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Motivation for hierarchical model

We are used to thinking that in predicting/estimating insurance
claims distributions:

Cost of Claims = Frequency × Severity

Improvements can be made:

prediction on frequency: introducing heterogeneity

prediction on severity: using additional information such as types of
claims

It is in the second component that we are interested to further
explore.
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Motivation driven by data

We have a portfolio of automobile insurance policies from Singapore.

detailed information on policies of registered cars, claims and payments
settled.

period: 1 January 1993 until 31 December 2001 (nine years in total)

Data provided by the General Insurance Association (GIA) of
Singapore:

GIA has (29) member companies to promote their common interest
and that of the industry (e.g. educating media, public awareness,
interest to government)

check website: http://www.gia.org.sg.

may have similar function to the Insurance Services Office (ISO),
although seems to be more of a depository of data.
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Risk factor rating system

Insurers adopt “risk factor rating system” in establishing premiums for
motor insurance

Some risk factors considered:

vehicle characteristics: make/brand/model, engine capacity, year of
make (or age of vehicle), price/value

driver characteristics: age, sex, occupation, driving experience, claim
history

other characteristics: what to be used for (private, corporate,
commercial, hire), type of coverage

The “no claims discount” (NCD) system:

rewards for safe driving

discount upon renewal of policy ranging from 0 to 50%, depending on
the number of years of zero claims.
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Data characteristics

Individual records of 1,090,942 registered cars with policy and claims
information over nine (9) years [1993 to 2001], from 46 companies.

Policy file has 26 variables with 5,667,777 records; claims file has 12
variables with 786,678 records; payment file has 8 variables with
4,427,605 records.

Gross premiums: 1999 = 3.7 bn; 2000 = 4.3 bn; 2001 = 4.7bn.

In each year, about 5 to 10% are recorded fleets.

To provide focus for our investigation, we selected non-fleet policies
from just a single insurer.

The non-fleet policies provided for a more interesting model fits.

For this insurer, about 90% are non-fleet policies.
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Data extraction

The data available are disaggregated by risk class i (vehicle) and over
time t (year). For each observational unit {it}, the responses are:

number of claims within a year: Nit

type of claim, available for each claim: Mit,j for j = 1, ..., Nit

the loss amount, for each claim: Cit,jk for j = 1, ..., Nit and for type
k = 1, 2, 3
exposure: eit

vehicle characteristics: described by the vector xit

excess or deductible: dit

The data available therefore consist of

{dit, eit, Nit,Mit,Cit,xit, t = 1, . . . , Ti, i = 1, . . . ,n}

That is, there are n subjects and each subject is observed Ti times.
For our data, we have n = 96, 014 and Ti has a maximum of 9 years.
Total observation is 199,352 so that on average, we observe each
vehicle for only 2.08 per vehicle.
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Possible covariates

The calendar year - 1993-2001; treated as continuous variable.

The level of gross premium for the policy in the calendar year -
continuous.

The type of vehicle:

bus (B), car (C), or motor cycle (M)

Cover type: comprehensive (C), third party fire and theft (F), and
third party (T).

The NCD applicable for the calendar year - 0%, 10%, 20%, 30%,
40%, and 50%.

Some driver characteristics such as age and gender.
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Claim types

There were three (3) possible types of claims:

1 claims for injury to a party other than the insured - I

2 claims for property damage to a party other than the insured - P; and

3 claims for damages to the insured, including injury, property damage,
fire and theft. - O

For each accident, it is not uncommon to have more than one type of
claim incurred.

For the first two types, claim amounts are available, but for “own
damages” claims, only the loss amount is available (some censoring).

Thus, it is possible to have a zero loss associated with an “own
damage” claim. We assume that these deductibles apply on a per
accident basis.
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Decomposition of the joint distribution

We can write the joint distribution of the observables as

f (N,M,C) = f (N)× f (M|N)× f (C|N,M) .

This leads us to a decomposition of the joint distribution into the
following components:

1 the frequency component f(N) - accounts for the number of claims
made in the calendar year;

2 the conditional claim type component f(M|N) - accounts for the type
of claim given the number of claims; and

3 the conditional severity component f(C|N,M) - accounts for the
amount of loss incurred, conditional on claim count and claim types.

Such natural decomposition allowed us to investigate each component
separately.
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The frequency component

The frequency component, f (N), has been well analyzed in the
actuarial literature and we use these developments:

Dionne and Vanasse (1989)

Pinquet (1997, 1998)

Pinquet, Guillén and Bolancé (2001) and Bolancé, Guillén and Pinquet
(2003)

Purcaru and Denuit (2003)

Standard random effects count models:

Poisson and Negative Binomial models

Diggle et al. (2002); or

Frees (2004)
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Observed frequency of claims

Table 2.1. Frequency of Claims
Count 0 1 2 3 4 5 Total

Number 178,080 19,224 1,859 177 11 1 199,352
Percentage 89.3 9.6 0.9 0.1 0.0 0.0 100.0
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Random effects count model

Let λit = eit exp (αλi + x′
itβλ) be the conditional mean parameter for

the {it} observational unit, where αλi is a time-constant latent
random variable for heterogeneity.

With λi = (λi1, ..., λiTi)
′, the frequency component likelihood for the

i -th subject is Li =
∫

Pr (Ni1 = ni1, ..., NiTi = niTi |λi) f (αλi) dαλi.

Typically one uses a normal distribution for f (αλi) .

The conditional joint distribution for all observations from the i-th
subject is

Pr (Ni1 = ni1, ..., NiTi = niTi |λi) =
Ti∏

t=1

Pr (Nit = nit|λit) .
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Random effects Poisson and N.B. count model

Poisson distribution model:

Pr (N = n|λ) = λne−λ/n! using λ = λit for the mean parameter.

Negative binomial distribution model with parameters p and r:

Pr(N = n|r, p) =
(

n + r − 1
r − 1

)
pr(1− p)n.

Here, σ = r−1 is the dispersion parameter and

p = pit is related to the mean through

(1− pit)/pit = λitσ = exp(αλi + x′itβλ)σ.
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The effect of calendar year

Table 3.2. Number and Percentages of Claims, by Count and Year
Percentage by Year Total Total

Count 1993 1994 1995 1996 1997 1998 1999 2000 2001 Number Percent

0 91.5 89.5 89.8 92.6 92.8 90.8 88.0 89.2 87.8 178,080 89.3
1 7.9 9.6 9.2 7.0 6.7 8.4 10.6 9.8 11.0 19,224 9.6
2 0.5 0.9 0.9 0.4 0.5 0.7 1.3 0.9 1.1 1,859 0.9
3 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 177 0.1
4 0.0 0.0 0.0 0.0 11 0.0
5 0.0 0.0 0.0

Number 4,976 5,969 5,320 8,562 19,344 19,749 28,473 44,821 62,138 199,352 100.0
by Year
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The effect of vehicle type and vehicle age

Table 3.3. Number and Percentages of Claims, by Vehicle Type and Age
Percentage by Count

Count Count Count Count Count Count Total Total
=0 =1 =2 =3 =4 =5 Number Percent

Vehicle Type

Other 88.6 10.1 1.1 0.1 0.0 0.0 43,891 22.0
Automobile 89.5 9.5 0.9 0.1 0.0 155,461 78.0

Vehicle Age (in years)

0 91.4 7.9 0.6 0.0 0.0 58,301 29.2
1 86.3 12.2 1.3 0.2 0.0 44,373 22.3
2 88.8 10.1 1.1 0.1 20,498 10.3

3 to 5 89.2 9.7 1.0 0.1 0.0 41,117 20.6
6 to 10 90.1 8.9 0.9 0.1 0.0 33,121 16.6
11 to 15 91.4 7.6 0.7 0.2 1,743 0.9

16 and older 89.9 8.5 1.5 199 0.1

Number 178,080 19,224 1,859 177 11 1 199,352 100.0
by Count
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The effect of gender, age and NCD discounts

Table 3.4. Number and Percentages of Claims, by Gender, Age and NCD
Percentage by Count

Count Count Count Count Count Count Total Total
=0 =1 =2 =3 =4 =5 Number Percent

Gender

Female 89.7 9.3 0.9 0.1 0.0 34,190 22.0
Male 89.5 9.5 0.9 0.1 0.0 0.0 121,271 78.0

Person Age (in years)

21 and younger 86.9 12.4 0.7 153 0.1
22-25 85.5 12.9 1.4 0.2 3,202 2.1
26-35 88.0 10.8 1.1 0.1 0.0 0.0 44,134 28.4
36-45 90.1 9.1 0.8 0.1 0.0 63,135 40.6
46-55 90.4 8.8 0.8 0.1 0.0 34,373 22.1
56-65 90.7 8.4 0.9 0.1 9,207 5.9

66 and over 92.8 7.0 0.2 0.1 1,257 0.8

No Claims Discount (NCD)

0 87.7 11.1 1.1 0.1 0.0 37,139 23.9
10 87.8 10.8 1.2 0.1 0.0 13,185 8.5
20 89.1 9.8 1.0 0.1 14,204 9.1
30 89.1 10.0 0.9 0.1 12,558 8.1
40 89.8 9.3 0.9 0.1 0.0 10,540 6.8
50 91.0 8.3 0.7 0.1 0.0 67,835 43.6

Number 139,183 14,774 1,377 123 3 1 155,461 100.0
by Count
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Comparison of the fitted frequency models

Table 3.5. Comparison of Fitted Frequency Models
Based on the 1993-2000 Insample Data

Count Observed No Poisson Negative RE RE Neg
Covariates Binomial Poisson Binomial

0 123,528 123,152.6 123,190.9 123,543.0 124,728.4 125,523.4
1 12,407 13,090.4 13,020.1 12,388.1 11,665.7 7,843.1
2 1,165 920.6 946.7 1,164.1 775.5 2,189.5
3 109 48.3 53.6 107.8 42.3 854.1
4 4 2.0 2.5 10.0 2.1 374.4
5 1 1.6 2.0 0.9 1.6 178.8

ChiSquare 125.2 101.8 9.0 228.4 73,626.7
Goodness of Fit
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The conditional claim type component

We recorded combinations of claim types (denoting by M the r.v.
describing the combination observed) as

Table 2.2. Distribution of Claims, by Claim Type Observed
Value of M 1 2 3 4 5 6 7 Total
Claim Type (C 1) (C 2) ( C 3) (C 1,C 2) (C 1,C 3) (C 2,C 3) (C 1,C 2,C 3)

Number 102 17,216 2,899 68 18 3,176 43 23,522
Percentage 0.4 73.2 12.3 0.3 0.1 13.5 0.2 100.0

Certain characteristics help to describe the types of claims that arise
and to explain this feature, we use the multinomial logit of the form

Pr (M = r) =
exp (Vr)∑7

s=1 exp (Vs)
,

where Vitj,r = x′
itβM,r.

Known as a “selection” or “participation” equation in econometrics
(see for example Jones, 2000).
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The effect of vehicle characteristics and calendar year

Table 3.6. Distribution of Claim Type,
by Vehicle Characteristics and Year

Non-Auto Auto Old New Before After
M Claim Type (Other) Vehicle Vehicle 1997 1996 Overall

1 C1 0.7 0.4 0.6 0.3 1.3 0.3 0.4
2 C2 63.4 76.3 69.4 75.4 62.5 74.4 73.2
3 C3 23.7 8.8 15.1 10.7 21.2 11.3 12.3
4 C1, C2 0.2 0.3 0.4 0.2 0.5 0.3 0.3
5 C1, C3 0.1 0.1 0.1 0.0 0.3 0.0 0.1
6 C2, C3 11.8 14.0 14.2 13.1 14.0 13.4 13.5
7 C1, C2, C3 0.1 0.2 0.2 0.2 0.1 0.2 0.2

Counts 5,608 17,914 8,750 14,772 2,421 21,101 23,522
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Comparison of fit of alternative claim type models

Table 3.7. Comparison of Fit of Alternative Claim Type Models
Model Variables Number of -2 Log

Parameters Likelihood
Intercept Only 6 25,465.3
Automobile (A) 12 24,895.8
A and Gender 24 24,866.3
Year 12 25,315.6
Year1996 12 25,259.9
A and Year1996 18 24,730.6
VehAge2 (Old vs New) 12 25,396.5
VehAge2 and A 18 24,764.5
A, VehAge2 and Year1996 24 24,646.6

Frees & Valdez (Wisconsin/UConn) Hierarchical Insurance Claims Modeling Thu, 6 Aug 2009 21 / 33



The conditional severity component

For each given accident, we are able to observe a triplet of loss
variables (C1, C2, C3) where each loss corresponds to the type of the
claim as discussed previously.

Suppress the {it} subscripts and consider the joint distribution of
claims (C1, C2, C3):

Pr (C1 ≤ c1, C2 ≤ c2, C3 ≤ c3) = H (F1 (c1) ,F2 (c2) ,F3 (c3)) .

Here, the marginal distribution of Cj is given by Fj(·) with inverse
F−1

j (·), and H(·) is the copula.

Copula: Sklar’s Theorem.

Modeling the joint distribution of the simultaneous occurrence of the
claim types, when an accident occurs, provides the unique feature of
our work.

Some references are: Frees and Valdez (1998), Nelsen (1999).
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Choice of copula models

Elliptical copulas:

independence copula: C (u1, ..., un) = u1 · · · un

Normal copula: C (u1, ..., un) = H
(
Φ−1 (u1) , ...,Φ−1 (un)

)
where H is

the joint df of a standard Normal.

Student-t copula: C (u1, ..., un) = Tr

(
t−1
r (u1) , ..., t−1

r (un)
)

where T
is the joint df of a standard Student-t with r degrees of freedom.

When r →∞, we have the special case of the Normal copula.

Frees and Wang (2005) - credibility

Landsman and Valdez (2003) - application in finance, multivariate
elliptical but with elliptical margins
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Summary statistics of observed losses by claim type

Table 2.3. Summary Statistics of Claim Losses, by Type of Claim
Statistic Third Party Own Damage (C 2) Third Party

Injury (C 1) non-censored all Property (C 3)

Number 231 17,974 20,503 6,136
Mean 12,781.89 2,865.39 2,511.95 2,917.79
Standard Deviation 39,649.14 4,536.18 4,350.46 3,262.06
Median 1,700 1,637.40 1,303.20 1,972.08
Minimum 10 2 0 3
Maximum 336,596 367,183 367,183 56,156.51
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Figure 1: Density of losses by claim type
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Fitting the marginals

We are particularly interested in accommodating the long-tail nature
of claims.

We use the generalized beta of the second kind (GB2) for each claim
type with density

fC (c) =
exp (α1z)

c|σ|B(α1, α2) [1 + exp(z)]α1+α2
, c ≥ 0,

where z = (ln c− µ)/σ.

µ is a location parameter, σ is a scale parameter and α1 and α2 are
shape parameters.

With four parameters, the distribution has great flexibility for fitting
heavy tailed data.

Many distributions useful for fitting long-tailed distributions can be
written as special or limiting cases of the GB2 distribution; see, for
example, McDonald and Xu (1995).
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GB2 regression

We allowed scale and shape parameters to vary by type and thus
consider α1k, α2k and σk for k = 1, 2, 3.

Despite its prominence, there are relatively few applications that use
the GB2 in a regression context:

McDonald and Butler (1990) used the GB2 with regression covariates
to examine the duration of welfare spells.

Beirlant et al. (1998) demonstrated the usefulness of the Burr XII
distribution, a special case of the GB2 with α1 = 1, in regression
applications.

Sun et al. (2006) used the GB2 in a longitudinal data context to
forecast nursing home utilization.

We parameterize the location parameter as µk = x′βC,k:

Interpretability of parameters.

Here then βC,k,j = ∂ ln E (C| x) /∂xj , meaning that we may interpret
the regression coefficients as proportional changes.
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Figure 2: QQ plots for fitting the GB2 distributions
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Severity likelihood

The severity likelihood clearly depends on the combination of the
types of claims observed.

We also note the additional complication of observing claims for “own
damages” type for only above the applicable excess.

We need to account for this in the likelihood construction.

Every time we observe an “own damages” claim, this would have to be
conditional on observing only above the excess.
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Severity likelihood, continued

Suppose that all three types of claims are observed (M = 7) and that
each are uncensored. In this case, the joint density would be

fuc,123 (c1, c2, c3) = h3 (Fit,1 (c1) ,Fit,2 (c2) ,Fit,3 (c3))
3∏

k=1

fit,k (ck) .

Specifically, we can define the density for the trivariate t -distribution
to be

t3 (z) =
Γ

(
r+3
2

)
(rπ)3/2 Γ

(
r
2

) √
det (Σ)

(
1 +

1
r
z′Σ−1z

)− r+3
2

,

and the corresponding copula as

h3 (u1, u2, u3) = t3
(
G−1

r (u1) ,G−1
r (u2) ,G−1

r (u3)
) 3∏

k=1

1
gr

(
G−1

r (uk)
) .
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Fitted copula models

Table 3.8. Fitted Copula Models
Type of Copula

Parameter Independence Normal copula t-copula

Third Party Injury

σ1 1.316 (0.124) 1.320 (0.138) 1.320 (0.120)
α11 2.188 (1.482) 2.227 (1.671) 2.239 (1.447)
α12 500.069 (455.832) 500.068 (408.440) 500.054 (396.655)
βC,1,1 (intercept) 18.430 (2.139) 18.509 (4.684) 18.543 (4.713)

Own Damage

σ2 1.305 (0.031) 1.301 (0.022) 1.302 (0.029)
α21 5.658 (1.123) 5.507 (0.783) 5.532 (0.992)
α22 163.605 (42.021) 163.699 (22.404) 170.382 (59.648)
βC,2,1 (intercept) 10.037 (1.009) 9.976 (0.576) 10.106 (1.315)
βC,2,2 (VehAge2) 0.090 (0.025) 0.091 (0.025) 0.091 (0.025)
βC,2,3 (Year1996) 0.269 (0.035) 0.274 (0.035) 0.274 (0.035)
βC,2,4 (Age2) 0.107 (0.032) 0.125 (0.032) 0.125 (0.032)
βC,2,5 (Age3) 0.225 (0.064) 0.247 (0.064) 0.247 (0.064)

Third Party Property

σ3 0.846 (0.032) 0.853 (0.031) 0.853 (0.031)
α31 0.597 (0.111) 0.544 (0.101) 0.544 (0.101)
α32 1.381 (0.372) 1.534 (0.402) 1.534 (0.401)
βC,3,1 (intercept) 1.332 (0.136) 1.333 (0.140) 1.333 (0.139)
βC,3,2 (VehAge2) -0.098 (0.043) -0.091 (0.042) -0.091 (0.042)
βC,3,3 (Year1) 0.045 (0.011) 0.038 (0.011) 0.038 (0.011)

Copula

ρ12 - 0.018 (0.115) 0.018 (0.115)
ρ13 - -0.066 (0.112) -0.066 (0.111)
ρ23 - 0.259 (0.024) 0.259 (0.024)
r - - 193.055 (140.648)

Model Fit Statistics
log-likelihood -31,006.505 -30,955.351 -30,955.281
number of parms 18 21 22
AIC 62,049.010 61,952.702 61,954.562

Note: Standard errors are in parenthesis.

Frees & Valdez (Wisconsin/UConn) Hierarchical Insurance Claims Modeling Thu, 6 Aug 2009 31 / 33



What can we use the results for?

Improve prediction because now able to predict the entire claim
distribution.

Knowledge of the entire distribution allows us to:

get better point estimates;

derive confidence interval of estimates;

examine the tails or extremes of the distribution; and/or

examine sensitivity of the parameters.

To illustrate (in our paper), we consider the following two procedures:

prediction based on an individual observation, and

determination of expected functions of claims over different policy
scenarios.
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Concluding remarks

Our paper presents a comprehensive process of hierarchical modeling
of motor insurance using claims data provided to us by the General
Insurance Association (GIA) of Singapore.

The additional feature in our modeling process is the ability to
account and model for the different combination of claims arising
from different claim types: injury, damage to own property, and
damage to third party property.

The same process/procedure can be applied to any portfolios of
insurance policies which provide a similar micro-level details of policy
and claims information.

The results can be used for better prediction of future claims
experience that can be used, for instance, in experience rating.
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