
Hierarchical Matching of Deformable Shapes

Pedro F. Felzenszwalb

University of Chicago

pff@cs.uchicago.edu

Joshua D. Schwartz

University of Chicago

vegan@cs.uchicago.edu

Abstract

We describe a new hierarchical representation for two-

dimensional objects that captures shape information at mul-

tiple levels of resolution. This representation is based on a

hierarchical description of an object’s boundary and can be

used in an elastic matching framework, both for compar-

ing pairs of objects and for detecting objects in cluttered

images. In contrast to classical elastic models, our repre-

sentation explicitly captures global shape information. This

leads to richer geometric models and more accurate recog-

nition results. Our experiments demonstrate classification

results that are significantly better than the current state-

of-the-art in several shape datasets. We also show initial

experiments in matching shapes to cluttered images.

1. Introduction

Humans can often recognize objects using shape infor-

mation alone. This has proven to be a challenging task for

computer vision systems. One of the main difficulties is in

developing representations that can effectively capture im-

portant shape variations. We want to be able to compare

different objects, and to detect objects in cluttered images.

The computational complexity of these tasks and the recog-

nition accuracy obtained are highly dependent on the choice

of a shape representation.

This paper describes an approach for matching shapes

based on a hierarchical description of their boundaries. This

approach can be used both for determining the similarity

between two shapes and for matching a deformable shape

model to a cluttered image. By using a hierarchical model,

we are able to develop simple elastic matching algorithms

that can take global geometric information into account.

Our matching algorithms are based on a compositional

procedure. We combine matchings between adjacent seg-

ments on two curves to form matchings between longer seg-

ments. This approach makes it possible to consider the ge-

ometric arrangement among the endpoints of the matchings

being combined. For long matchings, the endpoints are far

away, which means that our measure of deformation cap-

A 1 A 2 B 1B 2q 2 q 1
q 3p 3p 2

p 1
Figure 1. The composition of matchings between adjacent seg-

ments on two curves to form a matching between longer segments.

tures global geometric properties. Figure 1 illustrates the

procedure, where we combine a matching from A1 to B1

with a matching from A2 to B2 to obtain a longer matching

between two curves. The quality of the combination de-

pends on both the quality of the matchings being combined

and the similarity between the geometric arrangements of

points (p1, p2, p3) and (q1, q2, q3).

We have tested the hierarchical representation and com-

positional matching procedure in a variety of situations and

obtained excellent performance. In classification tasks, we

obtain better recognition results than other methods on sev-

eral shape datasets, including the MPEG-7 shape dataset

[15], a Swedish leaf dataset [26], and a silhouette dataset

from Brown University [24]. We have also used the ETHZ

dataset [12] to demonstrate how hierarchical matching can

be used for matching shapes to real, cluttered images. These

experiments illustrate how the approach is not restricted to

matching pre-segmented shapes. Instead, we can match a

model shape directly to an unorganized set of contours ex-

tracted from natural images.

Most of the previous elastic matching methods look for

maps between two curves while minimizing a measure of

local bending and stretching (see [2], [23] and references

within). The methods in [6] and [13] use a similar idea to

match a curve to cluttered images. Local deformation mod-

els are appealing from an algorithmic perspective. Usually

dynamic programming can be used to find optimal match-

ings. However, as described in [2, 23] these methods can

1



(a) (b)

Figure 2. (a) Two curves that are almost indistinguishable by local

properties alone. (b) Two objects that are similar at a coarse level

but quite dissimilar at a local level.

only address some aspects of shape similarity. Consider the

curves in Figure 2(a). While they represent different char-

acters (6 and U) they can be transformed into each other

without much bending and stretching. The two shapes are

essentially indistinguishable if we focus on local properties

alone. On the other hand, while the objects in Figure 2(b)

are perceptually similar, they have completely different lo-

cal boundary properties.

Our hierarchical representation captures geometric prop-

erties at different levels of resolution. At the finest level,

these properties are related to standard local descriptions

(capturing local curvature, for example). At coarser levels,

the properties capture global shape aspects. As in classic

elastic matching approaches, we use a dynamic program-

ming algorithm for matching. But, as opposed to these other

methods, ours does not solve a shortest path problem due to

its compositional nature. Our compositional approach is re-

lated to the work in [4].

Hierarchical representations have proven to be useful in

a variety of situations. The arc-tree in [14] gives a hierar-

chical description of a curve based on recursive selection

of midpoints. This representation was used to perform geo-

metric queries such as detecting intersections between two

curves. Our representation can be thought of as a modified

arc-tree in which the only information kept at each node

is the relative position of the selected midpoint. Recursive

midpoint selection is also a standard method used for poly-

gon simplification in computer graphics [22].

In vision, multiscale representations such as the curva-

ture scale-space (CSS) have been previously used for shape

recognition [21, 20, 28]. The CSS captures critical curva-

ture points of a contour at different levels of smoothing. Our

representation is also based on a multiresolution approach,

but we rely only on subsampling to define coarse geometric

properties. The method in [28] uses dynamic programming

for matching multiscale descriptions, but this method is not

compositional in contrast to ours. Other hierarchical meth-

ods include the hierarchical graphical models in [8] and hi-

erarchical procrustes matching [19].

The methods in [1] and [9] use triangulated graphs to

represent shapes and to model deformations of objects. Our

work is related since we use the geometric arrangement of

sets of three points to capture shape information. Our algo-

rithm for matching shapes to cluttered images, like that of

[12], works by linking edge contours.

There are many other methods for representing, match-

ing and recognizing shapes. These include methods based

on the medial axis transform and the shock graph [5], [25],

[24], procrustes analysis [7], shape contexts [3] and the in-

ner distance [16]. We experimentally compare our algo-

rithm to several of these approaches in Section 5.

2. The Shape-Tree

We start by describing our hierarchical representation for

open curves. Let A be an open curve specified by a se-

quence of sample points (a1, . . . , an). Let ai be a midpoint

on A. For example, we usually take i = ⌊n/2⌋. Another

option is to choose the sample point such that the coarse

curve (a1, ai, an) approximates A as well as possible. Let

L(ai|a1, an) denote the location of ai relative to a1 and an.

The locations of the first and last sample points can be used

to define a coordinate frame where we measure the loca-

tion of the midpoint. The first and last sample points define

a canonical scale and orientation, so the relative location

L(ai|a1, an) is invariant to similarity transformations.

The choice of a midpoint, ai, breaks the original curve

into two halves, A1 = (a1, . . . , ai) and A2 = (ai, . . . , an).
The hierarchical description of A is defined recursively, we

keep track of L(ai|, a1, an) and the hierarchical description

of A1 and A2. This hierarchical description can be repre-

sented by a binary tree, as illustrated in Figure 3. We call

this representation the shape-tree of a curve. Each node in

the shape-tree stores the relative location of a midpoint with

respect to the start and end point of a subcurve. The left

child of a node describes the subcurve from the start to the

midpoint while the right child describes the subcurve from

the midpoint to the end. The leaves of this tree represent

locations of sample points, ai, relative to their neighboring

points, ai−1 and ai+1. Note that a subtree rooted at a node

corresponds to the shape-tree of a subcurve.

Nodes in the bottom of the shape-tree represent relative

locations of three sequential points along the curve. These

nodes capture local geometric properties such as the an-

gle formed at a point (which is a measure of curvature)

and the relative distance between adjacent sample points.

On the other hand, nodes near the root of the tree capture

more global information encoded by the relative locations

of points that are far from each other. This is a local prop-

erty of a subsampled version of the original curve. The

shape-tree contains only the locations of points relative to

two other points. This makes the representation invariant to

similarity transformations.

Given the tree representation for A, along with the lo-

cation of its start and end points a1 and an, the curve can

be recursively reconstructed. First, the start and end points

of the curve are placed. Because the location of a midpoint

2



1
1 1

2 3
3 3 4 5

5 5 5
5 7 6

9 7
7 89

9

Figure 3. A shape-tree. Filled circles represent endpoints of sub-

curves and unfilled circles represent midpoints. Each node stores

the location of a midpoint relative to the endpoints. The midpoint

becomes an endpoint when a subcurve is divided.

of A relative to the start and the end is known, it can be

placed. This process continues down the shape-tree until

we have placed every sample point of A. By placing the

initial points a1 and an at arbitrary locations, a translated,

rotated and scaled version of A can be obtained.

A closed curve can be represented in a similar fashion.

Let B be a closed curve, specified by a sequence of sam-

ple points (b1, . . . , bn), where bn = b1. Now let bi be a

midpoint on B. The open curves B1 = (b1, . . . , bi) and

B2 = (bi, . . . , bn) can each be represented by a shape-tree.

Given a shape-tree representation of each side of a closed

curve and a location for the start/end point and the first mid-

point, the curve can be reconstructed at any location, orien-

tation, and size. We simply reconstruct each side using the

procedure outlined above.

We note that for a continuous curve it is possible to de-

fine an infinite shape-tree. This infinite tree gives a dense

sampling of the points in the curve, fully capturing its ge-

ometry up to similarity transformations.

2.1. Deformations

We can deform a curve by perturbing the relative loca-

tions stored in its shape-tree representation. To explore this

idea we need to pick a particular representation for the rel-

ative locations of the midpoints in a curve.

Bookstein coordinates [7] encode the relative locations

of three points as a point in the plane. They give a sim-

ple way to represent the relative location, L(ai|a1, an), of a

midpoint in the shape-tree. Let v1, v2 and v3 be three dis-

tinct points. There exists a unique similarity transformation

that maps v1 to (−0.5, 0) and v2 to (0.5, 0). This trans-

formation maps v3 to a location that we call the Bookstein

coordinate of v3 with respect to v1 and v2.

→

→

→

Figure 4. Random deformations obtained by adding independent

noise to the nodes in a shape-tree representation of an object. The

deformed squares illustrate how the method preserves important

global properties while generating a wide range of variation.

Figure 4 shows some examples where we added indepen-

dent noise to the Bookstein coordinates of each midpoint in

a shape-tree before reconstructing a curve. The results are

curves that are perceptually similar to the originals. Note

that in the case of the square the deformed objects still seem

to have four sides that meet at a right angle, even though the

sides are quite deformed.

3. Elastic Matching

Let A and B be two open curves. When matching these

curves, we build a shape-tree for A and look for a mapping

from points in A to points in B such that the shape-tree of

A is deformed as little as possible.1 Here, we measure the

total amount of deformation as a sum over deformations ap-

plied to each node in the shape-tree of A. The hierarchical

nature of the shape-tree ensures that both local and global

geometric properties are preserved by a good matching. In

practice, we use use a non-uniform weighting over deforma-

tions applied to different nodes in the shape-tree. We allow

larger deformations near the bottom of a shape-tree as these

do not change the global appearance of an object.

Suppose A = (a1, . . . , an) and B = (b1, . . . , bm). We

assume that a1 maps to b1 while an maps to bm. The shape-

tree of A defines a midpoint ai dividing the curve into two

halves A1 and A2. The best match from A to B can be de-

fined by a search for a point bj onB where ai maps to. This

point is used to divide B into two halves B1 and B2 where

A1 and A2 map to respectively. We say A and B are sim-

ilar if we can find a midpoint on B such that A1 is similar

to B1, A2 is similar to B2 and the relative locations of the

midpoints L(ai|a1, an) and L(bj |b1, bm) are similar. The

similarity between subcurves is defined in the same man-

ner. The cost of matching A to B can be expressed by a

1The method described here is not symmetric. It is possible to define a

symmetric method, but that leads to a less efficient algorithm.

3



recursive equation,

ψ(A,B) = min
bj∈B

(ψ(A1, B1) + ψ(A2, B2) +

λA ∗ dif (L(ai|a1, an), L(bj |b1, bm))). (1)

where dif measures the difference between the relative lo-

cations of the midpoints on A and B and λA is a weighting

factor. For the experiments in this paper we used a weight-

ing proportional on the length of A (the curve being de-

formed), giving a higher weights to deforming the relative

locations of points that are far away. We used the squared

Procrustes distance [7] between (a1, ai, an) and (b1, bj , bm)
for defining dif .2

For the base case we need to define ψ(A,B) when either

A or B have two sample points. A curve with two sample

points is just a line segment. We let the cost of matching

one line segment with another be zero, while the cost of

matching a line segment with a curve be exactly what it

would be if the line segment was further subdivided to have

the same number of sample points as the curve.

The recursive equation (1) can be solved using dynamic

programming over the shape-tree of A. Let v be a node

in the shape-tree of A. Consider the subcurve A′ corre-

sponding to the subtree rooted at v. Let T (v) be a table

of costs where T (v)[s, e] is the cost of matching A′ to the

subcurve of B given by (bs, ..., be). The table T (v) can be

computed using equation (1) once the tables for the children

of v have been computed. The algorithm computes all ta-

bles by starting at the leaves of the shape-tree and working

in order of decreasing depth. The cost of matching A to B
is T (r)[1,m], where r is the root of the shape-tree.

There are O(n) tables to be computed, and each table

has O(m2) entries. To compute an entry, we have to search

for an ideal midpoint on B. So, the dynamic programming

procedure takes O(nm3) time overall. After all tables are

computed, we can find the best matching from A to B by

tracing back from the root of the shape-tree to the leaves, as

in standard dynamic programming procedures.

WhenA andB are closed curves, we first breakA in two

halves, A1 = (a1, . . . , ai) and A2 = (ai, . . . , an), where,

as before, a1 equals an. We match each node in the shape-

trees of A1 and A2 to each subcurve of B. The cost of

matching A to B, as a function of where a1 and ai map

to, is given by T1(r1)[s, e] + T2(r2)[e, s]. Here r1 and r2
are the roots in the shape-trees of A1 and A2, while s and

e are locations in B which a1 and ai map to. This leads

to an O(nm3) algorithm for matching closed curves. In

practice, we use between 50 and 100 sample points in each

2The Euclidean distance between Bookstein coordinates is not a very

good measure of difference between relative locations of midpoints. Book-

stein coordinates are better seen as points in the Poincaré plane, where

geodesic distance corresponds to a natural deformation measure.

(a) (b)

(c) (d)

Figure 5. Detecting a bottle in an image. The input image is shown

in (a). The soft edge map is shown in (b). In (c), we have the image

contours extracted from (b). Our final detection is shown in (d).

curve. Our current implementation takes about 0.5 seconds

to compute a matching in a 3Ghz computer.

The formulation above assumes that each part of A has a

corresponding part on B. In many situations two curves are

similar except that one of them has a missing or extra part.

To make the matching robust to these transformations we

bound ψ(A′, B′) from above using a cost proportional to

λA′ ∗(|A′|+ |B′|). This models a process where we replace

a subcurve of A with a subcurve of B. Since the shape-

tree of A is fixed in advance, this process can only replace

certain parts of A. To allow for more flexibility in dealing

with occlusions, we usually compute matchings using 2 to

4 different shape-trees and pick the best one. It is also pos-

sible to give a dynamic programming algorithm that allows

arbitrary parts of A and B to be replaced, but that algorithm

runs in O(n3m3) time.

4. Matching to Cluttered Images

Generalizing the ideas from the last section, we can also

match a model curve to a cluttered image. This algorithm

proceeds in four stages. First, given a color image, we com-

pute an edge strength map. Then, we extract a set of image

contours from the edge map. After this, we match each im-

age contour to all sub-countors of our model using dynamic

programming. Finally, we use a second dynamic program-

ming procedure to compose these matches together, form-

ing an optimal matching between the model and a subset of

the image contours. These stages are illustrated in Figure 5.

For the first stage, we use the PB edge operator [18] to

compute an edge strength map. For the second stage, we

4



trace smooth contours in the edge map using the method

from [10]. The result is a set of salient contours in the im-

age. An example can be found in Figure 5(c).

Let M be a model curve, C be the set of contours ex-

tracted from an image and P denote the set of endpoints of

contours in C. Our goal is to find a matching between M
and a subset of C. Let a and b be sample points in M , while

p and q are points in P . We use Match(a, b, p, q) to denote

a matching from the subcurve of M from a to b to a subset

of the contours in C such that a maps to p and b maps to q.

In the third stage of the algorithm, we compute the best

matching between each contour in C and each subcurve of

M . This is done using the method from the last section. It

takes O(nm3) time to compute a table giving the cost of

deforming an image contour with n sample points to ev-

ery possible subcurve in a model with m sample points.

Thus, the overall running time of the third stage is lin-

ear in the total length of the contours C and cubic in the

length of the model. This stage generates a set of matchings

Match(a, b, p, q) that are stitched together to form larger

matchings in the last stage.

We use the following compositional rule to stitch partial

matchings together. Let q and r be two points in P such

that ||q − r|| ≤ τ , for some small threshold τ . If we have

two matchings Match(a, b, p, q) and Match(b, c, r, s) then

we can compose them to get a matching Match(a, c, p, s).
We allow q and r to be different so that we can compose

adjacent contours in the image even if their endpoints do not

exactly align. Mismatches between endpoint locations can

be caused by the edge detection or edge tracing procedure.

In analogy to the expression in equation (1), the cost of the

composed matching is the sum of the costs of the matchings

being composed plus a measure of the differences between

the relative locations of the midpoints in the model and the

image. Here we take the “midpoint” in the image to be the

average (q + r)/2.

Because of occlusions and missing edges we would like

to allow a subcurve of the model to be left unmatched even

though regions around it are matched. This is captured by

considering “gap matches” Match(a, b, p, q) for every pair

of sample points a and b in the model and points p and q
in P . In these matchings a is mapped to p and b is mapped

to q while the subcurve between a and b is left unmatched.

The cost of a gap match is proportional to the arclength of

the subcurve from a to b.

A complete match between M and a subset of the con-

tours is given by a pair of matchings Match(a, b, p, q) and

Match(b, a, q′, p′), where both ||p′ − p|| and ||q′ − q|| are at

most τ . Figure 6 illustrates the stitching procedure. We can

find the best complete matching using a second dynamic

programming step. We sequentially compute the cheapest

matching of type Match(a, b, p, q) in order of increasing ar-

clength of subcurves in the model. This stage of the al-

(a) Model (b) Image contours (c) Final result

Figure 6. The initial matching Match(a, b, p, q) can be com-

posed with the gap match Match(b, c, q, r) to form a matching

Match(a, c, p, r). Because s and t are close, the initial match-

ings Match(c, d, r, s) and Match(d, e, t, u) can be composed to

form a matching Match(c, e, r, u). At this point, matchings

Match(a, c, p, r) and Match(c, e, r, u) could be composed. Con-

tinuing in this way, we stitch together the boundary of the object.

gorithm runs in O(m3k3) time, where m is the number of

sample points in the model and k is the number of end-

points in P . In the future we plan to use the algorithms in

[11] to compute optimal matches even faster. Those algo-

rithms would compose matchings in order of their quality

to avoid considering many possibilities that are considered

by the dynamic programming procedure.

5. Experiments

5.1. Shape Classification

MPEG-7 Shape Database

The MPEG-7 shape database [15] is a widely used dataset

for testing shape recognition methods. The database has

1400 silhouette images, with 20 images per object class

from a total of 70 different classes. Figure 7 shows some of

the images in the database. The standard method for mea-

suring the recognition rate of an algorithm in this dataset

is as follows. For every image in the database, we look at

the 40 most similar images and count how many of those

are in the same class as the query image. The final score of

the test is the ratio of the overall number of correct hits ob-

tained to the best possible number of correct hits. The best

possible number is 1400 * 20 since there are 1400 query im-

ages and 20 images per class. This is a hard dataset due to

the large intraclass variability in each category. Table 1 lists

the recognition rate we obtained using the shape-tree defor-

mation method, together with results from other algorithms.

Note that our method outperforms all previous systems.

Swedish Leaf Database

The Swedish leaf dataset [26] has pictures of 15 species

of leaves, with 75 images per species for a total of 1125

images. Figure 8 shows some example images from this

5



Figure 7. Some of the objects in the MPEG-7 dataset. One image per class for the first 40 classes (the database has 70 classes).

Method Recognition rate

Shape-tree 87.70%

IDSC + DP + EMD [17] 86.56%

Hierarchical Procrustes [19] 86.35%

IDSC + DP [16] 85.40%

Generative Models [27] 80.03%

Curve Edit [23] 78.14%

SC + TPS [3] 76.51%

Visual Parts [15] 76.45%

CSS [20] 75.44%

Table 1. Classification results on the MPEG-7 dataset.

Method Recognition rate

Shape-tree 96.28%

IDSC + DP [16] 94.13%

SC + DP [16] 88.12%

Fourier descriptors [16] 89.60%

Söderkvist [26] 82.40%

Table 2. Classification results on the Swedish leaf dataset.

dataset. Note that some species are indistinguishable to the

untrained eye. Similar to the methods in [26] and [16], we

randomly select 25 training images from each species and

classify the remaining images using a nearest neighbor ap-

proach. Table 2 compares our classification rate to the other

methods that have been tested on this dataset. The shape-

tree matching algorithm outperforms the other methods by

a significant amount.

Brown Database

We also tested the shape-tree matching algorithm on the sil-

houette database from [24]. The dataset has 11 examples

from 9 different object categories for a total of 99 images.

One interesting aspect of this dataset is that many of the

shapes have missing parts and added clutter. Figure 9 shows

some of the images. The recognition results in this dataset

are measured as follows. For each shape in the database, we

check if the 10 closest matches are in the same category as

the query shape. Table 3 summarizes the results of different

methods. With our method, all of the 7 best matches for

each shape are in the correct category.

Figure 8. Leaves from the Swedish leaf dataset, one leaf per

species. Note the similarity among some species.

Figure 9. Images from the Brown dataset. Two per category.

Figure 10. The models used for matching in the ETHZ dataset.

5.2. Matching in Cluttered Images

To test our matching algorithm on cluttered images, we

ran experiments on a set of 80 images of swans and bot-

tles from the ETHZ dataset [12]. Matching for each class is

done with a single hand-drawn model shown in Figure 10.

This makes this dataset a good test for elastic matching.

The objects in each image often have substantially different

shape from the model. Interestingly, several images in the

dataset are paintings, drawings, or computerized renderings

of scenes. Our algorithm performs very well on these im-

ages. A sampling of our results can be found in Figures 11

and 12. Note that our current implementation simply finds

the best match in each picture.

6. Summary

We introduced a hierarchical shape representation with

the goal of explicitly capturing both global and local geo-

metric properties of an object. This representation is cap-

6



Figure 11. Some example results of matching a bottle to images in the ETHZ dataset. Only the best match in each image is shown. Most

of the gaps in each matching are due to missing edges.

Figure 12. Some example results of matching a swan to images in the ETHZ dataset. Only the best match in each image is shown. The

third image on the top shows a mistake, due to missing edges on the swan and extra edges on the water.

7



Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Shape-tree 99 99 99 99 99 99 99 97 93 86

IDSC + DP [16] 99 99 99 98 98 97 97 98 94 79

Shock-Graph Edit [24] 99 99 99 98 98 97 96 95 93 82

Generative Models [27] 99 97 99 98 96 96 94 83 75 48

Table 3. Retrieval results on the dataset from [24]. Ideally the top 10 matches of each of the 99 shapes would be a shape in the same

category. The table summarizes the number of correct matches in each rank.

tured by a tree, which we term the shape-tree of an object.

We can define deformations of an object in terms of inde-

pendent deformations applied to each node in its shape-tree.

Since some of the nodes in the shape-tree capture global ge-

ometric information, the process of applying a small defor-

mation to each node preserves perceptually important as-

pects of the object’s shape.

We have used the shape-tree deformation model to de-

velop a simple and efficient algorithm for matching curves.

Our experimental results show that this method is very ac-

curate when used for classifying objects from several large

databases. Moreover, the matching algorithm can be ex-

tended to detecting deformable objects in cluttered images.

Our future work will be directed towards refining and eval-

uating this process.

Acknowledgment This material is based upon work supported by

the National Science Foundation under Grant No. 0534820.

References

[1] Y. Amit and A. Kong. Graphical templates for model regis-

tration. PAMI, 18(3):225–236, 1996.

[2] R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determin-

ing the similarity of deformable shapes. Vision Research,

38:2365–2385, 1998.

[3] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. PAMI, 24(4):509–

522, April 2002.

[4] E. Bienenstock, S. Geman, and D. Potter. Compositionality,

mdl priors, and object recognition. In NIPS, 1997.

[5] H. Blum. Biological shape and visual science. Theoretical

Biology, 38:205–287, 1973.

[6] J. Coughlan, A. Yuille, C. English, and D. Snow. Efficient

deformable template detection and localization without user

initialization. CVIU, 78(3):303–319, June 2000.

[7] I. Dryden and K. Mardia. Statistical Shape Analysis. John

Wiley and Sons, 1998.

[8] X. Fan, C. Qi, D. Liang, and H. Huang. Probabilistic contour

extraction using hierarchical shape representation. In ICCV,

pages I: 302–308, 2005.

[9] P. Felzenszwalb. Representation and detection of deformable

shapes. PAMI, 27(2):208–220, February 2005.

[10] P. Felzenszwalb and D. McAllester. A min-cover approach

for finding salient curves. In IEEE Workshop on Percepep-

tual Organization, 2006.

[11] P. Felzenszwalb and D. McAllester. The generalized A* ar-

chitecture. Journal of Artificial Intelligence Research, To

appear 2007.

[12] V. Ferrari, T. Tuytelaars, and L. Van Gool. Object detection

by contour segment networks. In ECCV, 2006.

[13] U. Grenander, Y. Chow, and D. Keenan. Hands: A Pattern

Theoretic Study of Biological Shapes. Springer-Verlag, 1991.

[14] O. Gunther and E. Wong. The arc tree: An approximation

scheme to represent arbitrary curved shapes. Computer Vi-

sion, Graphics, and Image Processing, 51:313–337, 1990.

[15] L. Latecki, R. Lakamper, and U. Eckhardt. Shape descriptors

for non-rigid shapes with a single closed contour. In CVPR,

2000.

[16] H. Ling and D. Jacobs. Using the inner-distance for classifi-

cation of articulated shapes. In CVPR, 2005.

[17] H. Ling and K. Okada. An efficient earth mover’s distance al-

gorithm for robust histogram comparison. PAMI, 29(5):840–

853, May 2007.

[18] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-

ural image boundaries using local brightness, color, and tex-

ture cues. PAMI, 26(5):530–549, May 2004.

[19] G. McNeill and S. Vijayakumar. Hierarchical procrustes

matching for shape retrieval. In CVPR, 2006.

[20] F. Mokhtarian, S. Abbasi, and J. Kittler. Efficient and ro-

bust retrieval by shape content through curvature scale space.

In A. Smeulders and R. Jain, editors, Image Databases and

Multi-Media Search, pages 51–58. World Scientific, 1997.

[21] F. Mokhtarian and A. Mackworth. A theory of multi-scale

curvature-based shape representations for planar curves.

PAMI, 14(8):789–805, 1992.

[22] U. Ramer. An iterative procedure for the polygonal approxi-

mation of plane curves. Computer Graphics and Image Pro-

cessing, 1:244–256, 1972.

[23] T. Sebastian, P. Klein, and B. Kimia. On aligning curves.

PAMI, 25(1):116–124, January 2003.

[24] T. Sebastian, P. Klein, and B. Kimia. Recognition of shapes

by editing their shock graphs. PAMI, 25(5):550–571, 2004.

[25] K. Siddiqi, A. Sokoufandeh, S. Dickinson, and S. Zucker.

Shock graphs and shape matching. IJCV, 35(1):13–32, 1999.

[26] O. Soderkvist. Computer vision classification of leaves from

swedish trees. Master’s thesis, Linkoping University, 2001.

[27] Z. Tu and A. Yuille. Shape matching and recognition: Using

generative models and informative features. In ECCV, 2004.

[28] N. Ueda and S. Suzuki. Learning visual models from shape

contours using multiscale convex/concave structure match-

ing. PAMI, 15(4):337–352, 1993.

8


