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Hierarchical (#¢-) matrices method is a general mathematical framework providing a highly compact representation and efficient
numerical arithmetic. When applied in integral-equation- (IE-) based computational electromagnetics, Jf-matrices can be
regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel
independent feature also makes it suitable for any kind of integral equation. To solve #€-matrices system, Krylov iteration methods
can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of #¢-matrices are also
available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper,
a novel sparse approximate inverse (SAI) preconditioner in multilevel fashion is proposed to accelerate the convergence rate of
Krylov iterations for solving J¢-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are
developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages
of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the

fast direct solvers for arbitrary complex structures.

1. Introduction

Integral equation (IE) method [1] is widely used in electro-
magnetic analysis and simulation. Compared to finite differ-
ence time domain (FDTD) method [2] and Finite element
(FE) method [3], IE method is generally more accurate and
avoids annoying numerical dispersion problems as well as
complex boundary conditions. Despite the many advantages,
IE method is often involved in enormous computational
consumption, since its numerical discretization leads to
dense linear system. With the efforts for years, various fast
algorithms had developed focusing on reducing the compu-
tational complexity for IE method such as adaptive integral
method (AIM) [4], fast multipole method (FMM) [5], IE-
Fast Fourier transform (IE-FFT) [6], and fast low-rank
compression methods [7], Though these fast algorithms
are based on different theories, they use the same idea to
reduce CPU time and memory usage complexity, which is to
compute and store the major entries of the dense system
matrix indirectly, and employ iterative methods instead of
direct methods (such as LU decomposition) to solve the

system. Preconditioners are often used to accelerate the con-
vergence of iterative methods. However, iterative methods
cannot always guarantee a reasonable solution with high
precision; therefore, in some complex cases, we expect to
employ powerful preconditioners to obtain visible accelera-
tion of convergence or even use direct methods to avoid this
problem entirely. But to implement these ideas in traditional
fast algorithms encounters some difficulties that are, once
a fast algorithm is applied, the major entries of the system
matrix are computed and stored indirectly, and only a few
entries can be accessed to form the sparse pattern which
is essential to construct the preconditioners. This condition
confines the flexibility of the preconditioning; therefore,
a powerful preconditioner is generally hard to get. For
direct methods, accessibleness of the whole matrix entries is
also prerequisite, and employing them in fast algorithms is
difficult as well as flexible preconditioning.

Hierarchical (#-) matrices method [8, 9] is a general
mathematical framework providing a highly compact repre-
sentation and efficient numerical arithmetic. Applying F#-
matrices in IE method can reduce both CPU time and



memory usage complexity significantly, so it can be regarded
as a fast algorithm to IE method. Unlike the traditional
fast algorithms mentioned above, any entry of J¢-structured
system matrix can be recovered easily, though the major
entries are still implicitly expressed. This quality enables us
to construct more efficient preconditioners, and moreover,
a fast direct solver is available since its unique format.
In this paper, a novel sparse approximate inverse (SAI)
preconditioner in multilevel fashion is proposed to accelerate
the convergence rate of Krylov iterations for solving #-
matrices system in electromagnetic applications, which is
mentioned in [10], and a group of parallel fast direct solvers
are developed for dealing with multiple right-hand-side
cases.

This paper is organized as follows. Section 2 gives a brief
review of the IE method and basic conception of F-matrices.
In Section 3, we elaborate the construction of the proposed
multilevel SAI preconditioner and the implementation of
parallel fast direct solvers. Numerical experiments are given
in Section 4 to demonstrate the advantages of the proposed
multilevel preconditioner compared to conventional “single
level” preconditioners and the practicability of the fast
direct solvers for arbitrary complex structures. Finally, some
conclusions are given in Section 5.

2. J¢-Matrices Representation for IE Method

We first proceed with a description of the IE method for solv-
ing electromagnetic scattering problems from 3D perfectly
electric conductor (PEC). For concise introduction, only the
electric field integral equation (EFIE) [1] is considered. The
EFIE is written as

;. J ASG(r, 1)) (r) = %?- E(r). (1)

Discretize integral equation (1) by expanding J with local
basis functions

N
J(r) = > x.f(x), )
n=1

where N is the number of unknowns, denoting the vector
basis functions, and x, is the unknown expansion coef-
ficients. Applying Galerkin’s method results in a matrix
equation

A-x=b, (3)

where

Apn = J dsfiu(r) J ds S -, (),

S . S (4)

b, = 7 J dsf,, () - Bi(r).
kn Js

If matrix A is in J¢-matrices formatted, we use A » to denote
it.

Considering that the construction of proposed multilevel
SAI preconditioner is built upon the structure of -
matrices, some of its basic concepts need be reviewed at first.

International Journal of Antennas and Propagation

The basis functions set indexed by { := {1,2,...,N} can be
constructed as a tree Ty = (V, E) with vertex set V and edge
set E. For each vertex v € V, we define the set of son of v as
S;(v) :={w e V| (v,w) € E}. The tree T} is called a cluster
tree if the following conditions hold:

J is the root of Ty,
Vv eV :if Sy(v) # O, we have v = U w, (5)

weSy (v)

Vwi,wr € S3(v) withwi#wr:winw, =O.

Each vertex v in Ty is called a cluster, representing a
bunch of basis functions. Typically, each vertex has two sons.
If the amount of basis functions contained in a cluster is less
than a certain number of #y;,, that cluster has no sons, also
called the leaves of T;. By rearranging the basis functions
by their indices, they are numbered consecutively in each
cluster, and, moreover, they are concentrated geometrically.
Precisely, let ), denote the domain of basis functions
represented by cluster v, and it is bounded by the cardinality
of v:

diam(Q,) < ¢4 |v| (6)

in which diam(-) is the Euclidean diameter of a set. ¢, is a
real constant; let the inequality valid for all clusters.

The electromagnetic interaction of any two clusters,
including self-interaction, maps certain subblock of the
system coefficient matrix. Practically, most of these subblocks
can be approximated by low-rank matrices with high-
accuracy. Therefore, a systemic and appropriate partitioning
procedure is needed for the coefficient matrix. Based on the
cluster tree Ty which contains hierarchy of partitions of £, we
are able to construct the block-cluster tree T4 describing a
hierarchical partition of 4 X { by the following maps:

, if Sy(t) = @ or Sy(s) = O,
Sixg(txs) =1,
Sa(t) X Sy(s),

if t X s is admissible,
otherwise,

(7)

in which the definition of Syxy(-) is similar to S;(-) that
denotes the sons of certain block-cluster ¢ X s. Admissible
is a criterion which will be elaborated later and decides
whether the subblock should be approximated by low-rank
matrix, or split and combined by its sons, suspending for
further transaction. Finally, the whole system matrix is
segmented into pieces of subblocks by the procedure above.
Corresponding to the block-cluster tree, these subblocks are
called the leaves of Ty, denoted by L(Tyxy).

If two clusters are well separated geometrically, the Green
function which connects the interaction of them is barely
varying in their domains. That means, only a few patterns
of interactional vectors can represent the whole mode;
therefore, the subblock representing their interaction is rank
deficit. In order to discerning these subblocks appropriately,
we introduce the admissibility condition [9]:

max {diam(Q);), diam(Qy)} < ndist(€Yy, Q), (8)
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Ficure 1: Two basis function clusters domains and their distance, describe the definition of admissible condition.

in which dist(-, -) is the Euclidean distance of two sets, Q)
and Qg denote the domains of basis functions of cluster
t, and s and # are a controllable real parameter, which is
also illustrated in Figure 1. If the statement (8) is true,
sub-block t X s is admissible, otherwise it is nonadmis-
sible. The leaves of block-cluster tree J£(Tjxy) are either
admissible or nonadmissible. For admissible subblocks, we
substitute them by low-rank representation through specific
algorithms such as adaptive cross approximation (ACA) [11].
For nonadmissilbe subblocks, we calculate the entries and
store them directly. The total computational complexity for
constructing is close to O(N log N), in which N regards to the
number of unknowns, and we give a numerical investigation
Part A of Section 4.

3. Multilevel SAI Preconditioning and
Fast Direct Methods

3.1. Multilevel SAI Preconditioning. If the Krylov iterative
methods are used to solve the linear system, we always expect
to find a high-performance preconditioner to accelerate the
convergence. Generally, instead of solving the linear system
of the form A x = b, we solve it by the following forms:

MA »x = Mb or AxyMy =b, x=My. (9)
In which M is a sparse matrix satisfying the condition M ~
A}/ to a certain degree. Therefore, MAy ~ I or AyM =~
I can make the iterative solver more efficient. Because
of limited space, we only discuss the left preconditioning
case below. The right preconditioning case can be analyzed
similarly. Traditional preconditioner has a fixed form that we
could only execute “single level” preconditioning. Here, we
elaborate how to construct a multilevel preconditioner under
H-matrices format.

For a block-cluster tree Ty in J€-matrices, let L(Tyxy)
denotes its depth and L(T;x;) denotes all the leaves of the
cluster tree. Any leaf block-cluster b = (t X s) € L(Tyxy)
belongs to certain level of Tyyy; hence, 1 < level(b) <
L(Tj«y). We define that he finest level is the Ist level, where

the smallest block cluster is located. A substructure of Ay
denoted by Af;lg can be defined as follows:

W o (Ax(ij), (ij) € BY,
A b ) = {0, otherwise (10)
in which B is a subset of L£(Txy),
B = {b|be L(Tyxy), level (b) <1}, (11)

) Agz is sparse regarded as a standard matrix, which could be
made use of as the primary data to form sparse approximate

inverse. A trivial example of Af,f,? is that
A((;Lg(Tlxl)) — A}(’ (12)

The intuitive grasp of Af;lz is shown in Figure 2. Consider
an IE linear system matrix in #f-matrices form, the nonzero
entries distribution of Af;lt;),A(2), and Ag;) are marked as
shadow area corresponding to the whole matrix. Obviously
high level of Af,l} contains more useful data of the system.

Correspondingly, a set of preconditioning matrices
{MD | I =1,2,...L(Tyxy)} can be generated through Af}@,
which satisfied the conditions below:

%

1= M Aue]| 2 [t MO A

(13)

[\

. > HI - M(L(Tixl))A](H ~ 0.

In practice, M) can be solved by the sparse approximate
inverse technique, which aims to minimize ||T - M“)Agz Il
[12]. || - |l is the Frobenius norm of a matrix, and M" is
subjected to a certain sparsity pattern, expressed as

HIROIR
ei-mAR|[, (14)

n
2
min HI—M(I)ASQH = Z min ‘
MDeGh F l,:lm!weGgl)

where e; and m,(l) are the row vectors of the matrices I
and M, respectively. G represents the sparsity pattern for
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FiGUrE 2: The data distribution of the finest 3 levels of A}). This #¢-matrices-formatted system is derived from an aircraft model which will

be introduced in numerical experiments of Section 4.

different M. Each of the subminimization problems in the
right hand of (14) can be solved independently.
Because m,(l) in (14) is constrained to a certain sparse

pattern G, it has many zero entries that force the correspond-
ing rows of Af;lg to be zero in matrix-vector multiply. Let

~

m,m denotes the subvector containing the nonzero entries
of m,(»l), and its corresponding rows of A(Jl} are denoted by
Af,lg,.. Besides, since Agz is sparse, the submatrix A% has
many columns that are identically zero. By removing the
zero columns, we have a much smaller submatrix X%. The
individual minimization problem of (14) is reduced to a least
squares problem:

mﬁEiIPHE,» —alAR|, i=12..n (15)

Asz,. is just the submatrix of Af;,? that we implement the
QR decomposition for solving (15).

3.2. Hierarchical Fast Direct Methods. 1f the system matrix
is severely ill-conditioned and even the iterative solver with
powerful preconditioner cannot obtain acceptable results,
fast direct solvers are good alternative for IE F-matrices.
According to the arithmetic of partition matrices, the
inversion of a matrix can be calculated by operating its
submatrices. Considering the hierarchical structure of F-
matrices is indeed a nested quaternary submatrices structure,
and a potential direct method can be made to solve the linear
system. If a system matrix A can be partitioned as

Ay Ap
A= , 16
[Azl A (16)
then its inversion can be written as

Al +AALC AL AL —AALC!
-1 _ 11 11 312 214811 11 4212
A = |: _C—IAZIAIII C71 5 (17)

Recursive procedure H_Inverse(m, x)
If the matrix m is partition then
H_Inverse(m, x11)
X12 = —X11 © My,
X21 = —mMi2 © X1
Moy = My © My O X2
H_Inverse(my,, x2,)
miy; = X12 © My
myp = my; © mpy © Xy
My = My O Xy
else
Direct_Inverse(m;)
end if

ALGORITHM 1

where C = Ap — AyAjlAp. Applying this arithmetic
into Jf-matrices, we can obtain a hierarchical inversing
procedure as elaborated in Algorithm 1.

The operator ® and & manipulate matrices multipli-
cation and addition which are specific for JFf-matrices.
Reference [9] gives detailed information about these oper-
ators. By implementing submatrices partition, aggregation,
and truncation of singular value decomposition (SVD), the
hierarchical structure can be maintained after the manipu-
lation of these operators, and, more importantly, both CPU
time and memory cost are saved compared to conventional
matrices arithmetic. Consequently, the complexity of hier-
archical direct solvers is O(N?) for CPU time and O(N'?)
for memory usage, in contrast with O(N?) and O(N?) of
conventional direct solver. This leads to realizing kinds of fast
direct solving processes including the hierarchical inversing
algorithm described above.

For numerical implementation, hierarchical inversing
is not as fast as hierarchical LU decomposition, which is
another fast direct method based on matrices decomposition
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[9, 13]. Considering LU decomposition for partition matrix

A:
A Ap L Ui Up
A= = 1
[AZI Azz} |:L21 Lzz] [ Uzz] (18)
matrices L and U can be figured out by the procedures:

(1) computing Li; and Uy, from the LUD L;Uy; = Ay
(2) computing Uj; from LU = Ajp;
(3) computng Ly; from Ly, Uy; = Ayy;

(4) computing Ly, and Uy, from the LUD LU, =
Ay — L Up,.

Process (2) and process (3) can be refined as subprocesses
of partitioned LU decomposition; therefore, by recursive
applying of this procedure, the whole decomposition can be
achieved. In the process of recursion, when the partitioning
reaches the finest level in which submatrices are explicit
expressed, conventional LU decomposition is employed.
After the decomposition done, the primary L and U are
still in F#-form and overwrite the original Ag. Then, we
can use partitioned backward/forward processes to solve the
linear system which is similar to linear equation solving by
conventional LU decomposition. For EFIE, we can utilize
its symmetric property and then construct a fast LLT
decomposition solver which is even much faster and memory
saving. Considering LLT decomposition for partition matrix

A:
Ao A A3 _|In Lj, L, (19)
Ay An Ly L LL |
matrices L can be figure out by the procedures:

(1) computing L;; from the LLT L L], = Ay
(2) computng Ly; from Ly, LT, = Ayy;
(3) computing Ly, from the LL'D L22L§2 =Ay— L21L§1.

Comparing with the procedure of hierarchical LU decompo-
sition, one step is removed because we can obtain L], from
trivial transposition. Therefore, the implementing of LLT
decomposition is approximately one time faster than that of
LU decomposition, in a recursive way.

4. Numerical Experiments

4.1. Complexity of Constructing J-Matrices. To investigate
the complexity of constructing IE #-matrices for electro-
magnetic analysis, there are two themes, namely, discretiza-
tion density varying and wave frequencies varying. The
former one means we change the number of unknowns along
with varying the mesh density regarding electromagnetic
wavelength. And the latter one means we change the number
of unknowns along with varying wave frequencies, but the
mesh density regarding wavelength is fixed. Here, we use a
PEC sphere model of 1.0 (wavelength) radius to test both
these two themes, as shown in Figures 3 and 4.

From the investigation, we can easily see that if incident
wave frequency is fixed, the complexity of both CPU time

5
1024 11024
~ 512 4512
‘% :
S 256 256
P =
< 128 128 g
= : =]
= =
5 64 Je4a
=)
L
= 3 432
16 16
4096 8192 16384 32768 65536 131072

Number of unknowns

-% Nlog’N
-e- NlogN

—A— J¢-Mat (memory)
—e— J¢-Mat (CPU)

FiGUre 3: Computational complexity of constructing #-matrices
by fixed incident wave at 300.0 MHz.

and memory usage approach to O(N log N), where N regards
to the number of unknowns. If we fix the discretization
density and change the frequency of incident wave, the
complexity curve is close to O(N*?logN). This is because
the object domain contains more phase information when
incident by higher frequency wave; therefore, the compres-
sion ratio of low rank submatrices in #¢-matrices is lower in
higher frequency cases.

4.2. Iterative Solving with Multilevel SAI Preconditioner.
Firstly, a conducting sphere is used to demonstrate the
improvement of the spectrum characteristics of the linear
coefficient matrix by employing multilevel-SAI precondi-
tioner (ML-SAI). Supposing M is the Ith level precondi-

tioner and xif,)d is the ith randomized vector, we define the

regression index P of Ith preconditioning level as

(i) (i)
xr;d - M(I)A}fxr;ld
(i)

rnd

C(p)(l) _ li‘
o

2]

2

) (20)
X

:

if MW Ay is close to identity matrix I, then Py~ 0is
expected. Particularly, M© = 1, which means no precondi-
tioner is imposed. A sphere of 21 diameter, discretized by
Rao-Wilton-Gliso (RWG) basis with different densities, is
used to obtain the linear system matrix Ag. The different
regression indices of different preconditioning levels are
presented in Table 1 and compared to analogous indices of
conventional SAI preconditioning in MLEMA.

From Table 1, we can see that with the preconditioning
level of ML-SAI increased, the regression index is decreased,
which means the effect of preconditioning is getting better.
And the preconditioning effect of conventional SAI in
MLEMA is better than the low level ML-SAI but not as good

as high level ML-SAL It should be noted that the c5‘°°)(3) in
case of 957 unknowns is close to zero because the J¢-matrices
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TasLE 1: The regression index of different levels of ML-SAI and conventional SAI preconditioning.
Lo Number of unknowns
Regression index
957 3,972 16,473 65,892
190) 5.568 2.297 1.371 1.042
20 Mat (1) 0.1311 0.2440 0.3155 0.4237
' a'"(2) 0.08925 0.2034 0.2523 0.2816
' 3) 1.116E-6 0.1112 0.1828 0.2165
ML-EMA None 5.723 2.415 1.355 0.989
SAI 0.1052 0.2237 0.2844 0.3125
4096 fTTTTTTTITITIT T 4096 sof
2048 F § 2048
40
81024 E 3 1024
r-‘% ~ 30r
= 512 3512 g
% z 5 20t
& 256 F 4256 ¢ =
3 g ]
£ 18t J128 © & 10r
=
S 64f 164 o
32k i3 10l
16 716 0 20 40 60 80 100 120 140 160 180
) . . ; ; . Degree (6)
4096 8192 16384 32768 65536 131072
Number of unknowns —— Mie series
- - J{-Mat solver
- NlogN —A— J¢-Mat (memory)
=~ N*logN —¢— J¢-Mat (CPU) FiGure 5: The bistatic RCS of a conducting sphere with 40 A.

FiGure 4: Computational complexity of constructing #-matrices
by fixed discretization mesh density at 8 points per wavelength.

structure of this model is only 3 levels, which means M® is
very close to the exact inverse of the linear system.

Next, a 40 A diameter PEC sphere is solved by #-matrices
method. Combine field integral equation (CFIE) is used,
and the number of unknowns is 426,827. To set up the
hierarchical system matrix, the memory cost is 42.6 GBytes
and 26,387 seconds are used by 8 core parallel computing,
on a workstation of Intel Xeon X5460 processor with
64 GBytes RAM. Generalized minimal residual (GMRES)
[14] algorithm is employed as the Krylov iterative solver,
and we use 1~3 level SAI preconditioners and diagonal
block preconditioners (DBPs) as reference to accelerate the
convergence of iteration. From Figure 5, we can see that
the RCS curve conform to the Mie series identically. And
the iterative history in Figure 6 shows that ML-SAIs have a
distinct impact on accelerating the convergence of iteration.

Another example is an aircraft model which is 50.751
long, 29.20 A wide, and 13.57 A high, excited by a plane wave
incoming from its nose with an upper 45° angle to the
center axis of its main body. The CFIE is used, and there are
412,737 unknowns to simulate the exciting surface currents
as shown in Figure 7. By solving the linear system by F¢-
matrices method, there are 14 levels in the block-cluster
tree. To set up the hierarchical system matrix, the memory

0.1

0.01

1E-3

Relative residual error

1E—4

1E-5 : :
30 40 50 60 70 80 90 100 110 120

Number of iterations

—v— ML-SAI level 2
—<— ML-SAI level 3

—a— None
—e— DBP
—4— ML-SAI level 1

FIGURE 6: The iterative history of solving the PEC sphere cases.
GMRES(30) is used and accelerated by different preconditioners.

cost is 38.4 GBytes and 25,634 seconds are used by 8 core
parallel computing, on a workstation of Intel Xeon X5460
processor with 64 GBytes RAM. The data of Af,lg in the
finest 3 levels are to construct preconditioners M), M®),
and M®®, respectively.
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FiGure 7: The surface current distribution of the aircraft model
obtained by solving the ML-SAI preconditioned J-matrices
method. The unit of surface current is A/m?.

GMRES(90) is used to solve the linear system. The con-
vergence histories of iteration with different preconditioners
are presented in Figure 8. This is a little tough case because
of complicated structure and relatively high frequency. If no
preconditioner or just DBP is employed, the convergence is
very poor. By employing ML-SAI, the iteration converges
quickly under satisfied residual error, and the convergence is
much better with the higher level preconditioning processed.
The conventional SAI with MLFMA is also able to achieve the
request, but its convergence is not as good as higher level ML-
SALI Table 2 shows the solving time and memory cost of ML-
SAI, conventional SAI with MLFMA, and diagonal blocks
preconditioner. The memory cost is mainly constituted by
the storage of preconditioner M and Krylov subspace vectors
of GMRES. In the fact that the restart number of GMRES,
namely, the number of subspace vectors, is chosen the same
for all cases, so the memory cost can be regarded as the scale
of preconditioner M.

4.3. Hierarchical Fast Direct Solvers. In this part, we give
some numerical examples solved by fast #¢-matrices direct
solvers. We use hierarchical LU decomposition to solve CFIE
and use hierarchical LLT decomposition to solve EFIE, since
utilizing its symmetric property. First, a PEC sphere model is
used to investigate the accuracy of fast direct solvers. From
Figure 9, we can see that the bistatic RCSs obtained by
both fast LU and LL" decomposition solvers have very high
precision regarding to analytic Mie series. The EFIE result has
a slight bigger relative error than CFIE because the system
matrix of EFIE is not diagonal dominated, consequently, the
numerical error accumulated through LLT decomposition is
more than that in CFIE.

Next, the computational complexity of fast LLT decom-
position solver is tested via the PEC sphere model. The
number of unknowns is varying along with the change of
frequency of the incident wave, and the mesh discretization
density is fixed at 10.0 points per wavelength. The test results
are shown in Figures 10 and 11, respectively, in which we can
observe that the complexity of CPU time is close to O(N?)

0.1

Relative residual error
(=]
o
=

1E-3 F

1E—4

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations
—<+ ML-SAI level 1

—4— ML-SAI level 2
—v— ML-SAI level 3

—=— None
—e— DBP
—— SAI(MLFMA)

Ficure 8: The convergence histories of GMRES(90) with no
preconditioner, DB preconditioner, and ML-SAI preconditioners of
different levels.

TaBLE 2: The time and memory cost of iterative solving aircraft
model with different preconditioners.

Time (seconds) Memory (MBytes)
ML-SAI level 1 582.8 3254
ML-SAI level 2 234.5 464.5
ML-SAI level 3 184.3 786.5
SAI with MLFMA 643.7 312.3
DBP 1134.2 213.9

and memory usage is close to O(N'?). This is much more
efficient than conventional direct solvers.

The aircraft model shown in the previous part is also
used here to test fast LL" decomposition solver by employing
EFIE. The incident wave is 10.0 GHz, and mesh discretization
density is 10.0 points per wave number. The number of
unknowns is 119,202, and 8 levels are set for Jf-matrices.
This example is parallelly solved by a workstation equipped
with dual Intel Xeon X5460 processor and 64 GBytes of
RAM. 2,256 seconds is used for building up the hierarchical
system matrix, and the memory cost is 5,128.4 MBytes. LL"
decomposition time is 8,415 seconds, and 6,437.2 MBytes
are used after decomposition. Figure 12 presents the surface
current solved by LL" decomposition.

The most notable advantage of fast direct solver is the
high efficiency of handling multiple right-hand-side cases.
After LU or LLT decomposition, solving multiple right-
hand vectors is only one-round process of forward/backward
substitution, so that it is much faster than iterative solvers,
which gives a full-round iteration for each vector step by
step. In IE electromagnetic analysis, monostatic RCS is
the typical multiple right-hand-side problem. We here use
LLT decomposition to solve the monostatic RCS problem
of the aircraft model incident by 3.0 GHz electromagnetic
wave. The range of sweep angles is 180°, and 181 samples are



40
30
20

10 ¢

Bistatic RCS (dBsm)
o

PEstphere‘ (radius: 5.56 A)
Numiber of unknowns: 57.105 . .
_40 i 1 i i i i i i

0 20 40 60 80 100 120 140 160 180
Degree (0)

—30 F

—— Mie series
--= F¢-LLT decomposition (EFIE)
--— H-LU decomposition (CFIE)

F1GURE 9: The bistatic RCS solved by hierarchical fast direct solvers.
CFIE is solved by LU decomposition solver, and EFIE is solved by
LLT decomposition.

CPU time (s)

1
2048 4096 8192 16384

Number of unknowns

32768 65536

—=— #-LLT decomposition
—e- O(NS)
—A— O(Nz)

FiGure 10: CPU time complexity of hierarchical LLT decomposi-
tion.

calculated. The total solving time is 468.3 seconds, contrast
to MLFMA combined with GMRES iterative solver, which
costs 4215.7 seconds, almost ten times of the former one. In
order to compare to LLT decomposition, here, we use EFIE
for iterative MLFMA. Figure 13 shows the comparing results
between LLT decomposition and iteration of MLFMA, we
can observe that direct solved curve is smoother than that
of iterative solved and there is a big difference between
them. We believe that the result of LLT decomposition
is more accurate and the reason is elaborated as follow.
Theoretically, the monostatic RCS curve of this intermediate-
frequency example should be smooth, because the sampling
is sufficiently continuous comparing to the wavelength.
However, for EFIE iteration, the convergence is poor due to
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FIGURE 11: Memory usage complexity of hierarchical LL" decom-
position.

FiGure 12: The surface current distribution of the aircraft model
obtained by solving EFIE with hierarchical LLT decomposition. The
frequency of incident wave is at 10.0 GHz. The unit of surface
current is A/m?.

Monostatic RCS (dBsm)

—50 : . . : : : . .
0 20 40 60 80 100 120 140 160 180

Angle (¢)

— H-LLT decomposition
--- MLFMA

F1GURE 13: The monostatic RCS of the aircraft model. The incident
wave is 3.0 GHz, HH-polarization.
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the large condition number of its system matrix. Therefore,
a loose relative residual error threshold 0.005 is set here,
for the purpose of getting iterative result with a reasonable
CPU time cost, and this causes the iterative result not very
accurate.

5. Conclusion

The hierarchical matrice methods presented in this paper is
embedded in electromagnetic IE method. Due to its special
structure, we can construct a multilevel SAI preconditioner
to accelerate the convergence of iterative solving, and even
kinds of fast direct solvers can be made, which is not
viable for the traditional IE fast algorithm. The multilevel
SAI preconditioner proposed here is more efficient than
conventional “single level” preconditioners, and hierarchical
fast direct solvers are good alternatives to iterative solvers,
very suitable for ill-conditioned system and multiple right-
hand-side problems. Furthermore, the kernel independence
feature of hierarchical matrices method is adapted to varied
electromagnetic problems without being limited to integral
equation with free-space Green function.
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