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Hierarchical Inference of Unicast Network Topologies
Based on End-to-End Measurements

Meng-Fu Shih and Alfred O. Hero, III, Fellow, IEEE

Abstract—In this paper, we address the problem of topology
discovery in unicast logical tree networks using end-to-end mea-
surements. Without any cooperation from the internal routers,
topology estimation can be formulated as hierarchical clustering
of the leaf nodes based on pairwise correlations as similarity met-
rics. Unlike previous work that first assumes the network topology
is a binary tree and then tries to generalize to a nonbinary tree,
we provide a framework that directly deals with general logical
tree topologies. A hierarchical algorithm to estimate the topology
is developed in a recursive manner by finding the best partitions
of the leaf nodes level by level. Our simulations show that the
algorithm is more robust than binary-tree based methods.

Index Terms—Graph-based clustering, mixture models, network
tomography, topology estimation.

I. INTRODUCTION

THE infrastructure of a packet network is composed of
switching devices (as nodes) and communication channels

(as links). It is constantly changing due to devices going online
and offline, and the corresponding routing table updates. The
topology information of the infrastructure can be revealed by
packet routes across the entire network. Tools such as Tracer-
oute trace a packet route by collecting responses from all the
switching devices on the route. This kind of cooperation from
the network has a negative impact on network performance and
security, and such cooperation is likely to become more difficult
in the future. Due to this reason the problem of discovering the
network topology based only on end-to-end measurements has
been of great interest [1]–[8]. This type of problems belongs to
the research category called network tomography.

Ratnasamy et al. [1] and Duffield et al. [2] pioneered work
in discovery of multicast network topologies. They specifically
targeted the identification of the network’s logical tree struc-
ture. By sending multicast probes from the root node of the tree
to a pair of the leaf nodes, one can estimate the successful trans-
mission rate on the shared portion of the probe paths, called the
shared path, based on end-to-end loss. Those rate estimates were
used by the deterministic binary tree classification algorithm
(DBT) [2], [3] to construct a binary logical tree in a bottom-up
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manner. The extension to a general tree is basically done by
pruning the links with loss rates less than some heuristically se-
lected threshold. The DBT algorithm has also been extended to
use other metrics such as packet delays [2], [3].

Topology estimation in unicast networks was investigated by
Castro et al. [4]–[6]. They invented a method of probing, called
sandwich probes, to estimate the queueing delay on the shared
path from the root to two of the leaf nodes. Castro et al. also
proposed a binary tree construction algorithm similar to DBT,
called the agglomerative tree algorithm (ALT), which modifies
DBT to account for the variability of the measurements through
the spread of its probability density function (pdf) [6]. The spe-
cial case of Gaussian-distributed measurements was previously
called the likelihood-based binary tree algorithm (LBT) [5]. To
compensate for the greedy behavior of the ALT, causing it to
reach a local optimum in many cases, as well as to extend the
result to general trees without using a threshold, they introduced
a Monte Carlo Markov chain (MCMC) method to generate a
sequence of tree candidates by birth (node insertion) and death
(node deletion) transitions [6]. The tree candidate that gives the
highest likelihood is adopted as the estimate of the topology.

In this paper, we propose a general method for estimation of
unicast network topologies. As in [2] and [6], we focus on the es-
timation of logical tree structure of the network. The key to our
approach is a formulation of the problem as a hierarchical clus-
tering of the leaf nodes based on a set of measured pairwise sim-
ilarities. The similarity of a pair of leaf nodes can be represented
by some metric function associated with the path from the root
to the nearest common ancestor of the two leaf nodes. We in-
vestigate three different types of similarity metrics that can be
estimated from end-to-end measurements: queueing delay using
sandwich probes, delay variance using packet pairs, and loss rate
also using packet pairs. We modify the likelihood model for the
pairwise similarities in [5] and [6] to include a prior distribution
on the nearest common ancestor node of each pair of the leaf
nodes. This results in a finite mixture model with every mixture
component corresponding to a distinct internal node. A penal-
ized maximum likelihood (PML) is developed using a minimum
message length (MML) type of penalty for model order selec-
tion. An expectation-maximization (EM) algorithm can be used
for unsupervised estimation of the mixture model parameters by
maximizing the PML. Topology estimation is then performed by
a top-down search for the best partitions of the leaf nodes. The
first step is to construct a complete graph whose edge weights
are derived from the mixture model estimate. Then a partition
algorithm is applied to cluster the vertices based on the edge
weights.

Our contribution in this paper includes 1) the use of hierar-
chical topology likelihood with finite mixture models and MML
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model order penalties; 2) the top-down recursive partitioning
of the leaf nodes, which directly yields a general logical tree
without using thresholds or Monte Carlo methods; 3) the esti-
mation of leaf node partitions using graph-based clustering and
unsupervised learning of the finite mixture models; and 4) the
intelligent search of the partition likelihood surface using graph
clustering procedures.

The performance of our algorithm is compared with the DBT
and LBT using Matlab model simulation under a wide range of
conditions on the magnitudes and variances of the similarity es-
timates. The results show that our algorithm generally achieves
a lower error, as measured by tree edit distance [11] to the true
topology, and a higher percentage of correctly estimated trees.
The three candidate probing schemes are evaluated on an ns-21

simulated network. Monte Carlo simulations show the queueing
delay metric measured by sandwich probes have the best per-
formance when the network load is light. For a moderate load,
the delay variance metric measured by packet pair probes pro-
vides the most reliable similarity estimate for the leaf nodes.
When the network is congested with heavy traffic the loss rate
metric measured by packet pair probes generates the most ac-
curate topology estimates. We also use tree edit distance as a
metric to define distributions of topology estimates. This idea is
illustrated by a network simulated in ns-2.

This paper is organized as follows. In Section II, we set up
the logical tree network model. The probing methods and the
associated similarity metrics are also introduced. In Section III,
we derive the finite mixture model for the end-to-end similarity
measurements. Based on this model, we define the partition and
hierarchical topology likelihoods. In Section IV, we illustrate
the hierarchical topology estimation algorithm (HTE), which
recursively partitions the leaf nodes based on graph connec-
tivity. In Section V, we conduct comprehensive simulations in
Matlab and ns-2 to evaluate the performance of our algorithm
with different probing methods and under various network en-
vironments. Section VI provides the conclusion and discusses
future work. For more detailed derivations and more simulation
studies than what could be presented in this paper the reader is
referred to [12].

II. BACKGROUND

A. Problem Formulation

Our work focuses on the problem of estimating logical tree
network structures given end-to-end statistics measured by
probes sent from the root to the leaf nodes. We assume there is
no information provided by the internal devices of the network.
A directed logical tree is defined by two sets of
objects: as the set of nodes, and as the set of directed links.
We let the root be defined as node 0, be the set of internal
nodes and be the set of leaf nodes. The root is the only
node having a single child node, while all internal nodes have
at least two child nodes. We adopt the convention to number
the links by their child end nodes. The topology estimation
problem is illustrated in Fig. 1, where the topology on the right
is an example of a logical tree.

1http:www-mash.cs.berkeley.edu/ns/ns.html

Fig. 1. Illustration of the topology estimation problem.

We also define the following useful notation. For a node
, let be the parent node of . Then

denotes the set of children of . The nodes in
are sibling nodes because they share the same parent.

can be formulated as the union of two disjoint sets: the set of leaf
node children and the set of internal node
children . Let
represent the set of internal nodes whose children are not all
leaf nodes. Let denote being a descendant of . We
define be the set of descendant leaf
nodes of .

Topology estimation can be formulated as hierarchical clus-
tering of the leaf nodes in which each group of nodes may be
recursively partitioned into subgroups [6], [7]. Each leaf node
itself is also considered as a cluster, called a trivial cluster.
Hierarchical clustering relies on a measure of pairwise infor-
mation to partition the input objects [13]. The objects in one
(sub)cluster must be more similar to each other than to those in
the remaining (sub)clusters. Suppose the similarity between a
pair of leaf nodes can be expressed by some quantitative
measure , called similarity metric. Assume that
and . Given a partition of leaf nodes, we define the
intracluster similarities as those between two leaf nodes in the
same cluster, and the intercluster similarities as those between
two leaf nodes in two different clusters [6].

In general, if the clusters are good, the intercluster similar-
ities should be smaller than the intracluster ones. Define as
a hierarchical clustering of the leaf nodes. We propose to de-
fine a similarity clustering tree as follows. The root node
in corresponds to the top-level partition in , and is as-
sociated with the set of all intercluster similarities for that par-
tition. Each cluster containing two or more leaf nodes corre-
sponds to a child node of the root and is associated with the set
of all inter-subcluster similarities. This process is repeated re-
cursively for all the partitions having nontrival clusters. The set
of similarities associated with a node in is called a sim-
ilarity set. A similarity set is called trivial if all the intercluster
similarities in the set are between two trivial clusters, otherwise
it is nontrivial. All the ’s in the same set are assumed to be
equal, and they always have greater values than those associated
with the parent node in . Fig. 2 shows hierarchical clus-
tering for the leaf nodes in Fig. 1 and the similarity clustering
tree . It is easy to verify that is a bijective map-
ping from to a tree graph, which means topology estimation
is also equivalent to hierarchical grouping of the pairwise simi-
larities. This property will be the key to the development of our
algorithm.
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Fig. 2. Hierarchical clustering C of the leaf nodes in Fig. 1 (left) and the cor-
responding similarity clustering tree T (C) (right).

In topology estimation, the concept of metric-induced net-
work topology (MINT) introduced by Bestavros et al. [10] pro-
vides a framework for defining the similarity metrics. Under the
MINT framework a metric is defined which is used to capture
the similarity between all measurement pairs, e.g., covariance
between measured delays. Any pair of leaf nodes that are con-
nected to the source (root) through common links will have ap-
proximately equal similarity according to the metric. Different
network topologies will usually generate different clusters of
leaf pairs having almost identical similarities. The metric thus
induces a virtual network topology that is associated with the
actual topology. Note that each node in the similarity clustering
tree corresponds to a unique internal node in the topology. This
internal node is the nearest common ancestor shared by each
pair of the leaf nodes in the similarity set. This implies the fol-
lowing connection between the MINT and the similarities. De-
fine as the directed path from node to for . To sim-
plify the notation we let for . Let
be the nearest common ancestor of leaf node and . Then each

is uniquely mapped to a similarity set in , which
includes . Hence, we can define as the metric function
for [5].

B. End-to-End Unicast Probing Schemes

In this section, we discuss three possible schemes of uni-
cast probing and induced similarity metrics that can be used for
topology discovery. We assume the network topology and the
traffic routing remain unchanged during the entire probing ses-
sion. In our modeling we also assume the following statistical
properties on the network environment:

A1) spatial independence: the packet delays over different
links are independent;

A2) temporal independence and stationarity: the packet
delays over a link are identically and independently dis-
tributed (i.i.d.).

We also define the binary logical tree formed by the union of
path and , as a probe tree and denote it by .
Note that is the intersection of and , and is called the
shared path of .

Sandwich probes were invented by Castro et al. in [5] for
the similar purpose of topology estimation. Each probe con-
tains three time-stamped packets: two small packets and one
big packet sandwiched between the two small ones. The small
packets are sent to one of the two leaf nodes, while the large
packet is sent to the other [see Fig. 3(a)]. The queueing delay of

Fig. 3. Example for (a) sandwich probes and (b) packet pair probes. The probe
tree t is defined by the routes of the probe packets, which consists of links 3,
5, 6, 8, and 9.

the second small packet caused by the large packet can be con-
sidered as a metric on the shared path.

A packet pair probe consists of two closely spaced small
packets. Both packets are sent from the root node but routed to
two different leaf nodes [see Fig. 3(b)]. We need an additional
assumption for packet pair probes:

A3) delay consistency: the queueing delays of the packet
pair are identical with probability 1 when they travel
along the shared path.

The first type of metric that can be retrieved from the packet
pairs is delay variance [10], [14]. The independence assump-
tion A1) implies the (queueing) delay over the shared path has
a variance equal the end-to-end delay covariance of the two
packets. For each probe tree we need end-to-end delay
measurements to obtain one sample of the delay variance over
the share path. The second type of metric can be computed from
the packet pair probes is packet loss rate. Here we extend as-
sumption A1)–A3) by interpreting packet losses as infinite de-
lays. Similar to the delay variance metric, the packet loss rate
on the shared path can be estimated by end-to-end loss rates
[2], and one needs packet pairs to compute a single metric
sample.

Theoretically, the sandwich probes are expected to have
the best performance in a lightly loaded network environment
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because the queueing delay is mainly caused by the large
middle packet [8]. The best situation for packet pair probes
with delay variance metrics is a moderately loaded network
because the background traffic produces sufficient variation on
packet queueing delays. Lastly, one can expect packet loss rates
provide the most sufficient information to identify the topology
for highly congested networks. Similar comparisons showing
how different types of metrics perform with different traffic
load in multicast networks can be found in [15].

III. HIERARCHICAL TOPOLOGY LIKELIHOOD USING

FINITE MIXTURE MODELS

A. Finite Mixture Model for Similarity Estimation

To establish a simple and unified framework for specifying
metrics based on either packet delay or loss, we adopt the fol-
lowing strategy. First, observe that the metric samples es-
timated from data along probe tree are i.i.d according to
A1) and A2). If we average every samples , the
result will be approximately Gaussian distributed when
is large, according to the central limit theorem (CLT). We call
the averaged samples normalized similarity samples, denoted by

. are also i.i.d. for all .
Secondly, we find if , then and

have the same mean . As the variances of
and go to 0 linearly as , it is easy to show
that , and
in probability (hence in distribution) as . Since

and both converges to Gaussian
when , we make the following approximation
assumption:

A4) consistency of similarity distributions: let be
the average of i.i.d. metric samples ; as

and are approximately equal
in (Gaussian) distribution if , for

and .
The magnitude of the variance difference between

and affects the minimum value of to be
used. As

should increase linearly with
in order to keep the approximation

valid. According to our simulations (see Section V), a typical
minimum value for is around 20–25 to achieve accurate
topology estimates.

Let the set of normalized similarity samples for be
, and let . We define

and . When is an internal node, we denote
as the set of probe

trees whose branches split and let . Also let
be the total number of probe trees in tree . Suppose

the set of internal nodes is known and the cardinality
is given for each . A reasonable prior distribution of

is for .
Given , where denotes the
Gaussian pdf, this induces a finite mixture model

(see, e.g., [16]). A finite mixture model
is generally expressed as the convex combination of prob-

ability density functions: , where

, and is an arbitrary pdf for
. The ’s are called the mixing probabilities, and the

’s are the mixture components. is the number of mixture
components in the model, often referred as the model order of

. If the ’s are all Gaussian (with different parameters),
then is a Gaussian mixture. Given the mixture models for
the similarities , the distribution of becomes

(1)

Note that the model order in (1) equals the number of the in-
ternal nodes of the tree. Each mixture component cor-
responds to a unique internal node and is contributed by

if . The key difference between the models
in [6] and (1) is that in the common parent node
is distributed according to some discrete prior instead of being a
deterministic value. This relaxation leaves the prior, along with
other parameters in the model, to be determined, e.g., by un-
supervised estimation of the mixture model. It can be achieved
using the EM algorithm [17], [18]. To discover the topology,
the similarity sets in are determined by associating each

with the component that contributes .

B. MML Penalized Likelihood for the Mixture Model

Likelihood-based estimation of the parameter in the mix-
ture model

(2)

for falls in the cate-
gory of missing data problems. To avoid the complication
of optimizing the ’s over discrete values, we assume

is continuously distributed over the region
. For a given model order (

also denotes the number of internal nodes), the unobserved
data in our case is , which indicates the contributing
component for each . Define the unobserved indicator
function for by if is
contributed by the th component, and otherwise.
Along with the observed data , the set is called
the complete data. The maximum-likelihood (ML) estimate of

with a given can be obtained by using the EM algorithm,
which generates a sequence of estimates with nondecreasing
likelihoods [17], [18].

However, when is unknown this becomes a model selection
problem and the ML criterion can cause an overfitting problem
in which a higher model order generally results in a higher
likelihood. A strategy to balance the model complexity and the
goodness of data fitting is to add model order penalties to the
likelihood [19]. We adopt a criterion called MML [19] to derive
the penalty function. MML has been widely used in unsuper-
vised learning of mixture models [9], [17], [18]. The incomplete
data penalized log likelihood is expressed as [17]

(3)
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for observed data and parameter set , where is the
Fisher information matrix (FIM) associated with denotes
the determinant operator, is the dimension of , and is the
so-called optimal quantizing lattice constant for , meaning
the multidimensional parameters are assumed to be quantized
using optimal quantizing lattices [18], [19].

For a given model order , our choice for the prior distribu-
tions of the parameters follows the least informative priors in
[18]. The mixing probabilities in have a uniform prior

for and .
For being a Gaussian mixture, for

. The prior for is uniform between 0 and , where
is the standard deviation of the entire population . So we

have for . We also take a
uniform prior for distributed within one standard deviation

of , where is the mean of the population . Therefore,
, for . The prior for the

model order is assumed uniform between two predetermined
bounds and . With the assumption that the parameters
are independent, we have .

In general, it is difficult to derive a closed form for the FIM of
finite mixture models with more than one component. The au-
thors of [18] suggested replacing the determinant of the FIM
by the product of the determinant of the FIM for each com-
ponent times the FIM determinant for the mixing probabili-
ties. Hence, , where

is the FIM for and is the FIM for the th
component with parameter . can be expressed as

, where is the FIM
associated with for the th component, i.e.,

Therefore, we have .
To determine the FIM for , one can view the as being

the parameters of a multinomial distribution, which selects
’s from internal nodes with the probability of choosing

the th internal node being , where is the total number
of probe trees. Hence, . As or-
dering of the components is irrelevant, the factorial term
can be removed from the MML expression (3). We also approx-
imate by the one-dimensional constant as in
[18], [19]. Substituting the terms above into (3), we have

(4)

One can use the EM algorithm to maximize (4) over [8], [18].

C. Hierarchical Topology Likelihood

Equation (4) is difficult to use directly for topology estimation
due to identifiability problems. Recall that each internal node in
the topology corresponds to a unique component in the finite

mixture model. Consider the example in Fig. 1 once again. If
, the estimates and become indistin-

guishable, and the two mixture components erroneously merge
to a single one. To overcome this problem, we propose a hierar-
chical definition of the topology likelihood which recursively
evaluates each partition likelihood and hierarchically clusters
the leaf node pairs.

Consider a group of leaf nodes . Let
be the set of pairwise similarity metrics for , and

be the normalized sam-
ples of . Let be a partition of
where are disjoint subsets of . Without loss
of generality, let be the clusters containing two
or more leaf nodes, and be single-node clus-
ters. According to the monotonicity property, the intercluster

’s share the smallest value in . Hence, the set of all
intercluster ’s, denoted by , obey a Gaussian dis-
tribution that has the smallest mean over . This means
for the finite mixture model of , the component with the
smallest mean contributes . We call this component the
intercluster component of and let denote its
parameter set. Let be a cluster with two or more leaf nodes.
The set of intracluster ’s in , denoted by , also fol-
lows a finite mixture model. Let be the mixture param-
eter set for . If all the subclusters in are trivial,

degenerates to a single component density func-
tion. We define the penalized partition likelihood as

(5)

where . This motivates the
following hierarchical topology likelihood for a logical tree

:

(6)

where denotes the partition
specified by the child nodes of . The evaluation of mimics
exactly the construction of the similarity clustering tree. Each

corresponds to a unique node in that is associ-
ated with a nontrivial similarity set.

IV. TOPOLOGY ESTIMATION ALGORITHM

A. Hierarchical Topology Estimation Algorithm

We propose a greedy algorithm to estimate the logical tree
topology using a top-down approach that partitions the leaf
nodes recursively. First, we use to find the most coarse
partition specified by the sibling nodes in for being
the root node’s child, then we determine if there exists any
finer subpartition within each cluster. This process is repeated
until no finer partitions are found. Fig. 4(a) shows an example
that illustrates how the partition of nodes 6–11 identifies two
internal nodes. This iterative procedure is greedy because
in each iteration it focuses on finding the optimal partition
within the current cluster of the leaf nodes without considering
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Fig. 4. Illustration of the hierarchical topology estimation. (a) Partition of
nodes 6–11 identifies the two shaded internal nodes. (b) Graph-based partition
of nodes 6–11. The solid edges have weights � 1, and the dotted edges have
weights � 0.

other clusters or any possible subpartitions in the subsequent
iterations.

The key to the hierarchical topology estimation algorithm
is to find the partition of the leaf nodes. Our algorithm is
motivated by the following observation. First, we label the
component having the smallest mean in by com-
ponent 1 for some subset of leaf nodes . Assume
there is no estimation error in the mixture model. In this ideal
case, component 1 is the intercluster component supported
exactly by all the intercluster ’s. Then, the conditional
mean if is an inter-
cluster pair and otherwise, because can be
viewed as a conditional mean estimator (CME) of the indicator
function . Consider an undirected complete graph
whose vertices are the leaf nodes in such that there exists an
edge between every pair of the vertices. If we specify a weight

wieght to every edge , one can
easily find that a vertex in strongly connects only to its peers
in the same cluster. This implies that the partition of the leaf
nodes can be estimated based on the edge weights of . The
partition in Fig. 4(a) estimated using graph edge weights is
depicted in Fig. 4(b).

Basically, any graph-based clustering algorithm for weighted
graphs could work for our purpose. Here, we describe a simple
algorithm proposed in [20], the highly connected subgraph

(HCS) algorithm. Let be a graph both undi-
rected and weighted, where is the set of vertices and
is the set of edges. Every edge in has a nonnegative real
weight . A cut in a graph is defined as a set of edges whose
removal results in a disconnected graph. The total weight of the
edges in a cut is called the cut weight of , denoted by .
A minimum cut (mincut) is a cut with the minimum weight.
The weight of a mincut is called the connectivity of the graph,
denoted by conn .

The key definition for HCS is the following: A graph with
vertices is called highly connected if conn .

In our case, a highly connected complete graph always has an
average weight of the edges greater than [8]. The HCS
algorithm requires a subroutine MINCUT which accepts
graph as the input and returns , where is a
mincut of that divides into two disjoint subgraphs
and . The problem of finding a mincut for a connected graph
is one of the classical subjects in graph theory [22], [23]. The
HCS algorithm recursively applies subroutine MINCUT to par-
tition the graph until all the connected subgraphs are highly con-
nected. The details can be found in [20].

In order to apply the HCS algorithm to our problem,
we define a new indicator function as follows. Let
and be two clusters in a partition of the leaf node set

. Suppose the finite mixture model estimate for
is , which has components. Let

be a subset of the components. Define
to be the set of i.i.d.

normalized samples for the intercluster similarities between
and . Let denote the com-

posite component formed by . Then, we define

as an indicator function of , for
, such that if is con-

tributed by the composite component , and

otherwise. Then is i.i.d. with

mean . According to the definitions
above, we define an edge connecting two clusters

with weight defined by

(7)

where .

B. Precluster Algorithm

The MINCUT procedure in the HCS algorithm can be com-
putationally demanding when there are many vertices in the
complete graph [23]. One way to reduce the complexity is to
precluster the vertices in into groups which are obviously in
the same cluster. For a set of leaf nodes and its corre-
sponding finite mixture estimate , we assume the
intercluster component is identified as a composite component

, where is the mixture model order. If there is
no estimation error, includes only the component having the
smallest mean, called component 1 for simplicity. A simple way
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to determine if a leaf node resides in a different cluster from
is to check whether the edge weight between them is less than

. Define the set of foreign leaf nodes for node with respect
to as

. contains all possible nodes that are not in the same
cluster as . Then, we group nodes and in the same cluster
if and only if .

When there exists significant error in the finite mixture
model estimates, it is possible that component 1 may not be
correctly estimated as the intercluster component. Two possible
situations may occur. First, a mixture model estimate with
too fine resolution could decompose the intercluster compo-
nent into several subcomponents. Second, an estimate with
too-coarse resolution could merge the intercluster component
with the intracluster ones. This would lead to an unsufficiently
rich set of components to accurately reconstruct the topology
resulting in an overly fine clustering (too many clusters) of the
leaf nodes. These two situations are likely to occur especially
when the number of samples are limited.

C. Progressive Search Algorithm

We deal with the first situation by a progressive search
method. Let the estimated components in be
sorted by ascending order of their means, i.e., component 1 has
the smallest mean and component has the largest. The search
starts with treating as the intercluster component and
estimating a preclustering . Then expand the compo-
nent subset to and estimate another preclustering

. Repeat this procedure until , which
includes all the components in . Then, we select
the preclusterings with the least number of clusters as the
preclustering estimates, i.e.,

.
A complete graph can be drawn from each preclustering es-

timate. Now, the vertices may represent clusters of leaf nodes.
Let be the complete graph whose vertices repre-
sent the clusters in and edge weights are computed
using . Then, the graphs for
are used as inputs of the HCS algorithm. The output with the
highest is adopted as the HCS clustering estimate, denoted
by . It is possible that multiple ’s derive the same . We
specify the smallest set as and use it in the following post-
merge algorithm.

D. Postmerge Algorithm

To address the second situation described at the end of
Section IV-B, we propose a postmerge algorithm to deal with
overly fine clusters. Given the optimal HCS clustering ,
we form the complete graph using as the inter-
cluster component set. Let denote the vertex for cluster

. For each cluster , we define its closest cluster
such that has the strongest connection to , i.e.,

. Then, for each ,
we get a new partition by merging and . If the highest
likelihood obtained by merging a pair of clusters is greater than
that of , we update by the corresponding new partition.

TABLE I
HIERARCHICAL TOPOLOGY ESTIMATION ALGORITHM

This process is repeated until no improvement is made by any
pairwise merge.

We would like to point out that all the preclustering, progres-
sive search and postmerge algorithms are heuristic. However,
unlike the thresholds used in [2] and [3], they are based on the
probability model and likelihood function. Furthermore, our al-
gorithms are all deterministic instead of Monte Carlo, so the
convergence problem of simulated methods can be avoided. The
complete HTE algorithm is summarized in Table 1.

E. Asymptotic Performance of the HTE Algorithm

We discuss the asymptotic performance of our algorithm as
the estimated similarity samples tend to the true similarities.
Under the assumption of i.i.d. , one scenario to increase
the accuracy of the normalized samples is to collect more mea-
surements. As , we have in proba-
bility, according to the strong law of large numbers (SLLN). Let

be the intercluster similarity. As

, the indicator function also converges in probability
to a random variable whose value is 1 if , and is 0
otherwise. Hence, in probability if
leaf nodes and are in different clusters, otherwise .
This also indicates the complete graph converges in probability
to a graph in which vertices and are connected with a unity
edge weight if and only if leaf nodes and are in the same
cluster; otherwise, they are not connected at all (edge weight
is 0). Furthermore, in this limiting graph, a subgraph formed
by leaf nodes in the same cluster is always highly connected.
Then, the partition output by the HCS algorithm will converge
to the correct one in probability without applying the progres-
sive search and the postmerge algorithms. Finally, all the above
implies the topology estimated by the HTE algorithm converges
to the correct topology in probability as .

V. COMPUTER SIMULATIONS

A. Matlab Model Simulation

First, we simulated a small network with the simple nonbi-
nary virtual topology shown in Fig. 5. The simulations were im-
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Fig. 5. Logical tree topology for the network used in computer simulations.

plemented in Matlab, and for each pair of leaf nodes, we gen-
erated 200 similarity samples as follows. Given a pair of leaf
nodes , a similarity sample was obtained by the sum
of randomly generated metric samples over all the links in the
path . Each metric sample for a link was generated ac-
cording to a Gaussian distribution with a randomly generated
mean and a standard deviation proportional to the mean.
Note that the true link metric was specified by . was gener-
ated according to a uniform distribution over a region centered
at with width equal to . The standard deviation was ob-
tained by multiplying with a positive factor .

We implemented the proposed HTE algorithm with an
averaging factor to compute the normalized
similarity samples, which means for each probe tree there were
ten samples of . We also implemented two other topology
discovery algorithms: the LBT algorithm [5], [6] and the
DBT algorithm [2], [3]. The latter was originally designed for
multicast networks, but can also be directly applied to unicast
networks. Both algorithms estimated a binary tree given the
similarity samples. A second stage was applied to generalize
the binary tree by pruning the links whose metric estimates
were smaller than a threshold . Defining and to be
the empirical mean and standard deviation of the estimated link
metrics from the DBT or LBT over all the links, respectively,
we set to be .

The performance of the algorithms was evaluated in terms of
the tree edit distance [11] between the estimated tree and the
true topology. The tree edit distance is analogous to the edit
distance between two strings. A mapping from logical tree
to is defined as a set of basic editing operations that allows
us to transform to . The basic editing operations are as
follows: replacement—relabel a node; insertion—insert a node;
and deletion—delete a nonroot node. If a mapping includes
replacements, insertions, and deletions, then the cost of the
mapping is given by , where is the cost of a
replacement, is the cost of an insertion, and is the cost of a
deletion. The set of costs is called unit cost if ,
which is adopted here. The tree edit distance between and
is then defined as the cost of a minimum-cost mapping between
them.

In the model experiment, we tested the proposed HTE algo-
rithm, along with the DBT and LBT. We fixed the range of the
uniform distribution for each link metric to the region [2], [6].
The scale factor for sample standard deviation varied from 1
to 10 for link 16 and 17 and was fixed at for the others.

Fig. 6. (a) Average tree edit distance and (b) percentage of correctly identified
trees versus the proportional factor � for link 16 and 17 in the Matlab simulation.

The result is illustrated in Fig. 6. Each data point was aver-
aged from the outcomes of 1000 independent simulations. As
the accuracy of topology estimation decreased with increasing

, HTE exhibited a minor loss in its performance while DBT
and LBT both suffered from a serious degradation in their esti-
mation capability.

Although all the three algorithms are greedy in the sense that
they depend on local information to construct the topology, the
DBT and LBT are both agglomerative algorithms that repeat
clustering the two most similar leaf nodes in each iteration [2],
[6]. This indicates they depend on a small region of the param-
eter space to make local decisions on the topology. On the other
hand, the HTE algorithm finds a local optimum over a larger
region of the parameter space which specifies the partition of
a (sub)set of the leaf nodes. Therefore, the HTE estimates are
generally closer to the global optimal topology than the other
two algorithms.

B. NS Simulation

For a more practical environment we used ns-2 to simulate
the network in Fig. 5. Two types of links were used: the links
attached to the leaf nodes were assigned with bandwidth 1 Mb/s
and latency 1 ms and the others were assigned with bandwidth
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TABLE II
PARAMETERS SPECIFYING THE NUMBER OF PROBES USED IN ns SIMULATION

2 Mb/s and latency 2 ms. Each link was modelled by a first-in
first-out (FIFO) queue with buffer size being 50 packets long.
Cross traffic was also generated by ns-2 to simulate various net-
work conditions. The cross traffic comprises 10% UDP streams
and 90% TCP flows in terms of the bandwith utilization. The
UDP streams had constant bit rates but a random noise was
added to the scheduled packet departure time. The TCP flows
were bursty processes with Pareto ON–OFF models. We tested
the three probing schemes described in Section II: queueing
delay using sandwich probes, delay variance using packet pairs,
and loss rate also using packet pairs. The packet size in a packet
pair probe was set to 10 B. The sizes of the large and the small
packets in a sandwich probe were 500 and 10 B, respectively.
The probes were sent by UDP streams with Poisson departure.
The departure interval had a mean equal to eight times the trans-
mission delay on the outgoing link of the root node. The desti-
nation was randomly selected for each probe. The parameters
specifying the number of probes used in ns simulation can be
found in Table II, where for packet pair
probes, and is the total number of normalized similarity
samples.

We compared the three probing schemes under three different
network conditions. Each was averaged over 30 independent
simulations using the HTE algorithm. Fig. 7 shows the per-
formance in a lightly loaded, moderately loaded, and heavily
loaded network, respectively. The horizontal axes denote the
number of similarity estimates used in each simu-
lation. The notation in the titles denotes the average
condition for the whole network, where is the average packet
delay, is the packet delay variance, and is the packet drop
rate over all the links. The legends for queueing delay, delay
variance, and loss rate similarity metrics were marked by “Sand-
wich,” “Cov,” and “Loss,” respectively.

As predicted in Section II, the sandwich probes provided the
most reliable topology estimate in a lightly loaded network. We
found some of the links had very small packet delay variances
and hence could not be identified using delay variance met-
rics. A similar situation occurred for loss rate similarities since
packet drop is rare. In a moderately loaded network, each link
queue provided enough delay variation to perform topology es-
timation using packet pair delay variances. Fig. 7(b) shows the
packet pair delay variances achieved the best performance. The
error distance still converged to zero for sandwich probes, but
the convergence rate was slower due to the noise introduced
by background traffic. However, the packet drop rates for some
links were still too low for loss rate estimates to converge. For a

heavily loaded network, each link had a substantial packet drop
probability which made the loss rate the most reliable similarity
metric. Although the link delay variances were large, the perfor-
mance of the delay variance suffered since the number of suc-
cessfully received probes was significantly reduced. The sand-
wich probes had the worst performance due to both high packet
drop rate and high delay variance. Note that some data points
in the “Sandwich” and “Cov” curves were missing because, in
those cases, most of the probes were lost, and there were not
sufficient samples to estimate the topology.

The tree edit distance provides a way to describe the distri-
bution of the topology estimates. To illustrate, we simulated a
larger network in ns-2, whose topology is shown in Fig. 8(a).
The bandwidth and latency for the internal links which are not
attached to the leaf nodes were assigned 5 Mb/s and 5 ms, re-
spectively. The edge links at the leaf nodes had bandwidth set
to 1 or 2 Mb/s, and latency set to 1 or 2 ms. Similar cross
traffic as before was generated to establish a light load condi-
tion. Here, we used sandwich probes to collect similarity esti-
mates via delay differences. For each probe tree, 200 similarity
estimates were collected, and we set to obtain 20
normalized samples for the HTE algorithm.

For a total of independent simulations we defined the
median topology as the topology estimate obtained from the
median of the similarity samples over all the simulations. Then
the distribution of the topology estimates can be described by
the one-sided probability mass function (pmf) of the tree edit
distance between the estimate and the median topology. We
obtained a median topology identical to the true network from
30 independent simulations. We say that this topology estimate
is median unbiased. The topology estimate distribution is
shown in Fig. 8(b) as the pmf of the edit distance to the median
topology.

Finally we would like to address the effect on the perfor-
mance of our model when the spatio and temporal independence
assumptions in A1) and A2) are violated in the ns-2 simula-
tions. Recall that link packet loss is considered as infinite packet
queueing delay over the link. The spatial and temporal inde-
pendence assumptions of delays were violated since ns-2 was
configured to simulate bursty TCP background flows that cross
multiple links. Our experimental results demonstrate that the
proposed HTE algorithm is relatively insensitive to such viola-
tions. Indeed, the proposed finite mixture models for the normal-
ized similarity samples are able to accurately cluster end-to-end
delay samples even though the similarity estimates are com-
puted under assumptions A1) and A2).
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Fig. 7. Error tree distance versus the number of normalized similarity samples
N N for the three probing schemes.

Fig. 8. (a) True topology used in ns simulation to illustrate the distribution of
the topology estimates. (b) The pmf of the tree edit distance with respect to the
median topology for the estimates.

VI. CONCLUSION AND FUTURE WORK

Estimation of the logical tree topology from end-to-end uni-
cast measurements of the network was investigated. We formu-
lated the problem as hierarchical clustering of the leaf nodes
based on pairwise similarities. A new finite mixture model was
proposed for the similarity estimates, and a penalized likeli-
hood using MML-type penalty was derived for model selection.
Topology estimation was achieved by recursively finding the
best partitions of the leaf nodes to expose internal node struc-
ture. We derived from the finite mixture estimate a complete
graph whose vertices are the leaf nodes. A simple clustering al-
gorithm based on the graph edge weights was then applied to
partition the leaf nodes. We used Matlab and ns simulations to
demonstrate the performance of the proposed algorithm.

Future work could focus on the use of hybrid probing
schemes which consist of multiple types of probes. Our work
could also be extended to include multiple probing sources,
such as in [24]. Extensive real network experiments should
be implemented in the future to compare to real network
topologies.
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