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Abstract—In recent years, the enhanced sensing and com-
putation capabilities of Internet of Things (IoT) devices have
opened the doors to several mobile crowdsensing applications.
In mobile crowdsensing, a model owner announces a sensing
task following which interested workers collect the required data.
However, in some cases, a model owner may have insufficient data
samples to build an effective machine learning model. To this
end, we propose a Federated Learning based privacy preserving
approach to facilitate collaborative machine learning among mul-
tiple model owners in mobile crowdsensing. Our system model
allows collaborative machine learning without compromising data
privacy given that only the model parameters instead of the raw
data are exchanged within the federation. However, there are
two main challenges of incentive mismatches between workers
and model owners, as well as among model owners. For the
former, we leverage on the self-revealing mechanism in contract
theory under information asymmetry. For the latter, to ensure the
stability of a federation through preventing free-riding attacks,
we use the coalitional game theory approach that rewards
model owners based on their marginal contributions. Considering
the inherent hierarchical structure of the involved entities, we
propose a hierarchical incentive mechanism framework. Using
the backward induction, we first solve the contract formulation
and then proceed to solve the coalitional game with the merge and
split algorithm. The numerical results validate the performance
efficiency of our proposed hierarchical incentive mechanism
design, in terms of incentive compatibility of our contract design
and fair payoffs of model owners in stable federation formation.

Index Terms—Federated Learning, Incentive Mechanism, Mo-
bile Networks, Mobile Crowdsensing, Artificial Intelligence

I. INTRODUCTION

There are currently close to 7 billion connected Internet of

Things (IoT) devices [1] worldwide. These IoT devices are

equipped with increasingly enhanced sensing and computa-

tion capabilities. As such, mobile crowdsensing tasks [2] are

increasingly popular.
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In mobile crowdsensing, a task publisher, i.e., a model

owner, announces a sensing task following which interested

workers, i.e., participants in the crowdsensing task, will then

collect the required data. Together with the advances in

Machine Learning, especially in the domain of Deep Learning

[3], the wealth of data collected allows effective models to be

built, e.g., for medical [4], air quality monitoring, and map

navigation applications [5].

However, in some cases, a lone model owner may have

insufficient data samples to build an effective model, especially

since Deep Learning algorithms usually outperform conven-

tional approaches only when there is an abundance of data

available for model training [3]. In addition, the model owner

may also not have a comprehensive coverage across data

classes to build an effective model [6]. The reason is that

mobile crowdsensing involves location dependency [7], e.g.,

the medical data collected by a model owner is restricted to

the local community in which its mobile network of workers

cover.

Naturally, to build a better inference model, different model

owners can collaborate by sharing their data. However, in

recent years, the regulations governing data privacy, e.g., Gen-

eral Data Protection Regulation (GDPR) [8], are increasingly

stringent. As such, this can potentially prevent the sharing of

data across model owners.

To this end, we propose the adoption of a Federated

Learning (FL) [9] approach to enable privacy-preserving col-

laborative Machine Learning across a federation of model

owners. In our system model (Fig. 1), the model owner

announces a sensing task to interested workers, similar to that

in a typical crowdsensing setting. Then, the model owners

come together to form different federations based on their

profit maximizing objectives. Each federation collaboratively

builds a model without the exchange of data. Instead, model

training takes place on each model owner’s private server, i.e.,

the data derived from its respective workers remain on the

model owner’s local database. Then, only the updated model

parameters are exchanged and aggregated with that of other

model owner’s parameters in a trusted third-party server.

Our proposed approach has two key advantages. Firstly, it

protects the privacy of workers working under their respective

model owners while enabling distributed training on mobile

devices [10]. Secondly, it is communication efficient. The

reason is that traditional methods of data sharing will require

the raw data to be uploaded to an aggregating cloud server.

With FL, only the model parameters need to be updated by

the model owners [11].

However, there exists two levels of incentive mismatches in
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Fig. 1. Our proposed system model involving model parameter aggregation
from a federation of multiple model owners. Note that the diagram only shows
a single federation. In our system model, a model owner can choose to join
between multiple federations based on their profit maximization objectives.

this setting. The lower level is one that is commonly studied

in traditional crowdsensing [12], [13], i.e., the workers incur

battery consumption and mobile data costs when collecting

the data. As such, without an effective incentive mechanism

design, the workers may contribute lower quantities or quali-

ties of data. Furthermore, given the information asymmetry be-

tween model owners and workers, a poorly designed incentive

framework may lead to the situation in which workers conceal

their types, e.g., data quality, to maximize their utilities. For

example, workers who can collect high quality data may

have the incentives to contribute low quality data since the

corresponding cost incurred is naturally lower. As such, we

propose a contract theoretic approach [14] in incentivizing

workers to provide high qualities and quantities of data.

The self-revealing mechanism of the contract theory approach

enables workers to be rewarded based on their specific types

even in the presence of information asymmetry, i.e., when the

worker types are not known by a model owner.

The upper level is an incentive mismatch among profit max-

imizing model owners. Each profit maximizing model owner

serves to only maximize its own profits, and not the profits

of the federation. Without an effective incentive mechanism

design, there may be free-riding attacks [15], i.e., situations in

which a model owner does not contribute sufficiently to the

federation since high quality data is expensive to collect from

the workers. As such, in the upper level, we adopt a coalitional

game approach with fair distribution of payoffs based on each

model owner’s marginal contribution to the federation. We also

study the equilibrium of stable federation formation using the

merge and split algorithm proposed in [16], i.e., a model owner

can join the federation that allows it to maximize its payoff.

In fact, our proposed incentive mechanism design is hier-

archical in nature. In the upper level, the payoff received by

a model owner is affected by the decisions of other model

owners in the federation. This payoff in turn affects the

contract formulation at the level of each individual model

owner. For example, when faced with the decision to join

either of two federations with differing data qualities, the

model owner first designs two distinct hypothetical contracts

in response to the two federations. Each contract represents

a way to maximize its marginal contribution to a federation

while minimizing incentive expenses paid to its workers. Then,

the model owner will choose to join the federation that allows

it earn more profits, i.e., the federation that offers higher

marginal payoffs at a lower incentive expense. This is in

contrast to classical works in contract theory, in which the

profit will only be affected by the choice variables of the

sole model owner alone. Given the hierarchical nature of our

mechanism design, we can apply solutions from Stackelberg

games [17], [18]. We first implement backward induction by

considering each model owner’s contract-theoretic incentive

mechanism design separately while taking the parameters of

other model owners’ decisions as given. Then, we explore

federation formation as a coalitional game with fair payoffs.

The contribution of our study is as follows:

• We propose an FL-assisted privacy-preserving data ap-

proach for mobile crowdsensing in the system model in

which sole model owners do not have sufficient data to

build a viable model.

• We propose a hierarchical incentive mechanism design

for FL that considers multiple model owners and the

formation of multiple federations.

• We provide an analysis of the equilibrium that our sys-

tem model reaches after iterations of merges and splits,

thus giving us an insight of federation structures in the

presence of multiple model owners and federations.

The rest of this paper is organized as follows: Section II

summarizes related work, Section III discusses the system

model and problem formulation, Section IV discusses the

optimal contract formulation, Section V discusses the coalition

formation game, Section VI presents the performance evalua-

tion and Section VII concludes.

II. RELATED WORK

The issue of incentive mechanism design in mobile crowd-

sensing is well-studied. Some of the tools that have been

explored in previous studies are auctions [19], game theory

[20], contract theory [21], and reputation mechanisms [22]. In

addition, there are also several surveys in this topic [5], [23],

[24].

Game theory has been utilized as a powerful tool to study

the incentive mechanisms. The authors in [12], [13] devised

the incentive mechanisms with the consideration of social
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influence and proposed a novel hierarchical game framework

to describe and concisely analyze the decision-making process.

In particular, the contract-theoretic approach to mobile crowd-

sensing is increasingly popular. For example, contract theory

has been used to motivate high quality data collection [25],

[26] under the incomplete information crowdsensing setting.

There have also been studies on incorporating social incentives

into contracts [27]. In addition, to protect the privacy of

workers, a smart contract on blockchain approach has also

been proposed in [28].

Nevertheless, given that FL is a relatively nascent concept,

the FL-assisted crowdsensing has not been well explored in

the literature. The study in [29] propose privacy-preserving

model training for mobile crowdsensing using an FL based

framework. However, its focus lies primarily on user privacy

protection rather than incentive mechanism design. In fact,

most of the aforementioned works assume incentive mech-

anism design in the setting of only a sole model owner.

However, in practical scenarios, it is likely that there is a

need to consider the cooperation among multiple model owners

in collaborative machine learning. For example, Nvidia [30]

has recently proposed an FL approach for healthcare analytics

using patients’ data from multiple collaborating hospitals [31],

i.e., model owners. Given the potential application of FL in

other scenarios, e.g., map data and air quality monitoring, there

is a need for a study of incentive mechanism design involving

multiple collaborative model owners in crowdsensing.

With the increasing popularity of FL, we can also take

reference from the growing literature related to incentive

mechanism design for FL. For example, the study in [32],

[32] adopts a contract-theoretic approach to motivate workers

to contribute more computation resource for efficient FL. On

the other hand, the study in [33] formulates the Stackelberg

game [34] to analyze the inefficiency in model update transfer.

As an extension, the study in [35] uses a Stackelberg game

formulation together with Deep Reinforcement Learning to

design a learning-based incentive mechanism for FL. For a

comprehensive survey in this area, we refer the readers to

[36], [37].

Given the self-revealing mechanism of contract theory under

the information asymmetry setting of a heterogeneous mobile

network, we also adopt the contract theoretic approach in the

lower level of our system model, i.e., between each individual

model owner and its respective workers. However, similar

to that in crowdsensing, most of the studies of incentive

mechanism design for FL assumes that there is only a sole

model owner with multiple workers under it, i.e., a sole

federation. In particular, the contract formulation in [32]

assumes a monopolistic, self-sufficient federation with no need

for collaboration among model owners. As such, the contract

formulation in [32] is affected only by the model owner’s

individual choice variables. In contrast, in our system model,

the payoffs of a model owner is affected by the decisions

of other model owners. As such, considering the inherent

hierarchical structure of the involved entitles, we propose

a hierarchical incentive mechanism framework. Our work

studies the setting of multiple federations and provide both an

hierarchical incentive mechanism design and merge-and-split

framework to better understand the structure of federations

when more than one model owner exists.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In general, the system model (Fig. 1) comprises workers

who collect data in response to crowdsensing tasks published

by the model owners, in exchange for contract rewards.

The model owners then collaborate with other model owners

selectively to form federations that best fulfill their profit

maximization objectives. Thereafter, the model owner trains

the model on their own locally collected data. Then, only the

model parameters are sent to a trusted server for aggregation

in a privacy preserving FL approach.

We consider a mobile network with N model owners. Each

model owner operates a platform on which pi participating

workers are registered on. Denote p = {p1, . . . , pi, . . . , pN} as

the set of all participating workers in the mobile network. The

model owners have the basic demographic information of the

workers. However, the model owners lack specialized data that

have to be collected through participatory crowdsensing. For

example, in health crowdsensing, even though hospitals have

access to age, weight, and blood type of individuals under their

care, they lack non-mandatory data that can only be collected

with the individuals’ consent, e.g., IoT applications data for

health analytics [38], [39].

In an heterogeneous mobile network, there exists differing

worker types that can in turn influence the quality and quantity

of data collected for model training [23], [40]. A worker of

type m belonging to model owner i has its type denoted as

θim where θim ∈ {θi1 , . . . , θiM }. Similarly, the data quantity

contribution is denoted as qim where qim ∈ {qi1 , . . . , qiM }.
The worker type reflects each worker’s level of willingness to

participate and hence determines the quality of data collected,

i.e., workers who are more willing to participate collect higher

quality data, e.g., images of higher resolution or datasets with

fewer erroneous or missing inputs. Naturally, if a model owner

trains the model on more data and higher quality data across

all workers, the model performance, e.g., inference accuracy,

will be higher [41]. We denote the model performance to be:

xi(θi, Qi, ) = 1− e−φ(θiQi)
υ

(1)

where θi and Qi refers to the average data quality and total

data quantity used by model owner i to train the model

respectively. φ and υ are weight factors. Following [42],

we assume that the global model performance gain has di-

minishing returns with respect to data quality and quantity.

Intuitively, there exists a limit to model performance where

limθiQi→∞(1− e−φ(θiQi)
υ

) = 1.

Individually, each model owner usually has insufficient data

quantity to build a good predictive and analytics model such

as those based on machine learning [43]. Moreover, given

the private nature of data involved, each model owner is

unable to share or exchange their data with other model

owners. To this end, we propose an FL-based [9] approach

to facilitate collaborative model training that involves multiple

model owners without having the need to share or transfer data

to potentially malicious third-parties. A federation S with |S|
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model owners can be formed where S ⊆ N . In each training

iteration, the model owners in the federation first train the

local models on their respective collected data. Then, each

model owner only uploads the model parameters wi to a cloud

server for aggregation, e.g., by using the Federated Averaging

(FedAvg) algorithm [9]. The aggregated model parameters

w = ∪i∈Swi are then sent back to the model owners in the

federation for the next iteration of training.

The global model owned by the federation can then be sold

as a service for profits, of which the profits are dependent on

the model performance. For example, a model that performs

better, i.e., with higher accuracy, can generate higher profits for

the federation. We define the profit function of the federation

as:

v(S) = ω(1− e−φ(θSQS)υ )− |S|G. (2)

ω is a conversion parameter from model performance to profits

which follows:

ω =







ω̃, if 1− e−φ(θSQS)υ ≥ x̃,

0, otherwise.

(3)

x̃ refers to a threshold model performance that a viable

model has to meet for usability. For example, if the model

performance is too poor, it is rejected by users. θS refers to

the quantity-weighted data quality in the coalition S where

θS =
∑

i∈S
Qi

QS
θi and QS refers to total units of data in

the federation, i.e., QS =
∑

i∈S Qi. In addition, when model

owners cooperate, there is the coordination cost incurred as

well [44]. For example, extra computation resource has to

be purchased from the coordinating server to cater to the

increased data volume when a new model owner joins and

operates within the federation [45]. For simplicity, we denote

this cost as G which increases linearly with the federation size

|S|. Intuitively, as the federation increases in size, coordination

cost increases.

After the federation profits from the model, the profits gen-

erated are fairly allocated based on the marginal contribution

of each model owner. Each individual model owner naturally

attempts to achieve the highest share of profits distributed

from the federation. However, data collection requires time,

energy consumption by IoT sensing devices and data usage

costs of workers [24]. To incentivize high quality data con-

tribution from its participating workers, each model owner i

designs a contract-theoretic incentive mechanism with self-

revealing properties [14]. As such, there exists a tradeoff in

the hierarchical incentive design between marginal contribu-

tion maximization from the federation and incentive expense

minimization, i.e., while each model owner wants to maximize

its share of profits from the federation, it is costly to incentivize

workers to collect high quality data. Thus, the model owner

will choose to join the federation that allows it to maximize

marginal payoffs while minimizing contractual costs.

Similar to solutions in Stackelberg games [17], [46], we

first implement backward induction by considering each model

owner’s contract-theoretic incentive mechanism separately

while taking the parameters of other model owners’ decisions,

i.e., prevailing data quantity and quality in the federation, as

a given. As we have previously elaborated in Section I, the

self-revealing mechanisms in contract theory allows incentive

compatibility even where there is information asymmetry.

Then, we explore federation formation as a coalitional game

(N , v) with transferable utility [47] in which each model

owner chooses the federation that enables them to maximize

their profits with consideration for incentive expenses.

IV. CONTRACT-THEORETIC INCENTIVE MECHANISM

DESIGN

We begin by studying the contract-theoretic incentive mech-

anism design of a representative model owner. Contrary to

classical works in contract theory, the model owner now aims

to maximize its payoff from a federation. As such, this payoff

is dependent on other model owners in the federation as well.

Following the backward induction solution, we first take the

prevailing federation parameters as a given, before formulating

the optimal contract following [48].

A. Problem Formulation

For ease of notation, we drop the i subscripts and focus on a

representative model owner for now. The utility maximization

problem of worker type m denoted um is as follows:

max
(Rm,qm)

um = θmRm − cqm. (4)

θm represents willingness to participate [48] for the type m

worker, where m ∈ {1, . . . ,M} and θ1 < · · · < θm <

· · · < θM . As we have previously established in Section III, a

more willing worker provides higher quality data. c represents

the cost incurred per unit of data collected and qm refers to

units of data collected. In the contract theoretic formulation,

each worker is presented with bundles {Rm, qm} of which it

chooses the bundle that best maximizes its utility um.

Each model owner aims to maximize its share of payoffs

derived from the federation. In fact, maximizing this payoff

is equivalent to maximizing its marginal contribution to the

federation. The marginal contribution of model owner {i}
when it joins a federation with |S|−1 members is as follows:

v(S)− v(S\{i})

=
[

ω(1− e−φ(θSQS)υ )− |S|G
]

−
[

ω(1− e−φ(θS\{i}QS\{i})
υ

)− (|S| − 1)G
]

= ω
(

1− e−φ(θSQS)υ
)

− ω
(

1− e−φ(θS\{i}QS\{i})
υ
)

−G

= ω
(

1− e−φ(θiQi+
∑S\{i}

j=1
θjQj)

υ
)

− ω
(

1− e−φ(
∑S\{i}

j=1
θjQj)

υ
)

−G.

(5)

For ease of the presentation, we define α =
∑S\{i}
j=1 θjQj .

Similarly, we denote η = e−φ(
∑S\{i}

j=1
θjQj)

υ

. Note that α and

η represents the prevailing conditions, i.e., of data quality

and quantity, in the coalition before model owner i joins. For
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TABLE I
TABLE OF COMMONLY USED NOTATIONS.

Notation Description

θ Worker’s level of willingness/data quality

q Worker data quantity contribution

Q Aggregate data quality

θ Aggregate data quantity

ω
Conversion parameter from model
performance to profits

φ, υ
Conversion parameters from data quantity
and quality to model performance

|S| Number of members in federation

R Contract rewards

c Unit cost of data collection

purposes of backward induction, we first take the prevailing

parameters, i.e., α and η as given. Following (5), we have the

marginal contribution of model owner {i} simplified as

v(S)− v(S\{i}) = ω(−e−φ(α+θQi)
υ

+ η)−G. (6)

As such, the model owner profit maximization function π

is as follows:

max
(Rm,qm)

π = ω
(

−e−φ(α+
∑M

m=1
θmρmpqm)

υ

+ η
)

−
M
∑

m=1

(

ρmpRm + γp
qmψ

θm

)

−G−K. (7)

ρm refers to the proportion of worker type m where
∑M
m=1 ρm=1, p refers to number of participating workers, and

Rm refers to the expenses incurred for paying each worker of

type m for its data collection efforts. Following [32], γ refers

to energy cost per iteration of computation, ψ is the coefficient

that determines how local data quality affects number of

computation iterations required,
∑M
m=1 γ

ρmpqmψ
ρmpθm/p

= γp qmψθm
refers to number of computation iterations required for the

corresponding aggregate data quality and quantity, and K

refers to communication cost incurred in uploading the weight

parameters to the aggregating server.

We assume the compute resources, e.g., CPU cycle fre-

quency, contributed by each model owner to be a constant

throughout the federation. Instead, we consider computation

cost mainly as a function of aggregate data quality and quantity

to study how it affects contract formulation. A higher data

quality leads to fewer local model iterations [49], [50] whereas

higher data quantity is more costly to train. Without loss

of generality, we assume the transmission bandwidth, power,

and channel gain to be a constant given similar wireless

communication environments [45]. As such, communication

costs K is a constant regardless of data quantity or quality.

This is given that only the fixed-size model parameters w are

uploaded to the aggregating server. For ease of reference, we

refer the readers to Table I for commonly used notations.

For feasibility, each contract must satisfy the following

constraints.

Definition 1. Individual Rationality (IR): Each worker only

participates in data collection when its utility is not less than

zero, i.e.,

um = θmRm − cqm ≥ 0. (8)

Definition 2. Incentive Compatibility (IC): Each worker of

type m only chooses the contract designed for its type, i.e.,

(Rm, qm), instead of any other contracts to maximize utility,

i.e.,

θmRm − cqm ≥ θmRz − cqz, z 6= m. (9)

However, this implies that we have to deal with M IR

constraints and M(M − 1) IC constraints which are all non-

convex. As such, we proceed to reduce and relax the conditions

that guarantee a feasible contract.

B. Contract Feasibility

Lemma 1. For any feasible contract, we have Rm ≥ Rz if

and only if θm ≥ θz , z 6= m, ∀m, z ∈ {1, . . . ,M}

Proof. The lemma is proven by using the IC constraint pre-

sented in (2). We first prove the sufficiency, i.e., if θm ≥ θz ,

it follows that Rm ≥ Rz .

From the IC constraints, we have

θmRm − cqm ≥ θmRz − cqz and

θzRz − cqz ≥ θzRm − cqm.

Then, we add the two inequalities to have

θmRm + θzRz ≥ θmRz + θzRm,

θmRm − θzRm ≥ θmRz − θzRz,

Rm(θm − θz) ≥ Rz(θm − θz).

Since θm − θz ≥ 0, it follows that Rm ≥ Rz . Next, we prove

the necessity, i.e., if Rm ≥ Rz , it follows that θm ≥ θz .

Similarly, from the IC constraints, we have

θm(Rm −Rz) ≥ θz(Rm −Rz).

Since Rm ≥ Rz ≥ 0, it follows that θm ≥ θz . As such, we

have proven that Rm ≥ Rz if and only if θm ≥ θz .

Following Lemma 1, workers with higher willingness to

participate, i.e., higher θ, will receive more rewards. Since

θ1 < · · · < θm < · · · < θM and R is a strictly increasing

function of q, i.e., the contract bundles are designed such

that higher data quantities contributed translate to higher

rewards, we have the following monotonicity condition of

the contract, thereby forming the necessary conditions for a

feasible contract.

Theorem 1. Monotonicity: A feasible contract must meet the

following conditions:
{

0 ≤ R1 ≤ · · · ≤ Ri ≤ · · · ≤ RM

0 ≤ q1 ≤ · · · ≤ qi ≤ · · · ≤ qM .
(10)

C. Devising an Optimal Contract

Next, we proceed to relax the IC and IR constraints with

reference to the methods adopted in [51].

Lemma 2. (Reduce IR Constraints): If the IR constraint of

worker type-1 is satisfied, the other IR constraints will also

hold.
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Proof. Following the IC constraints and the condition θ1 <

· · · < θm < · · · < θM , we have

θiRi − cqi ≥ θiR1 − cq1 ≥ θ1R1 − cq1 ≥ 0.

As such, if the IR constraint of worker type-1 is satisfied,

it follows that the other IR constraints automatically hold.

Note that worker type-1 refers to the least willing worker,

i.e., worker with lowest data quality.

Lemma 3. (Reduce IC Constraints): The IC constraints can

be reduced into the Local Downward Incentive Constraints

(LDIC).

Proof. Consider three worker types where θm−1 < θm <

θm+1. The two LDICs, i.e., constraints between type m and

type m− 1 workers, are as follows,

θm+1Rm+1 − cqm+1 ≥ θm+1Rm − cqm, and

θmRm − cqm ≥ θmRm−1 − cqm−1.

From Lemma 1, we have Rm ≥ Rz when θm ≥ θz . As

such, we can rewrite the LDICs as follows:

θm+1(Rm −Rm−1) ≥

θm(Rm −Rm−1) ≥ c(qm − qm−1) and

θm+1Rm+1 − cqm+1 ≥

θm+1Rm − cqm ≥ θm+1Rm−1 − cqm−1.

As such, we have

θm+1Rm+1 − cqm+1 ≥ θm+1Rm−1 − cqm−1.

Hence, if the IC constraint holds for type-m worker, it will

also hold for type m−1 worker. This process can be extended

downward from type m − 1 to type 1 worker, i.e., all DICs

hold, as follows:

θm+1Rm+1 − cqm+1 ≥ θm+1Rm−1 − cqm−1.

≥ · · ·

≥ θm+1R1 − cq1,

M > m ≥ 1.

A similar procedure can be taken to show that if the Local

Upward Incentive Constraint (LUIC) holds, all UICs are also

satisfied. Given the monotonicity condition in Definition 1,

i.e., Rm ≥ Rm−1, the LDIC also implies the Local Upward

Incentive Constraint (LUIC) as follows.

θm−1Rm − cqm ≤ θm−1Rm−1 − cqm−1.

As such, we have proven that the IC constraints can be reduced

to the LDIC constraint, since it also ensures that all UIC and

DIC constraints hold.

D. Contract Optimality

With the constraints relaxed, we can rewrite the optimization

problem as follows:

max
(Rm,qm)

π = ω
(

− e−φ(α+
∑M

m=1
θmρmpqm)υ + η)−

M
∑

m=1

(ρmpRm + γp
qmψ

θm
)−G−K,

s.t.

θ1R1 − cQ1 ≥ 0,

θmRm − cqm ≥ θmRm−1 − cqm−1,

0 ≤ q1 ≤ · · · ≤ qi ≤ · · · ≤ qM ,
M
∑

m=1

qm ≤ qmax,

∀m ∈ {1, . . . ,M}. (11)

Note that the last constraint refers to data quantity constraint

specified for each worker. For example, in a classification

task, each worker may belong to a specific class. The model

does not benefit from training on duplicated inputs from the

same worker of the same class [52]. In addition, this also

serves as an indirect budget constraint. Following this, we first

establish the dependence of optimal rewards R on quantity

of data provided q. Thereafter, we solve the problem in (11)

with q only. Specifically, we obtain the optimal data rewards

R∗
m(q)(1 ≤ m ≤M) given a set of feasible data contribution

from each worker q = {q1, q2, . . . , qM} which satisfies the

monotonicity constraint 0 ≤ q1 ≤ · · · ≤ qi ≤ · · · ≤ qM . The

optimal rewarding scheme can be summarized in the following

theorem.

Theorem 2. For a known set of data quantity q satisfying

0 ≤ q1 ≤ · · · ≤ qi ≤ · · · ≤ qM in a feasible contract, the

optimal reward is given by

R∗
m =

{ 1
θm
cqm, if m = 1,

Rm−1 −
1
θm
cqm−1 +

1
θm
cqm, if m = 2, 3, . . .M.

(12)

Proof. We adopt the proof by contradiction to validate this

theorem. We first assume that there exist some R† in the

feasible contract that yields greater profit for the model owner,

meaning that the theorem is not correct, i.e., π(R†) > π(R∗).
For simplicity, we need to consider only the rewards por-

tion of the model owner’s profit function in this proof, i.e.,
∑M
m=1R

†
m <

∑M
m=1R

∗
m. This implies there exists at least

a t ∈ {1, 2, . . . ,M} that satisfies the inequality R
†
t < R∗

t .

According to the LDIC conditions presented in Lemma (3),

we have

R
†
t ≥ R

†
t−1 −

1

θt
cqt−1 +

1

θt
cqt, (13)

and

R∗
t = R∗

t−1 −
1

θt
cqt−1 +

1

θt
cqt. (14)

From (13) and (14), we can deduce that R
†
t−1 ≤ R∗

t−1. Con-

tinuing this process, we eventually obtain R
†
1 ≤ R∗

1 = 1
θ1
cq1.
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However, this violates the IR constraint we present in Lemma

(2). Therefore, there does not exist the rewards R† in the

feasible contract that yields greater profit for the model owner.

Intuitively, the model owner chooses the lowest reward that

satisfies the IR and IC constraints for profit maximization.

The proof is now completed.

The optimal rewards given in (12) can be expressed as

R∗
T =

1

θ1
cq1 +

T
∑

t=1

∆t, (15)

where ∆1 = 0, ∆t = −
1
θt
cqt−1 +

1
θt
cqt, and T = 2, . . . ,M .

To group all the same quantity types together, we follow the

approach in [53] by rewriting the rewards as:

M
∑

m=1

ρmpRm

=
M
∑

m=1

ρmp(
1

θ1
cq1 +

m
∑

t=1

∆t)

=

M
∑

m=1

(ρmp
1

θm
cqm + Λm

M
∑

t=m+1

ρtp),

where Λm = 1
θm
cqm −

1
θm+1

cqm and ΛM = 0.

Thereafter, this yields the following optimization problem,

maximize

M
∑

m=1

Gm (qm)

subject to 0 ≤ q1 ≤ · · · ≤ qi ≤ · · · ≤ qM ,

where

Gm = ω
(

−e−φ(α+
∑M

m=1
θmρmpqm)υ + η

)

−

M
∑

m=1

(

ρmp
1

θm
cqm + Λm

M
∑

t=m+1

ρtp+ γp
qmψ

θm

)

−G−K.

(16)

As the objective function Gm(qm) is structurally separate

from different data quantities qm, i.e., Gm(qm) is independent

of Gz(qz), ∀m, z ∈ {1, . . . ,M}, z 6= m, and thereby Gm(qm)
is only associated with qm. As such, the variable of each

data quantity qm can be derived by separately optimizing each

Gm(qm) as follows:

q∗m = argmax
qm

ω
(

−e−φ(α+θmρmpqm)υ + η
)

−
(

ρmp
1

θm
cqm + Λm

M
∑

t=m+1

ρtp+ γp
qmψ

θm

)

−G−K, (17)

subject to the feasibility constraint where 0 ≤ q1 ≤ · · · ≤
qi ≤ · · · ≤ qM . Using convex optimization tools such as cvxpy

[54], we can first solve the relaxed problem by dropping the

monotonicity condition, and then check whether the solution

satisfies the monotonicity condition or not while also taking

into account the quantity constraint of the model owner. If

the solutions satisfy the monotonicity conditions, they are

the optimal solutions. Otherwise, we can solve the infeasible

subsequences using an iterative adjusted algorithm presented

in Algorithm 1, i.e., the Bunching and Ironing algorithm

[55]. The algorithm iteratively adjusts the results such that it

satisfies the monotonicity conditions. As the concavity of (17)

is guaranteed, the solutions obtained are also globally optimal.

Algorithm 1 “Bunching and Ironing” Adjusted Algorithm

1: Initialization: Let q∗m = argmaxqm Gm(qm), ∀m ∈
{1, . . . ,M}

2: while The set of q
∗ = {q∗m} violates the monotonicity

constraint, do

3: Find an infeasible sub-sequence {q∗i , q
∗
i+1, . . . , q

∗
j },

where q∗i ≤ · · · ≤ q
∗
j and i < j;

4: Set q∗l = argmaxq
∑j
t=iGt(q), ∀l ∈ {i, i+1, . . . , j};

5: end while

6: Return The feasible set q∗ = {q∗m}, m ∈ {1, . . . ,M}

For ease of presentation and derivation, we now re-express

the optimization output with subscripts in our formulation. The

optimal contract by model owner i results in the following

aggregate data quantity and quality, where quality is computed

as the weighted average across M worker types. Note that

in our formulation, we have taken the prevailing federation

conditions α and η as a given. When choosing between differ-

ent federations to join subsequently, the contract formulation

changes, i.e., we may vary the two variables.










Qi =
∑M
m=1 q

∗
m

θi =
∑M
m=1

q∗mθm
Q .

(18)

V. FEDERATION FORMATION

We now proceed to model the problem of federation for-

mation as a coalitional game. In particular, we study the

formation of stable federations of model owner given the

different characteristics of data quantity and quality they have.

Note that we will use the terms “federation” and “coalition”

interchangeably in this section.

A. Coalitional Game Formulation and Properties

Property 1. The federation formation process is a coalitional

game that has a transferable utility because the value of

the federation, i.e., profit generated from model performance

v(S), can be arbitrarily apportioned [16] among players in the

federation.

Property 2. The coalitional formation game does not always

result in the formation of a grand coalition. Instead, indepen-

dent disjoint coalitions will form in the network.

Proof. Following the procedure in [16], we first show the non-

superadditivity of the coalitional game. Then, we proceed to

prove that the core of the proposed game is empty. For purpose

of this proof, we assume there exists two disjoint federations

S1 and S2 where S1, S2 ⊂ N . The two disjoint federations can

choose to exist non-cooperatively, or form the grand coalition

S1 ∪ S2.

A coalitional game is supperadditive if v(S1∪S2) ≥ v(S1)+
v(S2). However, we observe from (2) that as |S| increases,
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i.e., the number of model owners in the federation increases,

the marginal cost of coordination increases linearly whereas

marginal benefits from gains in model performance falls. This

is due to the diminishing returns to data quantity and quality.

Thus, the exception to rule will be some |S1 ∪ S2| in which

ω(1 − e−φ(θSQS)υ ) − ω(1 − e−φ(θS\{i}QS\{i})
υ

) ≈ 0, which

implies v(S) − v(S\{i}) = −G < 0. This further implies

v(S1∪S2) < v(S1)+ v(S2), i.e., the coalitional game is non-

superadditive since marginal gains from adding a member is

negative.

Next, we proceed to prove the emptiness of the core. Fol-

lowing the definition in [16], a payoff vector z = (z1, . . . , zN )
is an imputation if it is (i) group rational, i.e.,

∑N
i=1 zi = v(N)

and (ii) individually rational where zi ≥ v({i})∀i, i.e., players

can obtain benefit no less than acting alone. Following this

definition, the core of a coalition refers to a set ζ of stable

imputations such that

ζ =

{

z :
∑

i∈N

zi = v(N) and
∑

i∈S

zi ≥ v(S) ∀S ⊂ N

}

As we have previously established in this proof, the marginal

gain of adding members into the coalition can be negative.

This implies the violation of the individual rationality con-

dition of an imputation, i.e., zi < v(S). Notably, the grand

coalition does not form if there exists some combination of

model owners with large data quantities and qualities θQS . In

the case, other model owners are better off existing in disjoint

federations. The proof is now complete.

Following property 2, the grand coalition does not form. In-

stead, disjoint federations are expected to form in the network.

We now proceed to establish two useful definitions from [47]

that can be used to study the subsequent formation of a stable

partition of coalitions.

Definition 3. Denote S as the set S = {S1, . . . , Sl, . . . , SL}
of mutually disjoint coalitions Sl ∈ N . A collection of disjoint

coalitions that spans all players in N , i.e.,
⋃L
l=1 Sl = N , is

called a partition of N . In our system model, a partition is

simply a federation of model owners. For discussion, we use

the two terms interchangeably.

Definition 4. We define a comparison relation ⊲ for the

purpose of comparing two collections, e.g., R = {R1, . . . , Rl}
and S = {S1, . . . , Sk}, both of which are partitions of the

same subset A ⊆ N . R ⊲ S implies that the partition R is

preferred to that of S based on the pareto order we further

define below.

Given the nature of our transferable utility game involving

profit maximizing model owners, we adopt the Pareto order

[56] that bases preferences on the payoff of individual model

owners rather than the combined coalition value. The Pareto

order is as follows

R ⊲ S ⇐⇒ {vi(R) ≥ vi(S) ∀i ∈ R,S},

with at least one strict equality (>) for a player k. The Pareto

order R⊲S can be interpreted as a preference relation in which

partition R is preferred over S if at least one model owner in S

can improve its payoff through forming R, without decreasing

the payoffs of other model owners throughout R and S. The

latter condition ensures the stability of a partition, i.e., if any

one model owner has lower utility, it will reject the formation

of R.

B. Coalition Formation Algorithm

Following the merge and split algorithm proposed in [57]

and applied in [56], we define two operations that can be used

to modify a partition based on the Pareto order

• Merge Rule - Merge any set of coalitions

{S1, . . . , Sl} where
{

⋃l
j=1 Sj

}

⊲{S1, . . . , Sl}, therefore

{S1, . . . , Sl} →
{

⋃l
j=1 Sj

}

• Split Rule - Split any coalition
⋃l
j=1 Sj where

{S1, . . . , Sl} ⊲
{

⋃l
j=1 Sj

}

, therefore,
{

⋃l
j=1 Sj

}

→

{S1, . . . , Sl}

The merge and split rule also fulfills the internal and

external stability notions presented in [58]. For an in-depth

discussion of stability notions, we refer the interested readers

to the studies conducted in [57].

We present the federation formation pseudocode in Al-

gorithm 2. Denote an initial network partition as T =
{T1, . . . , Tl, . . . , TL}, with each partition’s member, i.e.,

model owner, denoted as Tli . The prevailing conditions of

each partition, e.g., aggregate data quality and quantity, are

known to model owners in the network (line 1) for example

through reputation mechanisms [59].

We illustrate the merge mechanism from the perspective of

a representative partition Tl ∈ T . The partition Tl considers

a merge with other partitions Tl′ , l
′ 6= l, Tl′ ∈ T . During

this process, each model owner Tli ∈ Tl take as given

the prevailing conditions in Tl′ , e.g., current data quality

and data quantity, i.e., θTl′
and QTl′

respectively. Using this

information, each model owner Tli formulates a hypothetical

contract and computes the resulting payoff for the L − 1
possible partitions it can join (lines 6-10). By the Pareto order,

the merge occurs where {Tl∪Tl′}⊲{Tl, Tl′}. Specifically, the

Pareto order is fulfilled under two conditions as follows (i)

if the potential payoff from the merge exceeds the current

payoff for at least one model owner and (ii) no other model

owners in the current partitions are made worse off. If the

two conditions are fulfilled, the merge will occur and a new

partition T † = {Tl ∪ Tl′} is formed (lines 11-12). Then, the

new partition’s conditions and all model owners’ payoffs are

updated following (18) (line 13). In the next iteration, the new

partition T † reconsiders a merge with another existing partition

again. On the other hand, if there is no benefit to gain from

merging, the partition Tl remains unchanged and we proceed

to analyze the next partition’s, i.e., Tl+1, merge decision (line

14-15). The merge mechanism stops when all partitions have

been considered.

Following the termination of the merge process, we denote

the set of modified partitions to be T̃ = {T̃1, . . . , T̃j , . . . , T̃J}
where each T̃j denotes the resulting partition derived from the

merge mechanism. The split mechanism is considered next.
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Algorithm 2 Merge and Split algorithm for federation forma-

tion among model owners

1: Initialization: Random network partition

T = {T1, . . . , Tl, . . . , TL}, prevailing partition conditions

{θTl
, QTl

}, model owner Tli characteristics

2: loop

3: Merge mechanism

4: l = 1
5: if l ≤ L then

6: for Tl in T do

7: for each model owner Tli in Tl do

8: for Tl′ in T do

9: Formulate optimal contract

10: Compute model owner payoff uTli
,Tl′

11: if {Tl ∪ Tl′} ⊲ {Tl, Tl′} then

12: Tl ← Tl ∪ Tl′
13: Update θTl

, QTl
, uTli

,Tl

14: else

15: l = l + 1
return T̃ = {T̃1, . . . , T̃j , . . . , T̃J}

16: Split mechanism

17: for T̃j in T̃ do

18: r = |T̃j | − 1
19: if r ≥ 1 then

20: Compute split permutations T̃−
j

21: for each model owner T̃−
ji

in T̃−
l do

22: Compute payoff

23: if T̃−
j ⊲ T̃j then,

24: T̃j ← T̃−
j

25: end loop

26: return T ⋆ = {T ⋆1 , . . . , T
⋆
a , . . . , T

⋆
A}

We first consider a split of the partition T̃j into a partition

with |T̃j |−1 members. Denote T̃−
j = {T̃−

j1, . . . , T̃
−
jz, . . . , T̃

−
jZ}

as the set of possible splits of a partition and T̃−
jzi

refers to a

model owner i belonging in the split partition T̃−
jz . The payoff

for each split is considered (lines 19-22).

If the split fulfills the conditions of the Pareto order (lines

23-24), new partitions will be formed and updated. For splits

into partitions involving more than one model owner, we

let the prevailing condition of partitions be defined by the

members with more data. As an illustration, we consider the

scenario in which two members in partition T̃l namely T̃li
and T̃li+1

considers a split to form a two member partition.

If QT̃li

> QT̃li+1

, T̃li shall first formulate the contract and

set the prevailing conditions for T̃li+1
to follow. Similarly,

if there are more than two members, the initial conditions

shall be set by the members with more data first, i.e., in a

descending order. In practice, this is realistic since members

with too little data usually are unable to exist alone. As

such, it is likely that they follow other members who can

initiate the split with more data. Then, we iterate down the

updated partitions to consider more possible and smaller splits

until the split process terminates, i.e., the stable partition

T ⋆ = {T ⋆1 , . . . , T
⋆
a , . . . , T

⋆
A} is returned.

VI. PERFORMANCE EVALUATION

In this section, we perform numerical experiments to eval-

uate our designed incentive mechanism. The network param-

eters are set as follows: ω̃ = 10, 000, x̃ = 0.5, φ = 0.01,

υ = 0.5, c = 0.1, γ = 1, ψ = 0.001, G = 5000, qmax = 10
and K = 0.1. We also consider that the user parameter θ

follows a normal distribution θ ∼ N (0.7, 0.1) unless otherwise

stated. Then, we adopt the k-means clustering method to derive

M = 5 clusters of users. Based on the above settings, we

first evaluate the performance of our contract design for a

representative model owner. Then, we proceed to study the

static and dynamic federation formation.

A. Contract Optimality

In considering contract optimality, we first disregard the

quantity constraints qmax from the optimization problem.

This serves to enhance the visualization and evaluation of

our contract design. Note that under the condition in which

quantity constraints are in place, the contract is still optimal

and the evaluations from this section still holds. The key

difference lies in that if the constraint is binding, we will

expect more user types to contribute the same data quantities.

We observe from Fig. 3 that both the quantity of data

contributed and rewards for user types increase as the user’s

data quality increases. This implies that our designed contract

satisfies the monotonicity constraint, as is validated in Theo-

rem 1. Then, we study the utility of each user type in Fig.

4. Firstly, we observe that all the user utilities are positive,

thus satisfying the Individual Rationality constraint that we

provide in Definition 1. Secondly, we can observe that all

users can achieve utility maximization only if they choose

the contract items designed for their types. This is consistent

with the Incentive Compatibility constraint that we define in

Definition 2. The results in the Fig. 3 and Fig. 4 show the

self-revealing properties of our optimal contract. Note that

the bunching and ironing algorithm was not required in our

numerical experiment because the current network parameters

returned feasible sequences at its first attempt.

B. Static Federation Formation

We study the federation formation preferences of the rep-

resentative model owner in a static setting, i.e., where there

is only one iteration of merging from the perspective of a

representative model owner. In our subsequent experiments,

we present a representative model owner with existing feder-

ations that have varying data quantities and qualities. Then,

we compute the potential profit the model owner can derive

from the respective federations and study the preference of the

model owner.

In Fig. 5, the model owner is presented with existing

federations with prevailing data quantities ranging from 1000
to 5000 and an homogeneous average data quality of 0.9. Note

that we also consider the scenario in which the model owner

exists alone, i.e., without joining any federation. Then, we

compute the profit that the model owner can potentially derive

from joining each respective federations. If the model owner
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does not cooperate, we observe that it has zero profit, i.e., it

chooses not to collect data and train a model since it does

not have the capabilities to build a model that can generate

positive profit. Similarly, if the model owner joins a federation

with 1000 data units currently, the profit is negative, i.e., the

resulting federation formed in this cooperation is not capable

of covering the costs of cooperation since the combined model

is not viable. We note that the maximum profit that can be

derived comes from joining a federation with 2000 prevailing

data units. If the model owner joins a larger federation, we

observe a drop in its profit. The reason is that the marginal

contribution it brings to a large federation is diminishing as

the prevailing size of the federation increases.

In Fig. 6, we consider federations with a range of varying

data qualities from 0.1 to 0.9. The federations can take on

two prevailing data quantities, i.e., 5000 and 10, 000. Then,

we compute the profit that a model owner can potentially

derive from joining the different federations with the respective

combinations of data quantities and qualities. For federations

with 5000 units of data, the model owner can derive maximum

profit from the cooperation if the federation has an average

data quality of 0.7. In contrast, for federations with 10, 000
units of data, the model owner can derive maximum profit

from cooperation if the federation has an average data quality

of 0.1.

The above experiments show that a model owner prefers to

join federations with a minimum threshold of data quantity and

quality such that a viable combined model can be built. On

one hand, joining a federation with prevailing quantities and

qualities below this threshold leads to losses since the model

performance is insufficient to cover the cooperation costs. On

the other hand, joining a federation that has data quantity and

quality above the threshold implies that the model owner will

have a lower payoff due to its declining marginal contribution.

This insight serves to aid us in interpreting the merge and split

decisions of the model owners subsequently.

C. Dynamic Federation Formation

We consider a dynamic federation formation, in which

all the model owners considered can merge or split till an

equilibrium stable partitions is achieved. We first initialize six

model owners with 100, 200, 500, 750, 1500, and 2000 work-

ers labeled model owners 1 to 6 respectively. For ease of

illustration, we consider that each model owner has an average

data quality of 0.7. Note that our subsequent results can also

generalize to situations in which quality is heterogeneous.
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Fig. 7. Evolution of federations with iterations. The solid lines imply a merge
decision whereas dashed lines imply no changes.
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Fig. 8. Profit of each model owner for every iteration. Note that profit for
iteration zero, i.e., initialization, is not computed.

We implement the proposed merge and split algorithm

presented in Algorithm 1. Fig 7 shows the result of the merge

and split. In fact, the federations are stable after 3 iterations

of merges and did not require any splits. In each iteration, the

model owner makes a merge or split decision based on the

Pareto order presented in Section V-B.

In iteration 1, we observe that model owners 1 and 5 merge

to form a federation whereas model owner 6 benefits more

from being alone. The merge decision of 1 and 5 comes

naturally. 1 requires the merge with a larger model owner,

i.e., 5 or 6, to build a viable model. It prefers 5 since it is

able to derive a higher marginal payoff. Similarly, 5 chooses

1 to also maximize its payoff, i.e., it does not require a merge

with a larger model owner to be viable.

We observe that model owner 2 does not merge with any

other model owners in the first iteration. This observation

can be supported in our prior findings. Model owner 2 is

unable to profit from a cooperation with 3 or 4 alone since

the collaboration does not result in the production of a viable

model, i.e., the resulting federation is still too small. On the

other hand, it is unable to merge with 5 since 5 prefers forming

a federation with 1. In iteration 2, model owner 2 finally

merges with 3 and 4 since a viable model can now be built

when it joins the relatively larger federation involving two

other model owners.

In Fig. 8, we observe that the merge and split decisions

follow the Pareto order, i.e., no model owner should be made

worse off by a merge or split decision. It also supports our

proof in V that the grand coalition does not form, due to the

existence of large model owners, i.e., 5 and 6 in particular.

Fig. 8 also shows that our designed incentive mechanism

does not incentivize model owners to hide their types. For

example, the profits of model owner 1 is the lowest due to its

cooperation with a large model owner, i.e., 5. However, it does

not have the ability to join the federation with smaller model

owners, i.e., 2, 3, 4. On the other hand, model owner 2 does not

have the incentives to hide its type, e.g., pretend to be model

owner 1, since its benefits from joining a federation comprised

of smaller model owners imply that its marginal payoffs are

eventually higher than that of 1. The same conclusion applies

for the other model owners.

The numerical experiment also suggests to us the federation

formation equilibrium in our proposed mechanism design. The

largest model owners tend to stay alone, or cooperate with

small model owners that are unable to build a viable model

alone. On the other hand, medium sized model owners are

likely to band together to maximize their marginal payoffs.

VII. CONCLUSIONS

In this paper, we have proposed a hierarchical incentive

mechanism design for an FL-based crowdsensing network in-

volving multiple model owners and federations. Using contract

theory, we first propose an incentive design for model owners

to incentivize high quality and quantity data from different

worker types in the presence of information asymmetry. The

contract is also designed to maximize the model owner’s

payoff in the federation. Then, we use the merge and split

algorithm to study federation formation in the system model.

For our future works, we can consider more conditions that

affect the collaboration of model owners. For example, some

model owners may not be in close proximity to others, thus

resulting in heterogeneous cooperation costs. In addition, we

can also consider the possibility of competing or malicious

model owners that can affect the performance of a federation

adversely. For example, malicious model owners may inten-

tionally provide erroneous inputs to corrupt the global model.

In this case, reputation mechanisms [60] may be considered

to exclude these model owners from joining the federation.
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