
589

Hierarchical Matching Beats The
Non-Wildcard and Interpretation Tree

Model Matching Algorithms

Robert B. Fisher
Dept. of Artificial Intelligence, University of Edinburgh

5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom

Abstract

In Fisher[l] we introduced a non-wildcard model matching algorithm that
has speed advantages over the standard Interpretation Tree model matching
algorithm. This paper describes a hierarchical model-matching algorithm
that has improved performance over both the standard and non-wildcard
algorithms.

1 Introduction

The most well-known control algorithm for high-level model matching in computer
vision is the Interpretation Trce(IT) expansion algorithm, as used by Grimson
and Lozano-Perez[2, 3]. In Fisher[l] we introduced a variation on this algorithm
that did not use a wildcard which gave performance advantages of 4-10. Both
algorithms search a tree of model-to-data correspondences, such that each node in
the tree represents one correspondence and the path of nodes from the current node
back to the root of the tree is a set of simultaneous pairings. The non-wildcard
algorithm avoids the many matches requiring wildcards and only investigates the
single model-to-data pairings once, while still exploring the same match search
space. It works by extending a set of matches by only adding pairs of matching real
model-to-data pairings, rather than also adding pairings that contain wildcards.
These algorithms both have the potential for combinatorial search explosion, hence
prompting further research into alternative algorithms.

The main cause of the complexity is the re-exploration of the same search
subspaces on back-tracking to consider new initial matches. This paper describes a
hierarchical model-matching algorithm that results in improved performance over
both the standard and non-wildcard algorithms, over a wide range of problem
conditions. In the discussion that follows, the term generated refers to matches
that are hypothesized prior to consistency testing, and accepted refers to matches
that pass the consistency tests. The following quantities are used:

• There are M model features in the model.

• On average, pvM of these are visible in the scene (e.g. less than M by
occlusion). In 2D scenes, pv = 1 and, in 3D scenes, pv = 0.5 as about half
of the features are on the back side of the object and hence not visible.

• Of the visible model features, only pr of these are recognizable (because of
segmentation failures, etc.) forming C = prpvM correct matchable data
features. (If the model chosen for this scene is incorrect, pr — 0.) Which C
of the M model features are matchable is not known initially.

BMVC 1993 doi:10.5244/C.7.59

590

le+02 b

le+01 3 le+02 le+01 3 le+02

Figure 1: Generated and Accepted Nodes versus Number of Model Features (M)
with S - 20 pr = 0.95 px = 0.1 p2 = 0.01 pv = 0.5 r = 0.5 (loglog plot)

• There are also S spurious data features (e.g. noise features and unrecogniz-
able visible model features). Altogether there are D — C + S data features.

• The probability that a randomly chosen model feature matches with an in-
correct random data feature is p\ (correct pairings alway match).

• The probability that a random pair of model features is consistent with an
incorrect random pair of data features (given that the individual model-to-
data pairings are consistent) is p2-

• An acceptable set of model-to-data pairings must have at least T = rpvM
non-wildcard correspondences (r £ [0..1]). Whenever this many are achieved,
then the whole matching process terminates successfully immediately. Any
set of matches that can never get T matches (because insufficient poten-
tial matches remain) is terminated immediately and the matching process
proceeds to considering other matches.

2 The Hierarchical Matching Algorithm

Suppose that the M = K
L model features can be decomposed into K

L
~

l submod-
els each containing K features. Each of these submodels are grouped into K

L
~

2

larger submodels containing K
2 features, and so on hierarchically until there is

one top-level model containing all KL model features. The matching algorithm
described below generates hypotheses of these submodel types, and only these
submodels can be matched together to create hypotheses of the next larger model
type.

We describe here a binary submodel hierarchy matching algorithm (i.e. K = 2).
As an example, consider the simple model hierarchy consisting of four model fea-
tures A - D organized into two larger submodels AB and CD, which are combined
into a larger model ABCD. We use a top-down matching strategy (e.g. look for
instances of ABCD, which recursively looks for instances of AB and CD, etc.).
Then, at level A from the bottom of the model hierarchy, we need only compare
the hypotheses that were successfully generated at level A — 1.

591

le+IX) le+01 le+02 le+OO le+01 le+02

Figure 2: Generated and Accepted Nodes by Spurious Features (5) with M =
40 pr = 0.95 pi = 0.1 p2 = 0.01 pv = 0.5 r = 0.5 (loglog plot)

The algorithm records hypotheses accepted at any given point in the model
hierarchy. Thus, if the algorithm needs to backtrack from level ABCD to find a
new hypothesis for AB, it is not necessary to later re-explore previously explored
portions of the matching space (e.g.) for CD. The algorithm recalls and retries
previously verified matches, and then, if there were no successes, generates addi-
tional hypotheses starting from where the matching last stopped for this model.
This provides a substantial savings over the standard IT algorithm.

At the lowest levels of the hierarchy, many consistent hypotheses are com-
posed mainly of wildcards. Hence, the hierarchical algorithm uses a "largest-
subhypothesis-first" search algorithm (i.e. having the most matched non-wildcard
data features). The algorithm determines the largest possible hypothesis size, then
attempts to generate hypotheses of that size before considering smaller hypothe-
ses. It matches together subhypotheses that may be of different sizes, but tries
the largest ones first. The algorithm for pairing hypotheses at this level uses a
sensible ordering: (1) all hypotheses that have N matched data features are gen-
erated before any hypothesis having N — I and (2) amongst all hypotheses with
the same size, the algorithm generates the hypotheses in the order that keeps the
subhypothesis sizes as similar as possible (e.g. it chooses the pair of sizes (3+2)
over the pair of sizes (4+1))

At higher levels, when a new subhypothesis is needed, the algorithm may: (1)
return a previously generated subhypothesis of the desired size, (2) generate a new
subhypothesis that is the same size as that returned at the last call (if there was
a previous call), (3) generate the largest possible new subhypothesis of a smaller
size or (4) fail when no more subhypotheses are possible.

When the recursive request for hypotheses reaches the lowest level, (e.g. model
feature A in the above example), the algorithm matches the original data features
to the original primitive model submodels. New pairings are tested on demand
from above, so not all given model-data feature pairings need always be tested
before a successful match is found. Consistency is tested using the standard unary
feature matching tests. After all possible matches with data features have been
attempted, then a match using the wildcard is generated. This promotes filled

592

1 hier

| non-WC , e + 0 4 |

le+O5 V-

le+04h.. .--""

P2
le-03 le-02 le-01

Figure 3: Generated and Accepted Nodes by Binary Match Probability
M = 40 S = 20 pr = 0.95 pi = 0.1 pv = 0.5 r = 0.5 (loglog plot)

le-03

hypotheses over the proliferation of empty hypotheses.

When testing subhypothesis consistency at level 1 (i.e. pairings involving two
model and data features), the standard algorithm's binary feature matching tests
are used. At level 2 and higher, consistency is based on the same binary com-
patibility tests, only tested using primitive model-data feature pairings that come
from different subhypotheses.

This algorithm works because, by induction on the previous level, the subhy-
potheses generated for the two submodels at the next lower level are also recur-
sively generated in a largest-first order, and are then combined in the order that
produces the largest hypotheses first. The order of features in the hierarchy is not
important to the success of the algorithm, and the algorithm does not require the
model to have any natural binary decomposition. However, efficiency is improved
if highly likely matches are in the leftmost nodes, thus preventing the algorithm
from having to back-track through false starts. Appendix A gives pseudocode for
this algorithm and Appendix B gives an example of a matching.

3 The Experiments

To demonstrate the effectiveness of the hierarchical search algorithm, as compared
to the non-wildcard and standard algorithms, we use the following simulated exper-
imental problem, based on an example described in Grimson[4]. (A real problem
follows.) Grimson showed that the model and simulation gave a reasonable char-
acterization of real matching problems. The use of the simulated problems then
allows us to compare the algorithm performance on data sets of varying sizes.

Based on the problem model given in Section 2, each model-match experiment
of the three algorithms will consist of:

1. Initially determining a random selection of C of the D data features to be
the solution.

593

hier i e + 0 4 p

non'-WC j

norm 5 i-

le+03 r

le+02
PI PI

le-01 3 le-01 3

Figure 4: Generated and Accepted Nodes by Unary Match Probability (pi) with
M = 40 S = 20 pr = 0.95 p2 = 0.01 pv = 0.5 r = 0.5 (loglog plot)

2. For each generated model-to-data pairing, a correspondence that is not part
of the solution and does not use a wildcard is accepted if the new correspon-
dence is individually satisfied with probability px and the new correspon-
dence is pairwise satisfied with each previously filled non-wildcard feature
with probability p2- Correspondences that are part of the solution or use
the wildcard are always accepted.

For the experiments described in this paper, we used:

PARAMETER
M
S

P\

Pi

r

Pv

Pr

NOMINAL
40
20
0.1

0.01

0.5
0.5

0.95

RANGE
5 to 100 by 5
0 to 100 by 5
0.05 to 0.75 by 0.05
0.001, 0.002, 0.004, 0.008, 0.01,
0.02 to 0.20 by 0.02, 0.25
0.2 to 0.9 by 0.1
no variation
no variation

In each experiment described in this section, one parameter was varied over the
range given above and all others were set to the nominal value. All experiments
were run 200 times and the value reported is the mean value. The graphs in
Figures 1-5 given show how the number of nodes generated and accepted varied
with the parameters for the hierarchical, non-wildcard and standard IT algorithms.
The results for the non-wildcard algorithm are an improvement on those given in
[1], due to improvements in the algorithm. As we look over the results, which
explore a substantial portion of the parameter spaces likely to be encountered
in visual matching problems, we can see that the hierarchical algorithm is better
than the non-wildcard and standard algorithm with respect to the number of nodes
searched except when r becomes large, but the non-wildcard algorithm is better
with regards to the number of nodes accepted except for when j>2 becomes large.

When there is no instance of the object in the scene, it is unlikely that the early
success conditions would occur, and thus almost all of the search space would have

594

1.5 -

le+04 -

7 -

5 -

3 -

2 -

1.5 -

le+03 -

• ' hier

"- - - - . ._ ~ non-WC

__ norm

->

^

^ ^ ^ _̂

: ' = Tau

5 r -

Tau

^ 2 ^>,5 $.2 0.5

Figure 5: Generated and Accepted Nodes by Acceptance Threshold (r) with M
40 S = 20 pr = 0.95 pi = 0.1 p2 = 0.01 pv = 0.5 (loglog plot)

to be explored. In this case, a much greater amount of work is required. In the
case of the hierarchical algorithm, about 17 times more work is required to reject
a match in a scene, but this is still 4 times better than the standard algorithm
(but requires about twice the work of the non-wildcard algorithm).

The algorithms were compared on edges extracted from real test scene similar
to those used by Grimson. Because the algorithms are sensitive to data feature or-
der, the algorithms were run 100 times with the model and data features permuted
randomly. The effective probabilities in this scene were p\ = .235 and p2 = 0.017
and the number of features were M — 13 and D = 129. Seven of 13 model edges
match true data edges in the test scene using the given tolerances. The average
time taken for the matching algorithms on a Sparcstation 1+ was 1.47 seconds
for the hierarchical algorithm and 5.88 sec. for the standard algorithm (and 0.96
sec. for the non-wildcard algorithm). The mean number of nodes generated and
accepted was 55025 and 1721 for the hierarchical algorithm, 64412 and 845 for
the non-wildcard algorithm and 544171 and 39711 for the standard algorithm.
On another test scene containing 10 instances of one of these parts, the average
times required for a match was hierarchical 21.4 sec, non-wildcard 20.4 sec. and
standard 419 sec. The effective probabilities in this scene were p\ = .288 and
P2 = 0.011 and the number of features were M = 28 and D = 191. The extra
memory costs of recording the successful submatches in the hierarchical algorithm
was about 1M bytes.

4 Discussion and Conclusions

Based on the simulated matchings, the hierarchical algorithm searches about 10
times fewer nodes than the standard algorithm and about one-half the nodes of
the non-wildcard algorithm (as the number of features matched grows). However,
it is also a much more complicated algorithm and thus the computational costs per
search step are higher and it also executes more (expensive) binary tests (53237 vs
43682 for the non-wildcard algorithm in the first real-data test) before hypothesis
rejection. In the two real examples cited in the previous section, the hierarchi-

595

cal algorithm achieved a performance gain of about 4 to 20 over the standard
algorithm, but was comparable in speed to the non-wildcard algorithm. However,
based on the simulated results, it is clear that the performance of the algorithms
may vary greatly on any one data set. It is also the case that the choice between
the hierarchical and non-wildcard algorithms depends on the problem parameters.
In particular, when 5", p\ or pi are large or r is small, there are advantages to the
hierarchical algorithm.

On the other hand, there are also some general guidelines when the hierarchical
algorithm is not as effective as the non-wildcard algorithm. One general principle
is "avoid proliferating reasonable hypotheses at the lowest levels of the matching".
If we are analyzing a scene with many instances of the same object, or a scene
where there are many nearly possible matches, or symmetry, then the hierarchical
algorithm will generate many valid matches at the lowest levels, and they will all
be explored until the first successful match is found. In a sense, the algorithm is
simultaneously finding all matches, of which only one is needed. In addition, the
non-wildcard algorithm generally accepts about one-half the number of nodes as
the hierarchical algorithm. So, if the costs of processing an accepted node are high,
the non-wildcard algorithm is to be favored. However, our experience with the real
image data suggests that it is the generation costs, and in particular the costs of the
binary feature tests that determine the running speed of the algorithms. Hence,
the hierarchical algorithm has clear advantages in this respect.

Acknowledgements

This research was funded by SERC (IED grant GR/F/38310). Other facilities pro-
vided by University of Edinburgh. This paper benefited greatly from discussions
with D. Borges, A. Fitzgibbon, J. Hallam, H. Hughes, M. Orr, K. Simsarian, M.
Waite, M. Trucco and M. Uschold.

References

[1] Fisher, R. B., Non-Wildcard Matching Beats The Interpretation Tree, Proc.
1992 British Machine Vision Association Conf., pp 560-569, Leeds, 1992.

[2] Grimson, W. E. L., Lozano-Perez, T., Model-Based Recognition and Localiza-
tion from Sparse Range or Tactile Data, International Journal of Robotics
Research, Vol. 3, pp 3-35, 1984.

[3] Grimson, W. E. L., Object Recognition By Computer: The Role of
Geometric Constraints, MIT Press, 1990.

[4] Grimson, W. E. L., The Combinatorics of Heuristic Search Termination for
Object Recognition in CluUered Environments, Lecture Notes in Computer Sci-
ence, ECCV-90, Springer-Verlag, pp 552-556, 1990.

A Hierarchical Search Algorithm

generatenextbest(treetop)

•c

596

if all done, return fail

if treetop is a base level subtree

{ if another untried data feature (generate wildcard last)

{ increment generated count

if not wildcard and unary test fails

then skip this subhypothesis

record this consistent subhypothesis

increment accepted count

return success}

else return fail}

// special case of only the left subtree of tree used

if only left subtree used

{ recurse on left subtree

if early success or fail then return code

record subhypothesis for future regeneration

return success}

// normal recursive case
do {

top:

if first attempt at finding this hypothesis

{ recurse on left subtree

if early success or fail then return code

record subhypothesis for future regeneration

recurse on right subtree

if early success or fail then return code

record subhypothesis for future regeneration

reset regeneration pointers

go to testsection}

// normal hypothesis generation

is there a previously generated hyp for slot 1?

yes, is it the required size?

yes: go to testsection

no: smaller, go to getnewslotO

no: recursively regenerate new slot 1

early success: return early success

normal success: record subhypothesis and go to top

fail: proceed to getnewslotO

getnewslotO:

is there a previously generated hyp for slot 0?

yes, is it the required size?

yes: reset slot 1 list for the current needed size

and go to testsection

no: go to getnextvalidsize

no: recursively regenerate new slot 0

early success: return early success

normal success:

record subhypothesis

597

reset slot 1 list for the current needed size

if no slot 0 of needed size go to getnextvalidsize

else go to testsection

fail: proceed to getnextvalidsize

getnextvalidsize: // get new candidate subhypothesis sizes

do {

get next smallest hypothesis size

if no more, then return fail

if size of both slots negative, then return fail

if either slot negative, then continue

if slot 0 size does not exist, then continue

if slot 1 size does not exist, then continue

reset slots 0 and 1 for use with this size

} until a valid new size is found

testsection: // test this hypothesis

increment generated count

if neither subhypotheses are completely wildcards

{ do binary tests between all non-wildcard features

of the first subhypothesis and all non-wildcard

features of the second subhypothesis

if failure, continue}

// a consistent match

record subhypothesis for future regeneration

increment accepted count

if enough features matched then return early success

if cannot match enough features in remaining unfilled slots

then reject subhypothesis

return new match

} forever }

B Example of Hierarchical Matching Algorithm

Suppose we have the example ABCD hierarchical model described in Section 2.
Suppose also that the model features can make these individual matches against
data features a, b, c and the wildcard *. We assume that the early termination
criterion requires at least 3 features matched.

Model
Feature

A
B
C
D

AB
CD

ABCD

Data
Features

a,*
b , *

a,*
ab,a*,*b,**
ca,c*,*a,**

abc*

True
Match

a
b
c
*

ab
c*

abc*
Then, the matching algorithm goes through the following sequence of actions.

Steps 1-16 do the initial exploration of the tree through to rejecting a full, but
false, hypothesis. Steps 17-21 continue to explore the right subtree, looking for

598

alternatives with the same size, until a wildcard match is found. This leads to a
hypothesis with a size smaller than that currently requested. Since no more right
subtree hypotheses have the desired size (because they are generated large-to-small
and the most recent generation is smaller than requested), the algorithm generates
a new left subtree match in steps 22-24. At step 25, the left subtree also has a
smaller match than desired, so the algorithm then reduces the size of the desired
goal. Steps 26-30 generate the new reduced size match. Here the algorithm starts
with previously generated matches of the desired size. At step 31, the full match
occurs, and although it is smaller than the requested size (2+2), it also satisfies
the termination threshold (3), so the match terminates successfully.

Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

26
27
28
29
30
31

Model
Level

ABCD
AB
A

AB
B
B

AB
ABCD

CD
C
C
C

CD
D

CD
ABCD
ABCD

CD
D

D
D

CD
CD
C

CD

CD
C

CD
D

CD
ABCD

Size
Goal
(2,2)
(1-1)

1

(1,1)
1
1

(1,1)
(2,2)
(1,1)

1
1
1

(1,1)
1

(1,1)
(2,2)
(2,2)
(1,1)

1
1
1

(1,1)
(1,1)

1

(1,1)

(1,0)
1

(1,0)
0

(1,0)
(2,2)

Pairings
-
-
Aa
-
Ba
Bb
ABab
-
-
Ca
Cb
Cc
-
Da
CDca
ABCDabca
-
-
Db
Dc
D*
CDc*
-
C*
-
-
-
Cc
-
D*
CDc*
ABCDabc*

Action
get left submodel
get left submodel
accept pairing (true)
get right submodel
reject bad pairing
accept pairing (true)
accept pairing (true)
get right submodel
get left submodel
reject bad pairing
reject bad pairing
accept pairing (true)
get right submodel
accept pairing (bad)
accept pairing (bad)
reject bad pairing
get right submodel
get right submodel
reject bad pairing
reject bad pairing
accept wildcard pairing
reduce pairing size attempt rejected
get left submodel
accept wildcard pairing
reduce pairing size accepted
(1,0) or (0,1) possible
restart and generate left
retrieve old match
restart and generate right
retrieve old match
accept pairing (true)
early termination occurs

