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Abstract
Recent progress has been made in using attention
based encoder-decoder framework for video cap-
tioning. However, most existing decoders apply the
attention mechanism to every generated word in-
cluding both visual words (e.g., ”gun” and ”shoot-
ing”) and non-visual words (e.g. ”the”, ”a”). How-
ever, these non-visual words can be easily pre-
dicted using natural language model without con-
sidering visual signals or attention. Imposing at-
tention mechanism on non-visual words could mis-
lead and decrease the overall performance of video
captioning. To address this issue, we propose a hi-
erarchical LSTM with adjusted temporal attention
(hLSTMat) approach for video captioning. Specifi-
cally, the proposed framework utilizes the temporal
attention for selecting specific frames to predict the
related words, while the adjusted temporal atten-
tion is for deciding whether to depend on the visual
information or the language context information.
Also, a hierarchical LSTMs is designed to simulta-
neously consider both low-level visual information
and high-level language context information to sup-
port the video caption generation. To demonstrate
the effectiveness of our proposed framework, we
test our method on two prevalent datasets: MSVD
and MSR-VTT, and experimental results show that
our approach outperforms the state-of-the-art meth-
ods on both two datasets.

1 Introduction
Previously, visual content understanding [Song et al., 2016;
Gao et al., 2017] and natural language processing (NLP) are
not correlative with each other. Integrating visual content
with natural language learning to generate descriptions for
images, especially for videos, has been regarded as a chal-
lenging task. Video captioning is a critical step towards ma-
chine intelligence and many applications in daily scenarios,
such as video retrieval [Wang et al., 2017; Song et al., 2017],
video understanding, blind navigation and automatic video
subtitling.

Thanks to the rapid development of deep Convolutional
Neural Network (CNN), recent works have made signifi-

cant progress for image captioning [Vinyals et al., 2015;
Xu et al., 2015; Lu et al., 2016; Karpathy et al., 2014;
Fang et al., 2015; Chen and Zitnick, 2014; Chen et al., 2016].
However, compared with image captioning, video captioning
is more difficult due to the diverse sets of objects, scenes, ac-
tions, attributes and salient contents. Despite the difficulty
there have been a few attempts for video description gener-
ation [Venugopalan et al., 2014; Venugopalan et al., 2015;
Yao et al., 2015; Li et al., 2015; Gan et al., 2016a], which
are mainly inspired by recent advances in translating with
Long Short-Term Memory (LSTM). The LSTM is proposed
to overcome the vanishing gradients problem by enabling the
network to learn when to forget previous hidden states and
when to update hidden states by integrating memory units.
LSTM has been successfully adopted to several tasks, e.g.,
speech recognition, language translation and image caption-
ing [Cho et al., 2015; Venugopalan et al., 2014]. Thus, we
follow this elegant recipe and choose to extend LSTM to gen-
erate the video sentence with semantic content.

Early attempts were proposed [Venugopalan et al., 2014;
Venugopalan et al., 2015; Yao et al., 2015; Li et al., 2015]
to directly connect a visual convolution model to a deep
LSTM networks. For example, Venugopalan et al. [Venu-
gopalan et al., 2014] translate videos to sentences by di-
rectly concatenating a deep neural network with a recurrent
neural network. More recently, attention mechanism [Gu
et al., 2016] is a standard part of the deep learning toolkit,
contributing to impressive results in neural machine transla-
tion [Luong et al., 2015], visual captioning [Xu et al., 2015;
Yao et al., 2015] and question answering [Yang et al., 2016].
Visual attention models for video captioning make use of
video frames at every time step, without explicitly consider-
ing the semantic attributes of the predicted words. For exam-
ple, in Fig. 1, some words (i.e., ”man”, ”shooting” and ”gun”)
belong to visual words which have corresponding canonical
visual signals, while other words (i.e., ”the”, ”a” and ”is”)
are non-visual words, which require no visual information
but language context information [Lu et al., 2016]. In other
words, current visual attention models make use of visual in-
formation for generating each work, which is unnecessary or
even misleading. Ideally, video description not only requires
modeling and integrating their sequence dynamic temporal
attention information into a natural language but also needs to
take into account the relationship between sentence semantics
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Figure 1: The framework of our proposed method hLSTMat. To illustrate the effectiveness of our hLSTMat, each generated visual words
(i.e., ”man”, ”shooting” or ”gun”) is generated with visual information extracting from a set of specific frames. For instance, ”man” is marked
with ”red”, this indicates it is generated by using the frames marked with red bounding boxes, ”shooting” is generated replying on the frames
marked with ”orange”. Other non-visual words such as ”a” and ”is” are relying on the language model.

and visual content [Gan et al., 2016b], which to our knowl-
edge has not been simultaneously considered.

To tackle these issues, inspired by the attention mecha-
nism for image captioning [Lu et al., 2016], in this paper we
propose a unified encoder-decoder framework (see Fig. 1),
named hLSTMat, a Hierarchical LSTMs with adjusted tem-
poral attention model for video captioning. Specifically, first,
in order to extract more meaningful spatial features, we adopt
a deep neural network to extract a 2D CNN feature vector for
each frame. Next, we integrate a hierarchical LSTMs consist-
ing of two layers of LSTMs, temporal attention and adjusted
temporal attention to decode visual information and language
context information to support the generation of sentences for
videos description. Moreover, the proposed novel adjusted
temporal attention mechanism automatically decides whether
to rely on visual information or not. When relying on visual
information, the model enforces the gradients from visual in-
formation to support video captioning, and decides where to
attend. Otherwise, the model predicts the words using natural
language model without considering visual signals.

It is worthwhile to highlight the main contributions of this
proposed approach: 1) We introduce a novel hLSTMat frame-
work which automatically decides when and where to use
video visual information, and when and how to adopt the lan-
guage model to generate the next word for video captioning.
2) We propose a novel adjusted temporal attention mecha-
nism which is based on temporal attention. Specifically, the
temporal attention is used to decide where to look at visual
information, while the adjusted temporal model is designed
to decide when to make use of visual information and when
to rely on language model. A hierarchical LSTMs is de-
signed to obtain low-level visual information and high-level
language context information. 3) Experiments on two bench-
mark datasets demonstrate that our method outperforms the
state-of-the-art methods in both BLEU and METEOR.

2 The Proposed Approach
In this section, first we briefly describe how to directly use the
basic Long Short-Term Memory (LSTM) as the decoder for
video captioning task. Then we introduce our novel encoder-
decoder framework, named hLSTMat (see Fig. 1).

2.1 A Basic LSTM for Video Captioning
To date, modeling sequence data with Recurrent Neural Net-
works (RNNs) has shown great success in the process of
machine translation, speech recognition, image and video
captioning [Chen and Zitnick, 2014; Fang et al., 2015;
Venugopalan et al., 2014; Venugopalan et al., 2015] etc.
Long Short-Term Memory (LSTM) is a variant of RNN to
avoid the vanishing gradient problem [Bengio et al., 1994].

LSTM Unit. A basic LSTM unit consists of three gates
(input it, forget ft and output ot), a single memory cell mt.
Specifically, it allows incoming signals to alter the state of
the memory cell or block it. ft controls what to be remem-
bered or be forgotten by the cell, and somehow can avoid the
gradient from vanishing or exploding when back propagating
through time. Finally, ot allows the state of the memory cell
to have an effect on other neurons or prevent it. Basically,
the memory cell and gates in a LSTM block are defined as
follows:

it = σ(Wiyt + Uiht−1 + bi)

ft = σ(Wfyt + Ufht−1 + bf )

ot = σ(Woyt + Uoht−1 + bo)

gt = φ(Wgyt + Ught−1 + bg)

mt = ft �mt−1 + it � gt

ht = ot � φ(mt)

(1)

where the weight matrices W, U, and b are parameters to
be learned. yt represents the input vector for the LSTM
unit at each time t. σ represents the logistic sigmoid non-
linear activation function mapping real numbers to (0, 1),
and it can be thought as knobs that LSTM learns to selec-



tively forget its memory or accept the current input. φ de-
notes the hyperbolic tangent function tanh. � is the element-
wise product with the gate value. For convenience, we denote
ht,mt = LSTM(yt,ht−1,mt−1) as the computation func-
tion for updating the LSTM internal state.

Video Captioning. Given a video input x, an encoder net-
work φE encodes it into a continuous representation space:

V = {v1, · · · ,vn} = φE(x). (2)

where φE usually denotes a CNN neural network, n denotes
the number of frames in x, vi ∈ Rd is the frame-level fea-
ture of the i-th frame, and it is d-dimensional. Here, LSTM
is chosen as a decoder network φD to model V to generate a
description z = {z1, · · · , zT } for x, where T is the descrip-
tion length. In addition, the LSTM unit updates its internal
state ht and the t-th word zt based on its previous internal
state ht−1, the previous output yt and the representation V:

(ht, zt) = φD(ht−1, yt,V)

In addition, the LSTM updates its internal state recursively
until the end-of-sentence tag is generated. For simplicity, we
named this simple method as basic-LSTM.

2.2 Hierarchical LSTMs with Adjusted Temporal
Attention for Video Captioning

In this subsection, we introduce our hLSTMat framework,
which consists of two components: 1) a CNN Encoder and
2) an attention based hierarchical LSTM decoder.

CNN Encoders
The goal of an encoder is to compute feature vectors that are
compact and representative and can capture the most related
visual information for the decoder. Thanks to the rapid de-
velopment of deep convolutional neural networks (CNNs),
which have made a great success in large scale image recogni-
tion task [He et al., 2016], object detection [Ren et al., 2015]
and visual captioning [Venugopalan et al., 2014]. High-level
features can been extracted from upper or intermediate layers
of a deep CNN network. Therefore, a set of well-tested CNN
networks, such as the ResNet-152 model [He et al., 2016]
which has achieved the best performance in ImageNet Large
Scale Visual Recognition Challenge, can be used as a candi-
date encoder for our framework.

Attention based Hierarchical Decoder
Our decoder (see Fig. 2) integrates two LSTMs. The bot-
tom LSTM layer is used to efficiently decode visual features,
and the top LSTM is focusing on mining deep language con-
text information for video captioning. We also incorporate
two attention mechanisms into our framework. A temporal
attention is to guide which frame to look, while the adjusted
temporal attention is proposed to decide when to use visual
information and when to use sentence context information.
The top MLP layer is to predict the probability distribution of
each word in the vocabulary.

Unlike vanilla LSTM decoder, which performs mean pool-
ing over 2D features across each video to form a fixed-
dimension representation, attention based LSTM decoder is
focusing on a subset of consecutive frames to form a fixed-
dimensional representation at each time t.
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Figure 2: An illustration of the proposed method generating the t-th
target word zt given a video.

• Bottom LSTM Layer. For the bottom LSTM layer, the
updated internal hidden state depends on the current
word yt, previous hidden state ht−1 and memory state
mt−1:

h0,m0 =
[
Wih; Wic

]
Mean({vi})

ht,mt = LSTM(yt,ht−1,mt−1)
(3)

where yt = E[yt] denotes a word feature of a single
word yt. Mean(·) denotes a mean pooling of the given
feature set vi. Wih and Wic are parameters that need
to be learned.
• Top LSTM Layer. For the top LSTM, it takes the out-

put of the bottom LSTM unit output ht, previous hidden
state h̄t−1 and the memory state m̄t−1 as inputs to ob-
tain the hidden state h̄t at time t, and it can be defined
as below:

h̄t, m̄t = LSTM(ht, h̄t−1, m̄t−1) (4)

• Attention Layers. In addition, for attention based
LSTM, context vector is in general an important factor,
since it provides meaningful visual evidence for caption
generation [Yao et al., 2015]. In order to efficiently ad-
just the choose of visual information or sentence context
information for caption generation, we defined an ad-
justed temporal context vector c̄t and a temporal context
vector ct at time t. See below:

c̄t = ψ(ht, h̄t, ct), ct = ϕ(ht,V) (5)

where ψ denotes the function of our adjust gate, while
ϕ denotes the function of our temporal attention model.
Moreover, c̄t denotes the final context vector through
our adjusted gate, and ct represents intermediate vectors
calculated by our temporal attention model. These two
attention layers will be described in details in Sec. 2.3
and Sec. 2.4.
• MLP layer. To output a symbol zt, a probability distri-

bution over a set of possible words is obtained using ht

and our adjusted temporal attention vector c̄t:

pt = softmax (Upφ(Wp[ht; c̄t] + bp) + d) (6)



where Up, Wp, bp and d are parameters to be learned.
Next, we can interpret the output of the softmax layer pt

as a probability distribution over words:

P (zt|z<t,V,Θ) (7)

where V denotes the features of the corresponding input
video, and Θ are model parameters.

To learn Θ in our modal, we minimize the negative loga-
rithm of the likelihood:

minΘ −
T∑

t=1

logP (zt|z<t,V,Θ) (8)

where T denotes the total number of words in sentence.
Therefore, Eq.8 is regarded as our loss function to optimize
our model.

After the parameters are learned, we choose BeamSearch
[Vinyals et al., 2015] method to generate sentences for
videos, which iteratively considers the set of the k best sen-
tences up to time t as candidates to generate sentence of time
t + 1, and keeps only best k results of them. Finally, we ap-
proximates D = argmaxD′Pr(D

′ |X) as our best generated
description. In our entire experiment, we set the beam size of
BeamSearch as 5.

2.3 Temporal Attention Model
As mentioned above, context vector ct is an important factor
in encoder-decoder framework. To deal with the variability
of the length of videos, a simple strategy [Venugopalan et
al., 2014] is used to compute the average of features across a
video, and this generated feature is used as input to the model
at each time step:

ct =
1

n

n∑
i=1

vi (9)

However, this strategy effectively collapses all frame-level
features into a single vector, neglecting the inherent tempo-
ral structure and leading to the loss of information. Instead
of using a simple average strategy (see Eq. 9), we wish to
take the dynamic weight sum of the temporal feature vectors
according to attention weights αi

t, which are calculated by a
soft attention. For each vi at t time step, we use the follow
function to calculate ct:

ct =
1

n

n∑
i=1

αi
tvi (10)

where at t time step
∑n

i=1 α
i
t = 1.

In this paper, we integrate two LSTM layers, a novel tem-
poral attention model for computing the context vector ct
in Eq. 5 proposed in our framework. Given a set of video
features V and the current hidden state of the bottom layer
LSTM ht, we feed them into a single neural network layer,
and it returns an unnormalized relevant scores εt. Finally, a
softmax function is applied to generate the attention distribute
over the n frames of the video:

εt = wT tanh (Waht + UaV + ba)

αt = softmax(εt)
(11)

where wT , Wa, Ua and ba are parameters to be learned.
αt ∈ Rn is the attention weight which quantifies the rele-
vance of features in V.

Different from [Yao et al., 2015], we utilize the current
hidden state instead of previous hidden state ht generated by
the first LSTM layer to obtain the context vector ct, which
focuses on salient feature in the video.

2.4 Adjusted Temporal Attention Model
In this paper we propose an adjusted temporal attention model
to compute a context vector c̄t in Eq. 5, shown in Fig. 2, to
make sure that a decoder uses nearly no visual information
from video frames to predict the non-visual words, and use
the most related visual information to predict visual words.
In our hierarchical LSTM network, the hidden state in the
bottom LSTM layer is a latent representation of what the de-
coder already knows. With the hidden state ht, we extend
our temporal attention model, and propose an adjusted model
that is able to determine whether it needs to attend the video
to predict the next word. In addition, a sigmoid function is
applied to the hidden state ht to further filter visual informa-
tion.

c̄t = βtct + (1− βt)h̄t

βt = sigmoid(Wsht)
(12)

where Ws denotes the parameters to be learned and βt is ad-
justed gate at each time t. In our adjusted temporal attention
model, βt is projected into the range of [0, 1]. When βt = 1,
it indicates that full visual information is considered, while
when βt = 0 it indicates that none visual information is con-
sidered to generate the next word.

3 Experiments
We evaluate our algorithm on the task of video captioning.
Specifically, we firstly study the influence of CNN encoders.
Secondly, we explore the effectiveness of the proposed com-
ponents. Next, we compare our results with the state-of-the-
art methods.

3.1 Datasets
We consider two publicly available datasets that have been
widely used in previous work.

The Microsoft Video Description Corpus (MSVD). This
video corpus consists of 1,970 short video clips, approxi-
mately 80,000 description pairs and about 16,000 vocabulary
words [Chen and Dolan, 2011]. Following [Yao et al., 2015;
Venugopalan et al., 2015], we split the dataset into training,
validation and testing set with 1,200, 100 and 670 videos, re-
spectively.

MSR Video to Text (MSR-VTT). In 2016, Xu et al. [Xu
et al., 2016] proposed a currently largest video benchmark
for video understanding, and especially for video captioning.
Specifically, this dataset contains 10,000 web video clips, and
each clip is annotated with approximately 20 natural language
sentences. In addition, it covers the most comprehensive cat-
egorizes (i.e., 20 categories) and a wide variety of visual con-
tent, and contains 200,000 clip-sentence pairs.



Table 1: Experiment results on the MSVD dataset. We use different
features to verify our hLSTMat method.

Model B@1 B@2 B@3 B@4 METEOR
C3D 79.9 68.2 58.3 47.5 30.5
GoogleNet 80.8 68.6 58.9 48.5 31.9
Inception-v3 82.7 72.0 62.5 51.9 33.5
ResNet-50 80.9 69.1 59.5 49.0 32.3
ResNet-101 82.2 70.9 61.4 50.8 32.7
ResNet-152 82.9 72.2 63.0 53.0 33.6

3.2 Implementation Details
Preprocessing
For MSVD dataset, we convert all descriptions to lower cases,
and then use wordpunct tokenizer method from NLTK tool-
box to tokenize sentences and remove punctuations. There-
fore, it yields a vocabulary of 13,010 in size for the training
split. For MSR-VTT dataset, captions have been tokenized,
thus we directly split descriptions using blank space, thus it
yields a vocabulary of 23,662 in size for training split. In-
spired by [Yao et al., 2015], we preprocess each video clip by
selecting equally-spaced 28 frames out of the first 360 frames
and then feeding them into a CNN network proposed in [He et
al., 2016]. Thus, for each selected frame we obtain a 2,048-D
feature vector, which are extracted from the pool5 layer.

Training details
In the training phase, in order to deal with sentences with
arbitrary length, we add a begin-of-sentence tag <BOS> to
start each sentence and an end-of-sentence tag<EOS> to end
each sentence. In the testing phase, we input <BOS> tag
into our attention-based hierarchical LSTM to trigger video
description generation process. For each word generation, we
choose the word with the maximum probability and stop until
we reach <EOS>.

In addition, all the LSTM unit sizes are set as 512 and the
word embedding size is set as 512, empirically. Our objective
function Eq. 8 is optimized over the whole training video-
sentence pairs with mini-batch 64 in size of MSVD and 256 in
size of MSR-VTT. We adopt adadelta [Zeiler, 2012], which is
an adaptive learning rate approach, to optimize our loss func-
tion. In addition, we utilize dropout regularization with the
rate of 0.5 in all layers and clip gradients element wise at 10.
We stop training our model until 500 epochs are reached, or
until the evaluation metric does not improve on the validation
set at the patience of 20.

Evaluation metrics
To evaluate the performance, we employ two different stan-
dard evaluation metrics: BLUE [Papineni et al., 2002] and
METEOR [Banerjee and Lavie, 2005].

3.3 The Effect of Different CNN Encoders
To date, there are 6 widely used CNN encoders including
C3D, GoogleNet, Inception-V3, ResNet-50, ResNet-101 and
ResNet-152 to extract visual features. In this sub-experiment,
we study the influence of different versions of CNN en-
coders on our framework. The experiments are conducted
on the MSVD dataset, and the results are shown in Tab. 1.
By observing Tab. 1, we find that by taking ResNet-152 as

the visual decoder, our method performs best with 82.9%
B@1, 72.2% B@2, 63.0% B@3, 53.0% B@4 and 33.6%
METEOR, while Inception-v3 is a strong competitor, with
82.7% B@1, 72.0% B@2, 62.5% B@3, 51.9% B@4 and
33.5% METEOR. However, the gap between ResNet-152 and
Inception-v3 is very small.

3.4 Architecture Exploration and Comparison
In this sub-experiment, we explore the impact of three
proposed components, including basic LSTM proposed in
Sec.2.1 (basic LSTM), hLSTMt which removes the adjusted
mechanism from the hLSTMat, and hLSTMat, as well as
comparing them with the state of the art methods: MP-LSTM
[Venugopalan et al., 2014] and SA [Yao et al., 2015]. In order
to conduct a fair comparison, all the methods take ResNet-
152 as the encoder. We conduct the same experiments on the
MSVD dataset. The experimental results are shown in Tab. 2.
It shows that our hLSTMat achieves the best results in all
metrics with 82.9% B@1, 72.2% B@2, 63.0% B@3, 53.0%
B@4 and 33.6% METEOR. Also, by comparing with SA
which take previous hidden state to calculate temporal atten-
tion weight, our hLSTMt performs better for video caption-
ing. Moreover, by comparing with hLSTMt, we find that ad-
justed attention mechanism can improve the performance of
video captioning. We also add one-layer LSTM and adjusted
attention as an additional baseline. Results show that the ad-
justed attention mechanism can improve the performance.

3.5 Compare with the-state-of-the-art Methods
Results on MSVD dataset
In this subsection, we show the comparison of our approach
with the baselines on the MSVD dataset. Some of the above
baselines only utilize video features generated by a single
deep network, while others (i.e., S2VT, LSTM-E and p-RNN)
make uses of both single network and multiple network gen-
erated features. Therefore, we first compare our method with
approaches using static frame-level features extracted by a
single network. In addition, we compare our method with
methods utilized different deep features or their combina-
tions. The results are shown in Tab.3. When using static
frame-level features, we have the following observations:
1) Compared with the best counterpart (i.e., p-RNN) which
only takes spatial information, our method has 8.7% improve-
ment on B@4 and 2.5% on METEOR.
2) The hierarchical structure in HRNE reduces the length of
input flow and composites multiple consecutive input at a
higher level, which increases the learning capability and en-
ables the model encode richer temporal information of multi-
ple granularities. Our approach (53.0% B@4, 33.6% ME-
TEOR) performs better than HRNE (43.6% B@4, 32.1%
METEOR) and HRNE-SA (43.8% B@4, 33.1% METEOR).
This shows the effectiveness of our model.
3) Our hLSTMat (53.0% B@4, 33.6% METEOR) can
achieve better results than our hLSTMt (52.1% B@4, 33.3%
METEOR). This indicates that it is beneficial to incorporate
the adjusted temporal attention into our framework.

On the other hand, utilizing both spatial and temporal video
information can enhance the video caption performance. VG-
GNet and GoogleNet are used to generate spatial information,



Table 2: The effect of different components and the comparison with the state-of-the-art methods on the MSVD dataset. The default encoder
for all methods is ResNet-152.

Model B@1 B@2 B@3 B@4 METEOR CIDEr
basic LSTM 80.6 69.3 59.7 49.6 32.7 69.9
MP-LSTM [Venugopalan et al., 2014] 81.1 70.2 61.0 50.4 32.5 71.0
SA [Yao et al., 2015] 81.6 70.3 61.6 51.3 33.3 72.0
basic+adjusted attention 80.9 69.7 61.1 50.2 31.6 71.5
hLSTMt 82.5 71.9 62.0 52.1 33.3 73.5
hLSTMat 82.9 72.2 63.0 53.0 33.6 73.8

Table 3: The performance comparison with the state-of-the-art methods on MSVD dataset. (V) denotes VGGNet, (O) denotes optical flow,
(G) denotes GoogleNet, (C) denotes C3D and (R) denotes ResNet-152.

Model B@1 B@2 B@3 B@4 METEOR CIDEr
S2VT(V) [Venugopalan et al., 2015] - - - - 29.2 -
S2VT(V+O) - - - - 29.8 -
HRNE(G) [Pan et al., 2016] 78.4 66.1 55.1 43.6 32.1 -
HRNE-SA (G) 79.2 66.3 55.1 43.8 33.1 -
LSTM-E(V)[Pan et al., 2015] 74.9 60.9 50.6 40.2 29.5 -
LSTM-E(C) 75.7 62.3 52.0 41.7 29.9 -
LSTM-E(V+C) 78.8 66.0 55.4 45.3 31.0 -
p-RNN(V) [Yu et al., 2016] 77.3 64.5 54.6 44.3 31.1 62.1
p-RNN(C) 79.7 67.9 57.9 47.4 30.3 53.6
p-RNN(V+C) 81.5 70.4 60.4 49.9 32.6 65.8
hLSTMt (R) 82.5 71.9 62.0 52.1 33.3 73.5
hLSTMat (R) 82.9 72.2 63.0 53.0 33.6 73.8

while optical flow and C3D are used for capturing temporal
information. For example, compared with LSTM-E(V) and
LSTM-E (C), LSTM-E(V+C) achieves higher 45.3% B@4
and 31.0% METEOR. In addition, for p-RNN, p-RNN(V+C)
(49.9% B@4 and 32.6% METEOR ) performs better than
both p-RNN(V) (44.3% B@4 and 31.3% METEOR) and p-
RNN(C) (47.4% B@4 and 30.3% METEOR).

Our approach achieves the best results (53.0% B@4 and
33.6% METEOR) using static frame-level features compared
with approaches combining multiple deep features. For
S2VT(V+O), LSTM-E(V+C) and p-RNN(V+C), they use
two networks VGGNet/GoogleNet and optical flow/C3D to
capture video’s spatial and temporal information, respec-
tively. Compared with them, our approach only utilizes
ResNet-152 to capture frame-level features, which proves the
effectiveness of our hierarchical LSTM with adjusted tempo-
ral attention model.

We adopt questionnaires collected from ten users with dif-
ferent academic backgrounds. Given a video caption, users
are asked to score the following aspects: 1) Caption Accu-
racy, 2) Caption Information Coverage, 3) Overall Quality.
Results show that our method outperforms others at ‘Overall
Quality’, and ‘Caption Accuracy’ with small margin. But it
has lower value for ‘Information coverage’ than p-RNN.

Results on MSR-VTT dataset
We compare our model with the state-of-the-art methods on
the MSR-VTT dataset, and the results are shown in Tab. 4.
Our model performs the best on all metrics, with 38.3%
@B4 and 26.3% METEOR. Compared with our methods us-
ing only temporal attention, the performance is improved by
1.1% for @B4, and 0.2% for METEOR. This verifies the ef-
fectiveness of our method.

Table 4: The performance comparison with the state-of-the-art
methods on MSR-VTT dataset.

Model B@4 METEOR
MP-LSTM (V) 34.8 24.8
MP-LSTM (C) 35.4 24.8
MP-LSTM (V+C) 35.8 25.3
SA (V) 35.6 25.4
SA (C) 36.1 25.7
SA (V+C) 36.6 25.9
hLSTMt (R) 37.4 26.1
hLSTMat (R) 38.3 26.3

4 Conclusion and Future Work
In this paper, we introduce a novel hLSTMat encoder-decoder
framework, which integrates a hierarchical LSTMs, temporal
attention and adjusted temporal attention to automatically de-
cide when to make good use of visual information or when
to utilize sentence context information, as well as to simulta-
neously considering both low-level video visual features and
language context information. Experiments show that hLST-
Mat achieves state-of-the-art performances on both MSVD
and MSR-VTT datasets. In the future, we consider incorpo-
rating our method with both temporal and visual features to
test the performance.
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