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Abstract

2D image-based 3D shape retrieval has become a
hot research topic since its wide industrial applica-
tions and academic significance. However, exist-
ing view-based 3D shape retrieval methods are re-
stricted by two settings, 1) learn the common-class
features while neglecting the instance visual char-
acteristics, 2) narrow the global domain variations
while ignoring the local semantic variations in each
category. To overcome these problems, we pro-
pose a novel hierarchical instance feature alignment
(HIFA) method for this task. HIFA consists of two
modules, cross-modal instance feature learning and
hierarchical instance feature alignment. Specifi-
cally, we first use CNN to extract both 2D image
and multi-view features. Then, we maximize the
mutual information between the input data and the
high-level feature to preserve as much as visual
characteristics of an individual instance. To mix
up the features in two domains, we enforce feature
alignment considering both global domain and lo-
cal semantic levels. By narrowing the global do-
main variations we impose the identical large norm
restriction on both 2D and 3D feature-norm ex-
pectations to facilitate more transferable possibil-
ity. By narrowing the local variations we propose to
minimize the distance between two centroids of the
same class from different domains to obtain seman-
tic consistency. Extensive experiments on two pop-
ular and novel datasets, MI3DOR and MI3DOR-
2, validate the superiority of HIFA for 2D image-
based 3D shape retrieval task.

1 Introduction

1.1 Motivation

3D shape retrieval aims to match the similar shapes in the
gallery given a query object, which can be the sketch [Li
and et al., 2012], 2D image [Zhou et al., 2019a] or 3D
shape [Zhou et al., 2019b]. Because of its significant appli-
cations in 3D printing, digital entertainment, medical engi-
neering and computer aided design [Lu et al., 2019a; 2019b;
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Cheng et al., 2018; Hong et al., 2016], 3D shape retrieval
has attracted much attention from both industry and academic
fields. Although deep learning has been adopted for 3D shape
retrieval community and achieved significant performances,
few literature focuses on 2D image-based 3D shape retrieval,
which has not been well studied to date. They still yield weak
performances caused by the following critical problems:

Difficulty in narrowing the gap between the 2D and 3D
domains without strong dependence on annotated 3D
shapes. Most existing 3D shape retrieval methods employ
supervised learning and are usually based on learning multi-
view context [Zhou et al., 2019b], learning discriminative
features from point cloud [Qi et al., 2017a] or discovering
the structure information from voxel [Maturana and Scherer,
2015]. These methods rely on substantial annotated 3D
shapes while manually labeling may be unreliable and is
time-consuming, which limits the practicability and usability
of the supervised learning methods for the real applications.
[Liu et al., 2018] focuses on the unsupervised feature learn-
ing to solve this problem by transferring the knowledge from
the label-rich 3D domain to the unlabled 3D domain. How-
ever, this method is based on the assumption that there must
exist a common subspace between the two domains. This as-
sumption can not hold for 2D image-based 3D shape retrieval
task, because the gap between 2D and 3D is significant due
to the background complexity, light intensity, viewpoint vari-
ance and modality discrepancy. Therefore, it’s mandatory to
develop sophisticated algorithms to narrow the gap between
the 2D and 3D domains without annotated 3D data for re-
trieval.

Difficulty in enforcing the alignment of global domain
statistics and local semantic information for cross-modal
data. 2D image-based 3D shape retrieval is challenging
mainly due to the great global domain and local semantic
variations. By global domain variation we mean that 3D
shape and 2D image are essentially heterogeneous since the
data formats are completely different as the basic unit of the
2D image and 3D shape are pixel and voxel, respectively. By
local semantic variation we mean the class-level difference
across two domains including background, resolution, size,
lightness, occlusion, viewpoint, etc. can be significant even
when we describe the shape by multi-view images. How-
ever, the current domain adaptation methods only focus on
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Figure 1: Some 2D image and 3D shape samples on MI3DOR.

the global domain statistics alignment by confusing the do-
main discriminator or minimizing the domain-level distances,
such as CORAL [Long et al., 2013], MMD [Borgwardt et al.,
2006], RevGard [Ganin and Lempitsky, 2015] and so on. As
shown in Figure. 1, the gap between two domains may be dif-
ficult to align in the local semantic level even with the well
domain confusion. Thus, it is urgently desired to design a
2D image-based 3D shape retrieval method with both global
domain statistics and local semantic information alignment.

Difficulty in learning the discriminative instance feature
for both 2D image and 3D shape. Although deep learn-
ing has achieved great progress on feature learning for both
2D image and 3D shape, it only focuses on the correlations
between the encoder output and the label while neglecting
the connections between the output feature and the input.
Specifically, for different instances of the same class, the
existing methods tend to extract the common-class features
while ignoring the unique visual characteristics of individual
instances, which may have negative influence on the perfor-
mance. For examples, in Figure.1, there are two classes, bed
and stairs, which have five different instances in each domain,
respectively. The common features of both classes are not
discriminative enough to keep the visual details clearly, which
may weaken the ability of feature representation. Therefore,
it’s necessary to learn the discriminative instance feature for
preserving as much visual characteristics of the cross-data as
possible.

To overcome these problems, we propose a novel hierarchi-
cal instance feature alignment (HIFA) network for 2D image-
based 3D shape retrieval. As shown in Figure. 2, we first em-
ploy the identical CNN to extract the visual features for both
2D image and 3D shape (a set of multi-view images) with
the max-pooling operation [Su et al., 2015]. To preserve the
instance visual characteristics, we maximize the mutual infor-
mation between the 2D image / 3D shape and the high-level
features. To narrow the gap between the two domains, we
propose the hierarchical instance feature alignment module to
enforce both global and local alignment. Since domain shift is

decided by misaligned feature-norm expectations [Xu et al.,
2019], we impose the identical large norm restriction on both
the 2D and 3D feature-norm expectations to facilitate more
transferable possibility. However, well domain alignment is
not enough for retrieval since the semantic information for
each class may be neglected. We further propose to eliminate
the class-level variations by minimizing the distance between
the two centroids of the same class from different domains.

1.2 Contributions

In summary, the main contributions of this paper as follows:

• We propose an unsupervised 2D-image based 3D shape
retrieval method, which can jointly eliminate the global
domain and local semantic variations by the hierarchical
instance feature alignment module.

• Different from the existing 3D shape retrieval methods
concentrating on learning the common-class features,
we first propose to learn the discriminative instance fea-
ture, which can preserve as much as visual characteris-
tics for retrieval task.

• Experimental analysis on two widely used datasets,
MI3DOR and MI3DOR-2, demonstrates that our
method can outperform the state-of-the-art 2D image-
based 3D shape retrieval approaches.

2 Related Work

2.1 3D Shape Retrieval

The typical 3D shape retrieval methods mainly includes view-
based methods and model-based methods. View-based meth-
ods usually describe 3D shape by the multi-view image
set and encode individual views by the 2D CNN. [Su et
al., 2015] proposed Multi-view Convolutional Neural Net-
works (MVCNN), which fused the multi-view features by a
max-pooling layer across different views. Unlike the view-
to-shape setting in MVCNN, [Feng et al., 2018] proposed
a view-group-shape architecture, group-view convolutional
neural networks (GVCNN), which divided views into several
clusters based on visual similarity and then fused their fea-
tures in both group-level and shape-level. Model-based meth-
ods usually directly extract the features from origin 3D data,
such as point cloud and voxel. [Qi et al., 2017a] proposed
PointNet, which first applied CNN to deal with unordered
point sets. However, PointNet can not capture the local struc-
tures of the point sets, which resulted in the less discrimina-
tive of the feature representation. To resolve this problem, [Qi
et al., 2017b] further proposed PointNet++, which utilized the
neighbor points at multi-scale to capture the local structure in-
formation. [Maturana and Scherer, 2015] proposed VoxNet.
This method utilized supervised convolutional network to en-
code the binary voxel grids for 3D shape representation.

2.2 Domain Adaptation

Domain adaptation aims to narrow the gap between two data
distributions, usually with unlabeled target data and labeled
source data. A common strategy for domain adaptation is
to learn domain-invariant features. For example, [Long et
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Figure 2: Illustration of HIFA which mainly contains the cross-modal feature learning and hierarchical instance feature alignment procedures.

al., 2013] proposed joint distribution adaptation (JAN) net-
work, which aimed to minimize the joint MMD on the spe-
cific domain adaptation layer across two domains to learn
the domain-invariant features. [Ganin and Lempitsky, 2015]

proposed domain adversarial neural network (DANN). This
method imposed an additional domain discriminator to the
traditional CNN network to enforce the domain alignment.
Based on DANN, which only narrowed the domain shift in
the global distribution statistics level, [Xie et al., 2018] pro-
posed to align the feature centroids of the same class from
different domains to preserve the semantic consistency in lo-
cal class level. [Wang et al., 2018] focused on learning a
domain-invariant classifier instead of feature in grassmann
manifold with structural risk minimization to perform distri-
bution alignment. [Xu et al., 2019] enabled the CNN net-
work to learn the transferable features across two domains
by imposing the large identical norm restriction on feature-
norm expectations. Unlike these feature adaptation methods,
[Zhang et al., 2017] proposed joint geometrical and statistical
alignment (JGSA), which projected the source and target data
into low-dimensional subspaces with two coupled map func-
tions. In the subspace, both the geometrical and statistical
shift across two domains were reduced.

3 Method

3.1 Problem Definition

In unsupervised 2D image-based 3D shape retrieval, we have
access to the labeled source domain (2D) S = {(xs

i , y
s
i )}

ns

i=1
where ysi ∈ Y = {1, . . . , C} and unlabeld target domain

(3D) T =
{

x
t
j

}nt

j=1
. S and T are assumed to be different but

share the same label distribution. The key problem of this task
is to learn a feature function G that projects 2D images and
3D shapes into a common embedding space. In our paper, G
denotes all the layers up to fc7 including mutual information
estimation operation and F represents the source classifier.

3.2 Cross-Modal Instance Feature Learning

This step mainly consists of two modules, the basic CNN net-
work for visual feature extraction on both 2D and 3D domains
and a mutual information maximization module for discrimi-
native feature learning.

Visual Feature Extraction

Given a 3D shape, we can set the preset virtual cameras

around it to obtain the multi-view image set V = {vi}
N

i=1 (N
represents the view number) by the Phong reflection model
[Phong, 1975]. Similar to the most related works, we set the
view number as 12 and the camera array setting follows [Su et
al., 2015]. To extract the 2D image and multi-view features,
a shared 2D CNN is employed. The backbone CNN in our
work is AlexNet [Krizhevsky et al., 2012] pre-trained on Im-
ageNet. The original AlexNet has 8 layers, which contains
5 convolutional layers (conv1-5) and three full-connected
layers (fc6-fc8). Then we can obtain low-level image fea-
ture map Is ∈ RW×H×C and multi-view embedding tensor

It =
[

i1t , i
2
t , . . . , i

N
t

]T
∈ RN×W×H×C from the output of

conv5, the high-level image embedding Ks ∈ RD and multi-

view image embedding matrix Kt =
[

k1t , k
2
t , . . . , k

N
t

]T
∈

RN×D from the output of fc7. Note that W,H,C,D are
6, 6, 256, 256 in our experiment. Finally, we impose the max-
pooling operation on Kt across different views to obtain the

final 3D shape descriptor K
′

t ∈ RD for retrieval.

Mutual Information Maximization

The traditional deep learning works pay more attention to the
input features and the associated labels, in which the features
focus on preserving the commonality of categories. However,
the common-class features are not suitable for 3D shape re-
trieval task. In other words, the intra-class distance should be
smaller while the inter-class distance should be big enough in
two domains. To meet these requirements, we maximize the
mutual information (MI) between the low-level convolution
features (Is, It) and the high-level embeddings (Ks,Kt).
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Based on [Belghazi et al., 2018], the MI estimation can
be computed as the Kullback-Leibler divergence between the
joint PMN , and the product of the marginals PM ⊗ PN , i.e.
I (M ;N) = DKL (PMN‖PM ⊗ PN ) ,M ∈ {Is, It}, N ∈
{Ks,Kt}. However, the unbounded upper limit of DKL may
result in the infinite result. To address this problem, [Belghazi
et al., 2018; Hjelm et al., 2019] propose to represent the KL-
divergence with Donsker-Varadhan representation [Donsker
and Varadhan, 1975] to obtain the lower-bound. Specifically,
the MI estimator can be rewritten as:

DKL(P‖Q) ≥ sup
T∈F

EP[T ]− log
(

EQ

[

eT
])

(1)

where T can be implemented as a discriminator function with
parameter θk in deep neural network. Therefore, Iθ (M ;N)
can be computed by:

Iθk (M ;N) :=EPMN
[Tθk (M,N)]−

log
(

EPM⊗PN

[

eTθk
(M,N)

]) (2)

During the training procedure, the MI estimator implemented
by a discriminator can approximate the mutual information
with arbitrary accuracy gradually by the gradient back propa-
gation. In our architecture, the input of MI estimator is the
combination of the low-level features Is/It and high-level
features Ks/Kt. ”Fake samples” are constructed by com-
bining the same low-level features with high-level features
obtained from another image/shape. Note that the 2D and 3D
domains share an identical MI estimator. Then the discrimi-
nator is trained to distinguish the ”real or fake” samples, and
we can calculate the binary cross-entropy loss LMI , which
can be regarded as the estimation of MI.

3.3 Hierarchical Instance Feature Alignment

This step mainly consists of two modules, global domain
statistics alignment and local semantic information alignment
for reducing the domain shift.

Global Domain Statistics Alignment

Although we can obtain more discriminative feature for in-
dividual instance (2D image or 3D shape) with the help of
MI estimation, the gap between two domains has not been
reduced. As shown in Figure. 2, due to the large global do-
main and local semantic variations, the overlap of the feature
distributions is small. Inspired by the Misaligned-Feature-
Norm Hypothesis [Xu et al., 2019] that the domain shift is de-
cided by the misaligned feature-norm expectations and con-
sequently the equal value of feature-norm expectations in two
domains can reduce the domain shift, we propose to enforce
the global domain statistics alignment between the 2D and 3D
domains by the Maximum Mean Feature Norm Discrepancy
(MMFND),

MMFND [G,F,Ds,Dt] := sup
G,F

(

1

ns

∑

xi∈Ds

‖FL−1 (G (xi))‖2

−
1

nt

∑

xi∈Dt

‖FL−1 (G (xi))‖2

)
(3)

where H denotes the combination of all the potential fea-
ture extraction functions composited by the L2-norm, i.e.,

h(x) = (‖ · ‖2 ◦G) (x). Intuitively, the function class H
without any restriction may result in the great deviation of
the upper bound from zero. To avoid it, we impose the identi-
cal large norm restriction R on the feature-norm expectations
on both 2D and 3D domains. Consequently, the domain gap
measured by MMFND will gradually vanish to zero and we
can obtain domain-invariant features for retrieval. Thus, the
global domain confusion loss LG can be written as:

LG = Ld





1

ns

∑

xs

i
∈S

h (xs
i ) , R



+ Ld





1

nt

∑

xt

i
∈T

h
(

xt
i

)

, R





(4)

where Ld(.) represents L2-norm penalty. We empirically set
R as 25 by following [Xu et al., 2019] since the lower value
is prone to achieve lower accuracy on target domain while a
sufficiently large R may lead to the gradient explosion.

Local Semantic Information Alignment

As shown in Figure. 2, the global domain statistics alignment
does not imply a local semantic class-to-class alignment. For
example, the visual feature of 3D vase may be mapped nearby
the embedding of 2D cup while satisfying the global domain
statistics alignment since the unlabeled 3D domain adds the
semantic ambiguity. Conversely, the 2D domain can preserve
the semantic consistency by the classification loss,

LC =
1

ns

ns
∑

i=1

Lc (F ◦G (xs
i ) ,y

s
i ) (5)

where Lc represents the classification cross-entropy loss.
Thus, it is necessary to pursue the local semantic information
alignment under the absence of true 3D labels. We solve this
problem by minimizing the distance between two centroids
of the same class from different domains. Unfortunately, we
have no access to label information from 3D domain. To cir-
cumvent the impossibility of local semantic alignment, we
assign pseudo labels to 3D samples with the classifier F . Fi-
nally, the local semantic information alignment can be nar-
rowed by minimizing,

LL =

K
∑

k=1

∥

∥Ck
S − Ck

T

∥

∥

2
(6)

where LL is the local semantic loss, K denotes the class num-
ber and Ck

S , C
k
T are the tth class feature centroid on 2D and

3D domains respectively. We can obtain 2K centroids in to-
tal. Obviously, there must be some false pseudo-labeled sam-
ples and they may have a negative effect on adaptation. Fortu-
nately, when computing the centroids, all pseudo-labels (false
or true) samples are used together and the negative effect
brought by fake samples can be neutralized by true pseudo-
labeld samples to some extent.

The total objective loss can be written as:

LTotal = LC + λLMI + βLG + γLL (7)

where λ, β and γ are hyper-parameters to trade off different
loss functions. We set λ, β as 0.05, 1 and γ = 2

1+exp(−10·p) −

1, respectively, where p denotes the training progress varying
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from 0 to 1. This setting can further reduce the negative ef-
fect caused by pseudo-labeled 3D shapes since the pseudo
label confidence is low in the early training process. As the
discrepancy between the two domains decreases, the pseudo
label confidence will increase and consequently the local se-
mantic loss will play a more important role in enforcing the
fine-grained class-to-class alignment.

4 Experimental Settings

4.1 Datasets and Evaluation Criteria

MI3DOR. The MI3DOR dataset [Zhou et al., 2019a] con-
tains 21 categories with 21,000 images and 7,690 3D shapes.
There are 10,500 images and 3,842 3D shapes for training,
while 10,500 images and 3,848 3D shapes for testing.

MI3DOR-2. The MI3DOR-2 dataset [Zhou et al., 2019a] is
composed of 40 categories with 19,694 images and 3,982 3D
shapes. MI3DOR-2 dataset is divided into two parts, 19,294
images/3,182 3D shapes are used as the training set and 400
images/800 3D shapes are used for testing.

Evaluation Criteria. For fair comparisons, we employ the
common retrieval evaluation criteria as [Zhou et al., 2019a].
It includes the Nearest Neighbor (NN), First Tier (FT), Sec-
ond Tier (ST), F measure (F), Discounted Cumulative Gain
(DCG) and Average Normalized Retrieval Rank (ANMRR).
The value of these criteria ranges from 0 to 1 and the higher
value means well performance other than ANMRR.

4.2 Compared Methods

We mainly compare HIFA with several representative meth-
ods: 1) basic deep learning method, AlexNet [Krizhevsky
et al., 2012], 2) traditional transfer learning method, MEDA
[Wang et al., 2018] and JGSA [Zhang et al., 2017]. 3) deep
transfer learning method, JAN [Long et al., 2017], RevGard
[Ganin and Lempitsky, 2015] and DLEA [Zhou et al., 2019a].
Since the most mentioned methods (other than DELA) are
proposed for 2D visual domain adaptation, the max-pool
pooling operation are adopted to fuse multi-view features.

5 Experimental Results

5.1 Comparison with the State-of-the-art Methods

Table. 1 and Table. 2 present the experiment results of
HIFA and the comparisons among representative methods
on MI3DOR and MI3DOR-2, respectively. It’s obvious that
HIFA can achieve the best retrieval performance. Specifi-
cally, on MI3DOR, HIFA is superior to the comparisons with
the gain of 1.83%-83.49%, 10.75%-91.33%, 7.26%-63.75%,
5.59%-52.53%, 9.55%-89.56% with respect to NN, FT, ST,
F, DCG, and with the decline of 14.01%-45.73% according
to ANMRR. On MI3DOR-2, HIFA is superior to the compar-
isons with the gain of 3.45%-39.96%, 2.70%-60.56%, 4.26%-
45.49%, 2.00%-60.56%, 0.84%-56.14% with respect to NN,
FT, ST, F, DCG, and with the decline of 2.59%-34.34% ac-
cording to ANMRR. Moreover, we can notice the following
observations:

NN FT ST F DCG ANMRR

AlexNet 0.424 0.323 0.469 0.099 0.345 0.667

MEDA 0.430 0.344 0.501 0.046 0.361 0.646
JGSA 0.612 0.443 0.599 0.116 0.473 0.541

JAN 0.446 0.343 0.495 0.085 0.364 0.647
RevGard 0.650 0.505 0.643 0.112 0.542 0.474
DLEA 0.764 0.558 0.716 0.143 0.597 0.421

HIFA 0.778 0.618 0.768 0.151 0.654 0.362

Table 1: Retrieval Comparisons on MI3DOR

NN FT ST F DCG ANMRR

AlexNet 0.518 0.355 0.488 0.355 0.383 0.629

MEDA 0.570 0.392 0.523 0.392 0.425 0.590
JGSA 0.585 0.405 0.533 0.405 0.433 0.577

JAN 0.608 0.501 0.646 0.501 0.527 0.484
RevGard 0.623 0.467 0.614 0.467 0.503 0.514
DLEA 0.700 0.555 0.681 0.555 0.593 0.424

HIFA 0.725 0.570 0.710 0.570 0.598 0.413

Table 2: Retrieval Comparisons on MI3DOR-2

HIFA vs. DLEA. DLEA is the most recent method achiev-
ing the best performance for this task since it can jointly real-
ize the feature learning and distribution alignment by the do-
main discriminator and centroid alignment operation. Com-
pared with DLEA, HIFA achieves the gain of 1.83%/3.45%,
10.75%/2.70%, 7.26%/4.26%, 5.59%/2.00% with respect to
NN, FT, ST, F, DCG, and the decline of 14.01%/2.59% with
respect to ANMRR on MI3DOR and MI3DOR-2, respec-
tively. This result can demonstrate that the mutual informa-
tion maximization module can preserve as much visual char-
acteristic as possible of individual instance (2D image and
3D shape) for retrieval. Comparatively, DLEA ignores the
instance visual information and only focuses on the common-
class features, which will weaken the retrieval performance.

HIFA vs. others. Compared with other methods, HIFA has
two main advantages. First, HIFA can jointly eliminate the
global domain and local semantic variations by the hierarchi-
cal instance feature alignment module. Comparatively, previ-
ous methods either enforce the domain alignment or project
the features into the identical subspace while neglecting the
semantic consistency in two domains. Second, HIFA can
learn the discriminative instance features for retrieval. Com-
paratively, the other methods only concentrate on narrowing
the gap between the 2D and 3D domains while neglecting the
significance of feature representation for retrieval.

5.2 Discussion

In this section, we explore the retrieval influence caused by
the global domain statistics alignment (-G), local semantic in-
formation alignment (-L) and mutual information (MI) max-
imization modules. Besides, we also visualize the features to
further analyze the proposed method.

Effect of Global Domain Statistics Alignment. As
shown in Table. 3, HIFA-G can achieve the gain of
62.03%/26.45%, 71.16%/46.76%, 58.21%/36.07%,
33.33%/46.76, 72.17%/41.25% with respect to NN, FT,
ST, F, DCG, and the decline of 37.18%/26.07% on ANMRR
comparing against AlexNet on MI3DOR and MI3DOR-2,
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Method
MI3DOR MI3DOR-2

NN FT ST F DCG ANMRR NN FT ST F DCG ANMRR

AlexNet 0.424 0.323 0.469 0.099 0.345 0.667 0.518 0.355 0.488 0.355 0.383 0.629
HIFA-G 0.687 0.569 0.742 0.132 0.594 0.419 0.655 0.521 0.664 0.521 0.541 0.465

HIFA-GL 0.753 0.600 0.752 0.148 0.637 0.379 0.673 0.547 0.686 0.547 0.573 0.437
HIFA-GL (W/ MI) 0.778 0.618 0.768 0.151 0.654 0.362 0.725 0.570 0.710 0.570 0.598 0.413

Table 3: Performances with respect to different architectures on MI3DOR and MI3DOR-2.

(a) AlexNet (b) HIFA-G (c) HIFA-GL (d) HIFA-GL(W/MI)

Figure 3: Feature visualization on MI3DOR.

respectively. The basic deep learning method AlexNet
without feature alignment can not narrow the domain dis-
crepancy caused by the global domain and local semantic
variations, and consequently the gap between the 2D and 3D
domain is large. Comparatively, HIFA-G imposes the large
norm constraint on feature-norm expectations to bridge the
significant 2D-to-3D domain gap.

Effect of Local Semantic Information Alignment. As
shown in Table. 3, HIFA-GL can achieve the gain of
9.61%/2.75%, 5.45%/4.99%, 1.35%/3.31%, 12.12%/4.99%,
7.24%/3.20% with respect to NN, FT, ST, F, DCG, and the de-
cline of 9.55%/6.02% on ANMRR comparing against HIFA-
G on MI3DOR and MI3DOR-2, respectively. Global do-
main statistics alignment can contribute to generate domain-
invariant features for this task. However, domain-invariance
doesn’t mean semantic consistency and the class-level differ-
ence still exists. Comparatively, HIFA-GL can narrow the
local semantic variations by minimizing the distance of class
centroids from two domains.

Effect of Mutual Information Maximization. As shown
in Table. 3, HIFA-GL (W/ MI) can achieve the gain of
3.32%/7.73%, 3.00%/4.20%, 2.13%/3.50%, 2.03%/4.20%,
2.07%/4.36%, 9.55%/0.84% with respect to NN, FT, ST, F,
DCG, and the decline of 1.70%/5.49% on ANMRR compar-
ing against HIFA-GL on MI3DOR and MI3DOR-2, respec-
tively. It’s not enough to achieve the well performance only
by enforcing the global and local alignment, since the signif-
icant visual discriminative information of individual instance
has been neglected. Therefore, HIFA with MI can further im-
prove retrieval performance.

Feature Visualization. As shown in Figure. 3, we visual-
ized the features obtained from different settings on MI3DOR
dataset by t-SNE [Maaten and Hinton, 2008]. Note that the
red and blue points represent the features from the 2D image
and 3D shape domains, respectively. A transferable and dis-
criminative feature mapping should mix up the red and blue

points, and meanwhile the points can be easier to recognize
its cluster. Other than AlexNet, which does nothing to enforce
the alignment across two domains, other approaches can learn
the domain-invariant features for this task since the global do-
main statistics alignment module has been adopted. Besides,
the features learned by HIFA-GL and HIFA-GL (W/MI) are
more suitable for retrieval task since the identical class across
two domains aligns better and the gap between the red and
blue points is smaller. Representations learned by HIFA-GL
(W/ML) behave better than HIFA-GL and features in differ-
ent classes from two domains are dispersed relatively instead
of mixing up. This finding tells us that the mutual informa-
tion maximization can further minimize the intra-class dis-
crepancy and maximize the inter-class margin.

6 Conclusion

We propose a novel unsupervised hierarchical instance fea-
ture alignment network for 2D image-based 3D shape re-
trieval. It can jointly realize the cross-modal instance feature
learning and hierarchical instance feature alignment. Dif-
ferent from previous methods, which only concentrate on
the common-class features learning and global domain align-
ment, our work first introduce MI maximization to obtain dis-
criminative instance feature and enforce the embedding align-
ment in both global and local levels. Experimental analysis
can demonstrate the superiority of the proposed method.
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