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Hierarchical Magnetic Network Constructed 

by CoFe Nanoparticles Suspended Within “Tubes 

on Rods” Matrix Toward Enhanced Microwave 

Absorption

Chunyang Xu1, Lei Wang1, Xiao Li1, Xiang Qian1, Zhengchen Wu1, Wenbin You1, 

Ke Pei1, Gang Qin1, Qingwen Zeng1, Ziqi Yang1, Chen Jin1, Renchao Che1 *

HIGHLIGHTS

• Three-dimension hierarchical core–shell  Mo2N@CoFe@C/CNT composites were successfully constructed via a fast MOF-based 

ligand exchange strategy.

• Abundant magnetic CoFe nanoparticles suspended within “nanotubes on microrods” matrix exhibited strong magnetic loss capability, 

confirmed by off-axis electron holography.

• Hierarchical  Mo2N@CoFe@C/CNT composites displayed remarkable microwave absorption value of − 53.5 dB.

ABSTRACT Hierarchical magnetic-dielectric composites are prom-

ising functional materials with prospective applications in microwave 

absorption (MA) field. Herein, a three-dimension hierarchical “nanotubes 

on microrods,” core–shell magnetic metal–carbon composite is ration-

ally constructed for the first time via a fast metal–organic frameworks-

based ligand exchange strategy followed by a carbonization treatment 

with melamine. Abundant magnetic CoFe nanoparticles are embedded 

within one-dimensional graphitized carbon/carbon nanotubes supported 

on micro-scale  Mo2N rod  (Mo2N@CoFe@C/CNT), constructing a spe-

cial multi-dimension hierarchical MA material. Ligand exchange reaction 

is found to determine the formation of hierarchical magnetic-dielectric composite, which is assembled by dielectric  Mo2N as core and 

spatially dispersed CoFe nanoparticles within C/CNTs as shell.  Mo2N@CoFe@C/CNT composites exhibit superior MA performance 

with maximum reflection loss of − 53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz. The  Mo2N@

CoFe@C/CNT composites hold the following advantages: (1) hierarchical core–shell structure offers plentiful of heterojunction interfaces 

and triggers interfacial polarization, (2) unique electronic migration/hop paths in the graphitized C/CNTs and  Mo2N rod facilitate conduc-

tive loss, (3) highly dispersed magnetic CoFe nanoparticles within “tubes on rods” matrix build multi-scale magnetic coupling network 

and reinforce magnetic response capability, confirmed by the off-axis electron holography.
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1 Introduction

Coming into the fifth-generation (5G) wireless communi-

cation systems, the increasing usage of diverse electronic 

productions has caused severe electromagnetic radiation 

pollution, which results in an urgent pursuit for high-per-

formance microwave absorption (MA) materials [1–9]. 

Magnetic materials, including metals (Co, Ni, Fe) and 

metallic alloys (FeCo, NiCo, etc.), are generally used as 

microwave absorbents due to strong magnetic loss abil-

ity [10–18]. However, practical applications of magnetic 

materials suffer from their inherent drawbacks: undesir-

able chemical stability, severe aggregation and inferior 

impedance matching [19–21]. To tackle these obstacles, 

two typical strategies have been commonly employed to 

shape MA properties. One is to decorate magnetic compo-

nent with carbon materials to develop magnetic-dielectric 

system and thereby boost the MA performance by enhanc-

ing dielectric loss and improving impedance matching 

[22–31]. For example, Cao et al. designed Fe@NCNTs 

composite and showed MA performance of − 30.43 dB 

[32]. Shui et al. prepared CoFe/carbon fiber composite 

with high MA properties [13]. Tong et al. designed Co/C/

Fe/C composite which exhibited significantly improved 

MA abilities [11]. The other is to construct hierarchical-

structured materials with well-designed nano-units, thus 

achieving high dispersion of magnetic particles and pro-

ducing heterogeneous interface in multicomponent mate-

rials [33–37]. Among various hierarchical structures, the 

core–shell structures have attracted growing attention in 

the MA field [38–40] such as Co@C microspheres [10], 

 Fe3O4/C [41], Co@CoO [42],  Co20Ni80@TiO2 core–shell 

structure [43]. The delicately designed core–shell com-

posites can satisfy magnetic and dielectric loss simul-

taneously resulting from synergistic effects of different 

components within both core and shell [44, 45]. Besides, 

large interspace and heterogeneous interface created by 

core–shell structure can further enhance polarization 

loss and strengthen multi-reflection process [37, 44, 46]. 

Particularly, hierarchical 1D units assembled core–shell 

composites exhibit remarkable performance in MA appli-

cation [14, 47, 48]. For example, Che et  al. designed 

hierarchically tubular C/Co composite with abundant 

1D nanotubes and achieved highly uniform distribution 

of Co nanoparticles and outstanding MA performance 

[49]. Therefore, it is highly desirable to develop a facile 

and effective preparation strategy to construct magnetic 

metal–carbon composites with hierarchical core–shell 

structure.

Metal–organic frameworks (MOFs), with diverse micro-

structure and adjustable composition, have been widely 

utilized to construct various hierarchical composites 

[50–54]. MOF-derived materials demonstrate inherent 

advantages of abundant metal/carbon components, which 

endows them with great potential in MA application [40, 

55–60]. For example, Ji et al. developed MOF-derived 

one-dimensional sponge-like metallic Co and Co/C com-

posites with strong magnetic loss [61]. Du et al. presented 

a MOFs-derived method to construct hollow Co/C micro-

spheres as microwave absorbents [62]. Zhao et al. pre-

pared hierarchical Fe–Co/N-doped carbon/rGO compos-

ites derived from Fe-doped Co-MOF [63]. However, direct 

transforming MOFs into microwave absorbents leads to a 

much lower ratio of metal nanoparticles and poor graphiti-

zation degree of carbon or CNTs, which is unfavorable to 

the attenuation of microwave. To tackle these problems, 

the MOF precursor can be further extended by trans-

forming one kind of MOF into another via ion exchange 

reactions or ligand exchange reactions, introducing more 

magnetic metals and carbon components. For example, 

Hu et al. constructed hierarchical bimetallic  Co2[Fe(CN)6] 

hollow structure from a Co-MOF through ion exchange 

reactions [64]. This MOF-to-MOF strategy inspires us to 

construct bimetallic MOF-derived carbon-based absor-

bents with favorable hierarchical structure, which has 

rarely been reported in MA field.

Recently, transition metal molybdenum-based materials, 

such as  MoO2,  Mo2C,  MoS2 and  Mo2N, have emerged as 

effective candidates in the field of electrocatalysis, lithium 

batteries and supercapacitors due to its low cost, high con-

ductivity and chemical stability [65–72]. Such superior 

properties also make molybdenum compounds promising 

microwave absorbents. For example, owing to metallic-

like conductivity of  MoO2 materials, Huang et al. con-

structed C@MoO2/G composites for efficient MA [73]. Du 

et al. fabricated ternary  Mo2C/Co/C composites for MA 

[74] and Jin et al. prepared  MoS2-NS with high dielectric 

properties and MA performances [75]. However, the work 
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of employing  Mo2N as microwave absorbent has not been 

studied so far, although  Mo2N materials exhibit satisfied 

electrical conductivity displaying excellent performance in 

electrocatalysis and supercapacitors [66, 69]. Therefore, 

compositing molybdenum compounds into metal–carbon 

absorbents with designed hierarchical structure is expected 

to achieve first-rate MA performance.

Herein, for the first time, a 3D hierarchical “nanotubes 

on microrods” core–shell composite of magnetic CoFe nan-

oparticles suspended within one-dimensional graphitized 

C/CNTs supported on  Mo2N rod  (Mo2N@CoFe@C/CNT) 

is successfully achieved through a fast MOF-based ligand 

exchange strategy. The intermediate product of  MoO3@

hollow-CoFe-PBA composite plays an important role in 

not only providing Fe source for the growth of CoFe alloy 

and C/CNTs but also constructing hierarchical core–shell 

structure in final composite, thus achieving highly disper-

sive distribution of magnetic particles. The unique  Mo2N@

CoFe@C/CNT composite holds the dielectric  Mo2N as 

core and magnetic CoFe nanoparticles embedded C/CNTs 

as shell. Such 3D hierarchical magnetic network assem-

bled by CoFe nanoparticles suspended within “tubes on 

rods” matrix demonstrates strong magnetic loss capabil-

ity, which can be verified by off-axis electron holography. 

Besides, numerous  Mo2N rods and graphitized CNTs in the 

composite constitute dual conductive network to facilitate 

conductive loss. Moreover, large interfaces in hierarchical 

core–shell structure can trigger intensive polarization loss. 

Our hierarchical  Mo2N@CoFe@C/CNT composite dem-

onstrates superior MA performance with maximum reflec-

tion loss value of − 53.5 dB at the thickness of only 2 mm 

thickness and the effective absorption bandwidth can reach 

5.0 GHz. Therefore, the presented fast MOF-based ligand 

exchange strategy provides an effective method to fabricate 

multicomponent absorbents with well-controlled hierarchi-

cal structure for achieving excellent MA properties.

2  Experimental Section

2.1  Materials

All chemicals used were of analytical grade and were used 

directly without further purification. All chemicals were 

purchased from Sinopharm Chemical Reagent Co., Ltd.

2.2  Synthesis of  MoO3

In a typical synthesis, 0.5793 g ammonium molybdate tet-

rahydrate was dissolved in 30 mL of deionized (DI) water; 

then, 2.5 mL of  HNO3 was added. The solution was kept 

stirring for 10 min, then transferred into a Teflon-lined 

stainless autoclave (50 mL) and kept at 180 °C for 12 h. 

When the temperature of Teflon-lined stainless autoclave 

was cooled naturally, the precipitate was collected and 

washed repeatedly with DI water for at least three times 

before drying at 70 °C.

2.3  Synthesis of  MoO3@Co‑MOF

First, the solution A was prepared by 50 mg of  MoO3 and 

0.582 g  CoNO3·6H2O were dissolved in 20 mL of metha-

nol. Then solution B was prepared by dispersing 1.3132 g 

of 2-methylimidazole in 20 mL of methanol. The solution 

B was added into solution A under stirring and kept stir-

ring for 5 min then aged for 20 min at room temperature. 

The precipitate was collected and washed with ethanol for 

at least three times and dried at 70 °C.

2.4  Synthesis of  MoO3@hollow‑CoFe‑PBA

40 mg of  MoO3@Co-MOF was dissolved in 10 mL ethanol 

to get solution C. 40 mg of  K3[Fe(CN)6] was dissolved in 

20 mL DI water and 20 mL ethanol to get solution D. Then 

solution D was poured into solution C under stirring and 

kept stirring for 5 min. The precipitate was collected and 

washed with DI water and dried at 70 °C.

2.5  Synthesis of  Mo2N@CoFe@C/CNT

In a typical synthesis, 0.1 g of as-prepared  MoO3@hollow-

CoFe-PBA and 0.5 g of melamine were placed separately in 

a quartz boat where the melamine was placed at upstream 

side of the furnace. The furnace was heated to 600 °C at a 

rate of 2 °C  min−1 for 4 h under a hydrogen/argon atmos-

phere. Finally,  Mo2N@CoFe@C/CNT composite was 

obtained after cooling down to ambient temperature.
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2.6  Synthesis of  Mo2N and  Mo2N@Co/CNT

For comparison,  Mo2N and  Mo2N@Co/CNT were synthe-

sized by calcining the  MoO3 and  MoO3@Co-MOF with 

melamine, respectively.

2.7  Microwave Absorption Measurements

The measured samples were first prepared by adding the 

absorbents (20 wt%) into molten paraffin and uniformly mix-

ing them, followed by modeling into a coaxial ring with the 

outer diameter of 7.0 mm and inner diameter of 3.0 mm. 

Electromagnetic parameters (complex permittivity and 

complex permeability) were measured by a N5230C vector 

network analyzer over the range of 2–18 GHz. The reflec-

tion loss values were calculated based on the transmission 

line theory:

where εr and µr are the complex permittivity (εr= ε′ − jε′′) 
and permeability (µr= µ′ − jµ′′), respectively, f is the fre-

quency of microwave, c is the velocity of light, d is the 

thickness, and Zin is the normalized input impedance of the 

sample.

2.8  Characterizations

The crystalline phase and purity of the products was 

analyzed by powder X-ray diffraction (XRD, Bruker, 

D8-Advance X-ray diffractometer, Germany) using 

(1)Z
in
=

�

�r∕�r tanh
�
�
�
−j(2�fd∕c)

√
�r�r

��
�

(2)RL(dB) = −20 log ||Zin − 1∕Zin + 1||

Ni-filtered Cu Ka radiation. The morphology and structure 

of the products were examined by a field-emission scan-

ning electron microscopy (SEM) on a Hitachi S-4800 with 

an accelerating voltage of 5 kV and a field-emission trans-

mission electron microscope (TEM, JEOL, JEM-2100F, 

200 kV). The Raman spectra were acquired with a Renishaw 

Invia spectrometer using a 514 nm laser excitation. X-ray 

photoelectron spectroscopy (XPS) spectra were obtained on 

an ESCALab MKII X-ray photoelectron spectrometer using 

Al Kα X-ray as the excitation source. The hysteresis loops 

were performed with a superconducting quantum interfer-

ence device (MPMS(SQUID) VSM) magnetometer (Quan-

tum Design Company).

3  Results and Discussion

3.1  Fabrication and Characterization of  Mo2N@

CoFe@C/CNT Composites

The synthesis of the hierarchical  Mo2N@CoFe@C/CNT 

core–shell structure is illustrated in Fig. 1. First, the Co-

MOF is uniformly grown on  MoO3 rod to form  MoO3@

Co-MOF structure. Second, through a fast ligand exchange 

reaction with  K3[Fe(CN)6] in 5 min at room tempera-

ture,  MoO3@Co-MOF structure is in situ converted into 

 MoO3@hollow-CoFe-PBA core–shell composite. Followed 

by the carbonization of  MoO3@hollow-CoFe-PBA with 

melamine, the inner  MoO3 is transformed into  Mo2N rod 

and the outer hollow-CoFe-PBA turn into the CoFe@C/

CNTs architecture, where thermally reduced CoFe nano-

particles could catalyze the growth of graphitic carbon and 

CNTs with melamine as carbon source. Finally, the hier-

archical  Mo2N@CoFe@C/CNT composite with “tubes on 

rods” structure is successfully obtained. Moreover, through 

fast ligand exchange reaction, the intermediate product 

MoO3

RT, 20 min Fast ligand exchange
600 °C, 4 h

MelamineCo2+, C4H6N2
Fe(CN)6

3−

RT, 5 min

MoO3@Co-MOF MoO3@hollow-CoFe-PBA Mo2N@CoFe@C/CNT

Fig. 1  Schematic process of the fast MOF-based ligand exchange strategy for construction of 3D hierarchical  Mo2N@CoFe@C/CNT compos-

ites
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of  MoO3@hollow-CoFe-PBA core–shell structure plays 

a critical role in the formation of hierarchical  Mo2N@

CoFe@C/CNT composite, which will be explained in the 

following discussion.

As displayed in Fig. S1, as-prepared uniform  MoO3 rods 

demonstrate smooth surface and high phase purity. Then 

 MoO3 rods are covered with Co-MOF to form  MoO3@

Co-MOF structure. The SEM images reveal that the sur-

face of  MoO3 rods becomes rough (Fig. 2a). The core of 

 MoO3 and shell of Co-MOF can be clearly observed in 

TEM images (Fig. 2b, c). And both diffraction peaks of 

 MoO3 and Co-MOF are well detected in XRD pattern 

(Fig. S2), indicating that Co-MOF is successfully grown 

on the  MoO3 rods. To construct hollow CoFe-PBA on 

the  MoO3 rods, the  MoO3@Co-MOF samples are kept in 

 K3[Fe(CN)6] solution and stirred for just 5 min at room 

temperature to allow the ligand exchange reaction to pre-

pare  MoO3@hollow-CoFe-PBA structure. Firstly, the 

 MoO3@Co-MOF will slowly decompose in water/etha-

nol to release  Co2+ ions. Then the [Fe(CN)6]3− ions are 

injected into the reaction solution. The released  Co2+ ions 

can interact with [Fe(CN)6]3− ions to generate CoFe-PBA 

shell around the framework of the precursors (Co-MOF). 

Finally, the solid Co-MOF shell is completely converted 

into hollow CoFe-PBA, and  MoO3@hollow-CoFe-PBA 

core–shell composites are obtained. As displayed in 

Fig. 2d, the rather rough CoFe-PBA is grown on the  MoO3 

rods and some holes can be seen on the surface (as dis-

played in the yellow circles of Fig. 2d). Such unique shell 

of hollow CoFe-PBA can be further confirmed by TEM 

images. In Fig.  2e, f, the as-prepared  MoO3@hollow-

CoFe-PBA structure is consisted of the nanocage-assem-

bled CoFe-PBA shell and the  MoO3 core. XRD result also 

demonstrates that the sample is composed of  MoO3 and 

 Co2[Fe(CN)6] (Fig. S3) [64]. Such core–shell of  MoO3@

hollow-CoFe-PBA composite plays a significant role not 

only in providing the Fe source for the growth of CoFe 

alloys and CNTs but also in constructing the core–shell 

structure in the final multicomponent products. Subse-

quently, the  MoO3@hollow-CoFe-PBA composite is 

converted into  Mo2N@CoFe@C/CNT core–shell struc-

ture through the carbonization with melamine. For com-

parison,  Mo2N rod and  Mo2N@Co/CNT samples are also 

synthesized by calcining the  MoO3 and  MoO3@Co-MOF 

composite with melamine, respectively.

The chemical compositions of  Mo2N rod,  Mo2N@

Co/CNT, and  Mo2N@CoFe@C/CNT composites are 

measured by XRD, Raman and XPS techniques. As dis-

played in Fig. 3a, the diffraction peaks of  Mo2N rods are 

in accordance with reflections of molybdenum nitride 

 (Mo2N, JCPDS No. 25-1366) while the  Mo2N@Co/

CNT samples exhibit diffraction peaks of both  Mo2N and 

(a) (b) (c)

(d) (e)

1 µm

(f)

500 nm 200 nm

200 nm500 nm500 nm

Fig. 2  a SEM, b, c TEM images of  MoO3@Co-MOF, d SEM, e, f TEM images of  MoO3@hollow-CoFe-PBA composites
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cubic cobalt (JPCDS No. 15-0806). In the XRD pattern 

of  Mo2N@CoFe@C/CNT composites, apart from char-

acteristic peaks of  Mo2N, a diffraction peak at 26.1o can 

be observed clearly, attributing to the (002) plane of the 

graphitic carbon. Other peaks at around 45.2o, 65.8o, and 

83.3o match well with diffractions of the cubic cobalt iron 

(JPCDS No. 50-0795). Above-mentioned XRD results 

demonstrate that the  Mo2N@CoFe@C/CNT composite 

is consisted of  Mo2N, CoFe alloy and graphitic carbon. 

To reveal the graphitic feature and structural defects of 

as-prepared samples, Raman spectra are conducted. In 

Fig. 3b, the  Mo2N@CoFe@C/CNT composite exhibits 

the highest ID/IG value of 1.16 because a great number 

of defects are produced in such core–shell structure. The 

value of ID/IG is increased with more CNTs catalyzed by 

the CoFe alloy compared with less graphitic carbon by 

single metal Co in  Mo2N@Co/CNT sample, which could 

promote the electronic transportation ability. Chemical 

valence states of  Mo2N@CoFe@C/CNT are examined via 

XPS technique. In Fig. 3c, three peaks of C 1s spectrum 

correspond to the C–C (284.28 eV), C–N (285.16 eV) and 

C–O (189.73 eV) [76]. In the Co 2p spectrum, peaks at 

778.32 and 793.44 eV are ascribed to  Co0 in Co 2p3/2 and 

Co 2p1/2 and peaks at 780.82 and 796.67 eV belong to  Co2+ 

species. In Fig. 3e, the Fe 2p spectrum can be decomposed 

into two peaks of 707.22 eV for  Fe0 2p3/2 and 719.97 eV for 

 Fe0 2p1/2 and other two peaks of 711.06 and 724.85 eV for 

 Fe2+ 2p3/2 and 2p1/2, respectively [63, 77–79]. The bimetal 

CoFe with multiple valency in  Mo2N@CoFe@C/CNT 

sample could result in higher saturation magnetization. As 

shown in Fig. 3f, the saturation magnetization (Ms) value 

of  Mo2N@CoFe@C/CNT is 59.6 emu  g−1, which is higher 

than that of  Mo2N@Co/CNT sample. And the coercivity 

value is 449.6 Oe for  Mo2N@CoFe@C/CNT composite. 

Such high saturation magnetization and low coercivity of 

 Mo2N@CoFe@C/CNT hierarchical structure could boost 

magnetic storage and reinforce magnetic loss, further pro-

moting MA performance [57, 80].

The morphology and structure of  Mo2N rod,  Mo2N@

Co/CNT and  Mo2N@CoFe@C/CNT core–shell compos-

ites are further performed with SEM and TEM images. As 

displayed in Fig. 4, a large number of CNTs are produced 

and deposited on the core of  Mo2N rod which can be clearly 

observed in Fig. 4a–c with yellow arrows. In the follow-

ing TEM images, the rod-like core is seen and wrapped by 

outer shell of numerous CNTs. Particularly, the obvious void 

exists between the shell and core (Fig. 4d–f) and the CNTs 

are not directly grown on the  Mo2N rod but supported by the 
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shell of CoFe alloy embedded graphitic carbon layers. Such 

uniquely hierarchical  Mo2N@CoFe@C/CNT core–shell 

structure is reported for the first time and can be further 

confirmed by the magnified TEM and HRTEM images. 

Abundant CNTs can be seen and on the top of each CNT 

is encapsulated metal nanoparticles, which are wrapped by 

numbers of graphitic carbon layers (Fig. 5a–d). In Fig. 5e, 

the HRTEM image obtained from the shell of such  Mo2N@

CoFe@C/CNT structure (as marked in Fig. 5a with yellow 

square) demonstrates that the interplanar spacing of 0.20 nm 

can correspond to the (110) plane of CoFe alloy and 0.34 nm 

to the (002) plane of graphitic carbon, which convincingly 

confirms such unique shell of CoFe nanoparticles embedded 

graphitic carbon. The corresponding selected area electron 

diffraction pattern displays a series of diffraction rings which 

can be well indexed to diffraction planes of crystalline  Mo2N 

(a) (b) (c)

(d)

2 µm

(e) (f)

500 nm 500 nm

200 nm 200 nm 50 nm

Fig. 4  a–c SEM, d–f TEM images of  Mo2N@CoFe@C/CNT composites

(a) (b) (c)

(d) (e) (f)

100 nm

e

5 nm 2 nm 2 1/nm

50 nm

0.34 nm
C (002)

Mo2N

(222) (111)

0.20 nm
Co7Fe3 (110)

20 nm

Fig. 5  a–c The magnified TEM, d–e HRTEM images and f corresponding selected area electron diffraction of  Mo2N@CoFe@C/CNT compos-

ites



 Nano-Micro Lett. (2021) 13:4747 Page 8 of 15

https://doi.org/10.1007/s40820-020-00572-5© The authors

and CoFe alloy (Fig. 5f). Clearly, based on the above results 

of morphology and composition, hierarchical  Mo2N@

CoFe@C/CNT “tubes on rods” architecture is successfully 

synthesized through a fast MOF-based ligand exchange strat-

egy. In the calcinating process of  MoO3@hollow-CoFe-PBA 

composite with melamine, the  MoO3 is converted into the 

core of  Mo2N rod and hollow-CoFe-PBA is transformed into 

the shell of CoFe alloy embedded C/CNTs with thermally 

reduced CoFe nanoparticles as catalysts and melamine as 

carbon source. For comparison,  Mo2N@Co/CNT sample is 

obtained by directly annealing  MoO3@Co-MOF composite 

with melamine. As shown in Fig. S4, the  Mo2N@Co/CNT 

composites maintain the rod structure but only few of CNTs 

are observed on the surface of  Mo2N rod without the shell of 

metal-embedded graphitic carbon framework. This evidence 

suggests that single Co nanoparticles could not effectively 

catalyze the growth of CNTs. Obviously,  MoO3@hollow-

CoFe-PBA structure constructed by ligand exchange reac-

tion critically determines the formation of CoFe nanoparti-

cles, graphitic C/CNTs and hierarchical core–shell structure. 

Rod-like  Mo2N are prepared through annealing  MoO3 rods 

with melamine, which displays uniformly smooth rod struc-

ture (Fig. S5). Remarkably, as-prepared hierarchical  Mo2N@

CoFe@C/CNT can be considered as both distinct conductive 

structure and magnetic network, which hold great potential 

to achieve superior MA ability.

3.2  Electromagnetic Parameters Analysis 

and Microwave Absorption Ability

Related electromagnetic parameters of as-prepared  Mo2N@

CoFe@C/CNT,  Mo2N@Co/CNT and  Mo2N samples are 

investigated to reveal the impacts of structure and composi-

tion on the MA performance. Generally, MA properties are 

highly determined by the complex permittivity and complex 

permeability of materials. It is acknowledged that the real 

parts of complex permittivity (ε′) and complex permeabil-

ity (μ′) indicate the capability of storing electromagnetic 

energy, while the imaginary parts (ε″, μ″) imply the ability 

to loss electromagnetic energy. As shown in Fig. S8, the pure 

 Mo2N sample displays real permittivity (ε′) ranging from 

12.06 to 10.92, suggesting the  Mo2N is a better dielectric 

material. And the ε′ values of  Mo2N@Co/CNT samples rise 

obviously from 19.40 to 12.76 due to the introduction of 

conductive CNTs. When more CoFe alloy embedded CNTs 

and graphitic carbon layers are introduced, the ε′ values of 

 Mo2N@CoFe@C/CNT sample range from 10.2 to 5.6 with 

the increase in frequency, demonstrating  Mo2N@CoFe@C/

CNT materials gain strong capability of energy storage and 

high dielectric polarization. And the ε″ values of  Mo2N@

CoFe@C/CNT also remain high from 3.78 to 2.56, which 

means a powerful dielectric loss ability. This can be ascribed 

to the hierarchical conductive network and enhanced interfa-

cial polarization resulting from unique core–shell structure 

of dielectric  Mo2N and conductive C/CNTs components. To 

further evaluate the dielectric loss property, the dielectric 

loss tangent δε (tan δε= ε″/ε′) was calculated. It is believed 

that higher tan δε value means more electric energy of inci-

dent microwaves would be dissipated. As shown in Fig. 

S9a, the tan δε values of  Mo2N@CoFe@C/CNT remain 

high, which offers the convincing evidence that the design 

of hierarchically core–shell structure with the combination 

of dielectric  Mo2N and graphitic C/CNTs components is an 

effective way to enhance the dielectric loss capacity. As for 

the real (µ′) and imaginary (µ″) parts of permeability, the 

µ′ and µ″ values of  Mo2N remain close to 1 and 0 due to 

its nonmagnetic property. Compared with  Mo2N@Co/CNT 

samples, the µ′ and µ″ of  Mo2N@CoFe@C/CNT are higher 

because of its enhanced magnetic CoFe alloy component and 

hierarchical 3D magnetic network. Therefore, the  Mo2N@

CoFe@C/CNT material is prone to generate favorable mag-

netic loss capability. Based on above discussion, as-prepared 

 Mo2N@CoFe@C/CNT composite is expected to exhibit 

superior MA capability originating from its both synergetic 

strong dielectric dissipation and magnetic loss.

The MA performance of absorbents is generally evalu-

ated with the maximum reflection loss (RL) value and effec-

tive absorption bandwidth. Figure 6 displays the 3D plots 

of RL values on different thickness of  Mo2N,  Mo2N@Co/

CNT and  Mo2N@CoFe@C/CNT samples. The  Mo2N rods 

exhibit good MA performance with the maximum RL value 

of − 25.9 dB at the thickness of 4.5 mm (Fig. 6a) due to 

its high dielectric property. With the introduction of Co/

CNTs components, the  Mo2N@Co/CNT materials exhibit 

MA with the maximum RL value of − 34.8 dB. Significantly, 

as displayed in Fig. 6c, the  Mo2N@CoFe@C/CNT demon-

strates the best MA performance with highest maximum RL 

value of − 53.5 dB at the thickness of only 2 mm thickness, 

and the effective absorption bandwidth can reach 5 GHz 

(from 12 to 17 GHz). Moreover, while tuning the thickness 

from 1.5 to 5.0 mm,  Mo2N@CoFe@C/CNT samples still 
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exhibit impressive MA performance with the maximum RL 

values all less than − 10 dB, revealing its tunable MA abil-

ity. These encouraging results demonstrate that as-prepared 

 Mo2N@CoFe@C/CNT composites hold excellent MA per-

formance owing to its strong microwave energy absorption, 

broad effective absorption bandwidth, lower thickness and 

tunable absorption frequency, which is superior to those 

reported metal/carbon microwave absorbents (Table S1).

3.3  Analysis of Microwave Absorption Mechanism

Accordingly, the rational design of 3D hierarchical 

core–shell structure of  Mo2N@CoFe@C/CNT absorber 

and the combination of dielectric  Mo2N, conductive C/

CNTs and magnetic CoFe alloy components contribute to 

the enhancement of electromagnetic storage and MA per-

formance. Related microwave energy absorption/conversion 

mechanisms of MA can be illustrated as followed in detail 

(Fig. 7).

3.3.1  Multiple Heterojunction Interfaces 

and Hierarchical Electronic Transportation Paths 

Boosted Dielectric Loss

3D assembly  Mo2N@CoFe@C/CNT composites possess 

plentiful heterojunction interfaces, which is necessary to the 

improvement of dielectric storage ability and polarization 

behaviors. Hierarchical  Mo2N@CoFe@C/CNT composite is 

made up of dielectric  Mo2N, graphitized C/CNTs and mag-

netic CoFe nanoparticles. In such “tubes on rods” matrix, 

there are at least three kinds of heterojunction interfaces, 

including CoFe-CNTs interfaces, graphitized carbon–CNTs 

interfaces and graphitized carbon–Mo2N interfaces (Fig. 7c). 

Due to differences in electrical conductivity among compo-

nents, free electrons gather around those contacting inter-

faces when applied variation of electromagnetic wave. This 

electronic migration/moment can produce intensive interfa-

cial polarization and relaxation causing the conversion from 

electromagnetic waves energy into thermal energy. Besides, 

numerous carbon heteroatoms groups (such as C-N and 
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Fig. 6  3D plots of reflection loss of a  Mo2N, b  Mo2N@Co/CNT and c  Mo2N@CoFe@C/CNT samples. d Reflection loss curves at the same 

thickness of 2 mm
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C-O, Fig. 3c) in  Mo2N@CoFe@C/CNT could be regarded 

as active dipole sites. Related dipole polarization can also 

improve the MA performance. Therefore,  Mo2N@CoFe@C/

CNT composite exhibits higher dielectric polarization abil-

ity compared with  Mo2N@Co/CNT and  Mo2N materials 

owing to its multiple interfaces and multicomponent. In 

addition, both dielectric  Mo2N rod and graphitized C/CNTs 

can be also considered as a conductive network. Micro-scale 

 Mo2N rod displays high permittivity. When graphitized C/

CNTs grow on  Mo2N rod, numerous electronic transpor-

tation routes are formed between C/CNTs and  Mo2N rod 

(Fig. 7a, b). This conduction transportation network facili-

tates enhanced conduction loss capability, which is also 

favorable for MA performance.

3.3.2  Spatial Dispersed CoFe Nanoparticles Built 

Multi‑scale Magnetic Coupling Network

Spatial dispersed nano-scale CoFe alloy suspended within 

hierarchical micro-scale  Mo2N@C/CNTs rod construct 

a multi-scale magnetic network and could significantly 

contribute to the boosted magnetic responding capacity 

(Fig. 7d). Traditionally, magnetic nanoparticles could eas-

ily aggregate together due to their magnetic nature. Metal 

aggregation problem can hardly be avoided in the process 

of pyrolyzing MOFs directly. Herein, through our ligand 

exchange strategy, as-synthesized  MoO3@hollow-CoFe-

PBA structure can not only effectively reduce the aggrega-

tion of magnetic nanoparticles but also expand spatial mag-

netic distribution, thereby further increasing the responding 

scale of magnetic component in the final  Mo2N@CoFe@C/

CNT composite. As-fabricated hierarchical  Mo2N@C/CNT 

architecture provides a perfect nano/micro-matrix to support 

suspended CoFe nanoparticles (Figs. 4 and 5), thus forming 

a distributed magnetic network and strengthening magnetic 

permeability. The off-axis electron holography is performed 

to study the magnetic property of CoFe nanoparticles and 

related magnetic network in  Mo2N@CoFe@C/CNT com-

posite. As shown in Fig. 8a–c, the CoFe nanoparticles in 

the composite can radiate out high-density magnetic lines 

which could penetrate through the nonmagnetic graphitic C/

CNTs and expand magnetic responding regions beyond itself 

size. Furthermore, the neighbored CoFe nanoparticle sus-

pended within C/CNTs matrix displays magnetic coupling 

lines which could contribute to integral magnetic network, 

further strengthen magnetic dissipation capacity (Fig. 8d–f) 

[49]. Meanwhile, high loading and uniformly distribution of 

CoFe nanoparticles (Fig. 5) can also enhance the magnetic 

loss to promote MA performance. Therefore, compared with 

 Mo2N@Co/CNT and other magnetic metal/carbon compos-

ites reported previously, hierarchical  Mo2N@CoFe@C/CNT 

composite can successfully avoid magnetic metal aggrega-

tion problem and exhibit remarkable magnetic loss property.

3.3.3  Synergic Magnetic‑dielectric MA System 

and Multi‑dimension Hierarchical Structure

Hierarchical  Mo2N@CoFe@C/CNT composites can 

effectively dissipate the microwave energy via dielectric 

dissipation and magnetic loss. The assembled composite 

is constructed by dielectric  Mo2N as core and spatially 

dispersed CoFe nanoparticles within C/CNTs as shell and 

(e)

(d)

(c)

(b)

(a)

e−
e− e− e

−
e−
e−e−

e−

e−

e−e−

e−

e−
e−

e−

e− e
−

e−
e−

e−

e−

e−
e−
e−

e−
e−
e− e−

Magnetic
network

M
ultiple

interfaces

Interfacial

polarization

Conductivelost

Co
nd
uc
tiv
e

ne
tw
ork

Mu
ltip
le

refl
ect
ion

Mu
ltip
le

sc
att
eri
ng

Waves

Electromagnetic

Fig. 7  The microwave absorption mechanism in the 3D hierarchical  Mo2N@CoFe@C/CNT composites
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thus demonstrate significantly improved MA performance 

resulting from both dielectric loss and magnetic loss, com-

pared with single  Mo2N material or  Mo2N@Co/CNT com-

posite with few metal nanoparticles. Meanwhile, because 

of the hierarchical structure and multi-scale size,  Mo2N@

CoFe@C/CNT assembly possess unique multi-reflection 

and multi-scattering (Fig. 7e). Abundant 1D CNTs, micro-

scale  Mo2N rod and 3D hierarchical core–shell structure 

could generate effective surface area and spacing effect. 

When incidence microwave permeates into this 3D archi-

tecture, expected large surface areas offer many active sites 

to produce multiple reflection and scattering. Such repeated 

reflection and scattering process of incident microwave can 

successfully attenuate microwave energy. Benefiting from 

above advantages of hierarchical structure and multi-loss 

mechanism, as-prepared  Mo2N@CoFe@C/CNT compos-

ites exhibit superior MA performance that surpass those 

reported metal–carbon microwave absorbents (Table S1).

4  Conclusion

In conclusion, as-prepared  Mo2N@CoFe@C/CNT com-

posites exhibit superior MA performance with maximum 

reflection loss value of − 53.5 dB at the thickness of only 

2 mm thickness and a broad effective absorption band-

width of 5 GHz. Such 3D hierarchical core–shell structure 

assembled by nano-scale magnetic CoFe nanoparticles sus-

pended within graphitic C/CNTs supported on micro-scale 

 Mo2N rod is rationally constructed via our effective ligand 

exchange strategy. The dielectric  Mo2N and C/CNTs com-

ponents can shape strong conductive loss and hierarchical 

core–shell structure offers large interfacial area to trigger 

polarization loss. Moreover, distributed magnetic CoFe 

nanoparticles embedded in C/CNTs matrix form multi-scale 

magnetic network and reinforce magnetic response capabil-

ity, which is verified by the off-axis electron holography. 

Firmly, the MOF-based ligand exchange strategy in this 

work can be utilized to construct various hierarchical struc-

ture of multicomponent metal–carbon system for enhanced 

MA performance.
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