh-Boyen
HIBE to form a hybrid HIBE that has sublinear private key size.

We note that our selective-ID proof of security is tight. On the other hand, the
proof of full security (either in the random oracle or standard model) discussed
in Section 3.2 degrades exponentially in the hierarchy depth. The same is true
for all existing HIBE systems. It is an open problem to construct a HIBE system
where security does not degrade exponentially in the hierarchy depth.
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