
 Open access Proceedings Article DOI:10.1145/2951913.2951935

Hierarchical memory management for parallel programs — Source link

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, Guy E. Blelloch

Institutions: Carnegie Mellon University

Published on: 04 Sep 2016 - International Conference on Functional Programming

Topics: Memory management, Memory hierarchy, Garbage collection, MLton and Heap (data structure)

Related papers:

 Implicitly threaded parallelism in manticore

 A Java fork/join framework

 X10: an object-oriented approach to non-uniform cluster computing

 Implementation of a portable nested data-parallel language

 Habanero-Java library: a Java 8 framework for multicore programming

Share this paper:

View more about this paper here: https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-
4tiqnxxx6i

https://typeset.io/
https://www.doi.org/10.1145/2951913.2951935
https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-4tiqnxxx6i
https://typeset.io/authors/ram-raghunathan-276qi6s5l4
https://typeset.io/authors/stefan-k-muller-1iy1x66zi7
https://typeset.io/authors/umut-a-acar-1u07rsnbvx
https://typeset.io/authors/guy-e-blelloch-3d420y03no
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/international-conference-on-functional-programming-401kpsqk
https://typeset.io/topics/memory-management-32wzxu7n
https://typeset.io/topics/memory-hierarchy-d8ie74py
https://typeset.io/topics/garbage-collection-1y0lwo2p
https://typeset.io/topics/mlton-2dos8vsy
https://typeset.io/topics/heap-data-structure-1blgb5n9
https://typeset.io/papers/implicitly-threaded-parallelism-in-manticore-1k3nzffhci
https://typeset.io/papers/a-java-fork-join-framework-40loxw6xd7
https://typeset.io/papers/x10-an-object-oriented-approach-to-non-uniform-cluster-4dbvtkahpt
https://typeset.io/papers/implementation-of-a-portable-nested-data-parallel-language-1li1qxq7ci
https://typeset.io/papers/habanero-java-library-a-java-8-framework-for-multicore-hdeyf7oz7u
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-4tiqnxxx6i
https://twitter.com/intent/tweet?text=Hierarchical%20memory%20management%20for%20parallel%20programs&url=https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-4tiqnxxx6i
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-4tiqnxxx6i
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-4tiqnxxx6i
https://typeset.io/papers/hierarchical-memory-management-for-parallel-programs-4tiqnxxx6i

HAL Id: hal-01416237
https://hal.inria.fr/hal-01416237

Submitted on 14 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Memory Management for Parallel Programs
Ram Raghunathan, Stefan Muller, Umut Acar, Guy Blelloch

To cite this version:
Ram Raghunathan, Stefan Muller, Umut Acar, Guy Blelloch. Hierarchical Memory Management for
Parallel Programs. Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, Sep 2016, Nara, Japan. 10.1145/3022670.2951935. hal-01416237

https://hal.inria.fr/hal-01416237
https://hal.archives-ouvertes.fr

Hierarchical Memory Management for Parallel Programs

Ram Raghunathan* Stefan K. Muller* Umut A. Acar*† Guy Blelloch*

*Carnegie Mellon University, USA †Inria, France

{ram.r, smuller, umut, blelloch}@cs.cmu.edu

Abstract

An important feature of functional programs is that they are parallel
by default. Implementing an efficient parallel functional language,
however, is a major challenge, in part because the high rate of
allocation and freeing associated with functional programs requires
an efficient and scalable memory manager.

In this paper, we present a technique for parallel memory
management for strict functional languages with nested parallelism.
At the highest level of abstraction, the approach consists of a
technique to organize memory as a hierarchy of heaps, and an
algorithm for performing automatic memory reclamation by taking
advantage of a disentanglement property of parallel functional
programs. More specifically, the idea is to assign to each parallel task
its own heap in memory and organize the heaps in a hierarchy/tree
that mirrors the hierarchy of tasks.

We present a nested-parallel calculus that specifies hierarchical
heaps and prove in this calculus a disentanglement property, which
prohibits a task from accessing objects allocated by another task
that might execute in parallel. Leveraging the disentanglement
property, we present a garbage collection technique that can operate
on any subtree in the memory hierarchy concurrently as other tasks
(and/or other collections) proceed in parallel. We prove the safety
of this collector by formalizing it in the context of our parallel
calculus. In addition, we describe how the proposed techniques can
be implemented on modern shared-memory machines and present
a prototype implementation as an extension to MLton, a high-
performance compiler for the Standard ML language. Finally, we
evaluate the performance of this implementation on a number of
parallel benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Memory management (garbage collection);
D.1.3 [Programming Techniques]: Concurrent Programming — Par-
allel Programming; D.4.1 [Operating Systems]: Process Manage-
ment — Scheduling

General Terms Languages, Performance

Keywords Languages, Memory Management, Parallelism, Schedul-
ing

1. Introduction

In the past two decades, there has been a large body of work on
both parallel garbage collection and parallel scheduling. In this
paper, we propose an approach for coupling the two together, which
is particularly useful in functional languages. The basic idea is to
organize memory in a way that mirrors the structure of parallelism in
the computation and takes advantage of the independence of parallel
tasks to perform garbage collection. While this general idea may be
applicable to the broader array of parallel functional programming
languages, we focus here on strict languages, such as the ML family,
extended with support for nested parallelism.

More specifically, instead of using a single shared heap [6, 9, 21,
26, 32] or a two-level heap consisting of local processor heaps and
a global heap [5, 8, 23, 25, 31, 37], we suggest a hierarchy of heaps
(tree of heaps) that is tied to the nesting of tasks. In nested parallel
(fork-join) parallelism, the tasks form a natural nesting, and memory
that is allocated and referenced has a structure that is related to
this nesting, which we would like to leverage. In strict functional
computations, pointers only point up the hierarchy, creating what
we refer to as a disentangled heap. Furthermore, what is often
understood as temporal locality in sequential programs becomes
nested task locality in nested parallel computations. For example, in
divide-and-conquer algorithms, each node in the recursion tree has
some locality within its subtree [14, 45].

The motivation for organizing the heap into a hierarchy is three-
fold. Firstly, it allows for simpler parallel collection since the nodes
in the tree can be collected individually and separately, especially
if they can be kept disentangled. Secondly, the hierarchical organi-
zation of heaps is better suited for supporting memory locality at
multiple levels of a modern cache hierarchy, for which some of the
higher levels are shared among cores on multiprocessors. By having
the size of heaps grow going up the levels, and moving values up the
heap as they are collected, the approach can be seen as the natural
extension of a multi-level generational collector. Finally, the organi-
zation allows us to naturally tie memory management decisions to
scheduler decisions. For example, a good time to collect is probably
when a task finishes, or a good time to create a heap in the hierarchy
is likely when stealing a task.

We propose a specific memory manager and garbage collec-
tion algorithm based on the hierarchical heaps and disentanglement.
Rather than going directly to a low-level description of the algo-
rithms, we formalize a functional, ML-like language with nested
parallelism and a memory manager by presenting a reasonably high-
level operational semantics that accounts for all the key aspects of
the memory management and collection, while abstracting away
from the details. The semantics models parallelism using nonde-
terministic interleaving of parallel steps. It captures a parallel fork
by “activating” a parallel tuple. This is meant to capture the lower-
level idea of scheduling a parallel task (e.g. stealing the task in a
work-stealing scheduler), and allows for lazy task creation (i.e. if

1

there is plenty of parallelism in the computation, a parallel fork need
never be activated). The semantics captures the hierarchical nature
of the heap and creates new heaps exactly when a parallel tuple
is activated. The model interleaves garbage collection steps with
steps of the mutator. A node in the hierarchy is “locked” and cannot
evaluate when it is being collected, but other nodes are allowed to
evaluate concurrently. Our semantics captures the object-by-object
copying nature of our collector, but ignores details of how memory
is laid out or allocated.

Based on the semantics, we prove that the disentanglement
property holds on programs written in our language, and that the
garbage collector is correct (memory safe and meaning-preserving).

To remain as general as possible, the semantics does not specify
a scheduler, and abstracts over many important details a real im-
plementation must consider such as concurrency, contention, and
performance. We briefly describe the key algorithms and data struc-
tures for realizing the semantics (Section 4) based on a popular
work-stealing scheduler [3, 7, 15].

We have implemented a prototype of our collector as part of
the MLton compiler [39] by adding it to Spoonhower’s parallel
scheduler [47]. The implementation follows our semantics and
design but has to consider a variety of other details. We present
some preliminary performance results on a handful of benchmarks.
The collector achieves good performance compared to both the
existing collector on MLton and the Manticore runtime system [8],
although the numbers are meant as a proof of concept rather than a
careful analysis.

The contributions of this paper include the following.

• A hierarchical model of memory for a nested-parallel functional
language.

• The precise formulation of the disentanglement property in the
context of our nested-parallel functional language, and the proof
that this language guarantees disentanglement.

• The formulation of a hierarchical garbage collection technique
that allows portions of memory to be garbage collected concur-
rently with other tasks.

• The design of a runtime system that realizes the hierarchical
memory management techniques.

• A prototype implementation as an extension to the MLton
compiler for Standard ML, and an evaluation of its performance.

2. Overview

We present a high-level, informal overview of the ideas proposed in
this paper. The rest of the paper makes these ideas precise.

We use the quicksort algorithm as an example and assume an
ML-like, strict, purely functional language with nested parallelism,
where the primitive par creates a tuple by allowing its components
to be evaluated in parallel. Figure 1 shows the code for quicksort in
such a language. For simplicity, we assume that the input contains
no duplicates. The function qsort uses the first item as a pivot to
partition the input list l into less-than and greater-than parts, written
ll and lg, sorts them recursively in parallel, and concatenates the
sorted lists to compute the final sorted output.

Task Tree. We can represent an evaluation of the quicksort algo-
rithm with a task tree consisting of parallel tasks where each task
corresponds to a parallel sub-computation as indicated by the par
primitive. Figure 2 shows such a tree representation of the evalu-
ation of the qsort function on the input list [5; 6; 3; 4; 1; 9].
The nodes of the task tree represent parallel tasks and the edges rep-
resent the control dependencies between them. For example, the root
task, labeled TA, which corresponds to the first call to the function,
forks two new tasks TB and TC .

1 fun qsort l =

2 case l of

3 nil ⇒nil

4 | h::nil ⇒l

5 | h::t ⇒

6 let

7 (ll,lg) = partition h t

8 (sll,slg) = par (qsort ll, qsort lg)

9 in

10 append sll (h::slg)

11 end

Figure 1. The code for quicksort.

qsort [5; 6; 3; 4; 1; 9]

qsort [3; 4; 1] qsort [6; 9]

qsort [1] qsort [4] qsort [] qsort [9]

TA

TB TC

TD TE TF TG

Figure 2. An example run of quicksort. The nodes represent (paral-
lel) tasks and the edges represent the control dependencies between
them.

Memory as a Heap Tree and Disentanglement. Classically, mem-
ory is viewed in programming languages as a flat, unstructured pool
of objects, or a fixed hierarchy of several heaps, referred to as gen-
erations. In this paper, we propose an approach where we structure
memory as a dynamic hierarchy by partitioning memory into heaps,
each of which corresponds to a task in the task tree. To create this
hierarchy, we dedicate a fresh heap to each forked task and allocate
all memory requested by the task in its heap, which the task owns.
When the task completes, we join its heap with that of its parent. As
a result, we can organize the memory at any point during execution
as a hierarchy, represented as a tree of heaps as follows. Let HA

and HB be two heaps. If there is an edge between their owner tasks,
TA and TB, respectively, then insert an edge between HA and HB.
Otherwise, don’t insert any edge. We refer to the resulting tree on
the heaps as a heap tree. The motivation behind our approach is to
organize memory in a way that reflects the structure—specifically
the dependencies—of the computation.

Figure 3 illustrates the task and the heap trees for our example.
Each “qsort” node represents a task. The gray box around the node
represents its heap. Tasks and the edges between them define the task
tree. Heaps and the edges between them define the heap tree. The
figure also shows the data stored in each heap. The root heap, HA,
contains the input list L0 and the two lists obtained via partitioning,
L1 and L2. The task TB takes the input L1 from the root heap HA and
partitions it into two new lists L3 and L4. The task TC takes the input
L2 from the root heap HA and produces the lists L5 and L6.

Having organized memory as a tree of heaps, we observe the
following key disentanglement property. Let TA and TB be any two
tasks in the task tree and let HA and HB be their heaps in the heap
tree. If some object in HA references (or points to) an object in HB at
any time during execution, then HB is an ancestor of HA in the heap
tree. Intuitively speaking, this property holds because, in a purely
functional language, a parallel task has access only to the objects
that have been allocated before its execution or by the task itself,
excluding the objects that are allocated by tasks that might have
been executed in parallel (even if they are not actually executed in
parallel). Such objects are allocated precisely by the tasks that are on
the path from the task to the root of the task tree. Since all memory
allocated by a task is placed in the heap of that task, and since there

2

qsort• L0 = [5; 6; 3; 4; 1; 9]

L1 = [3; 4; 1]

L2 = [6; 9]

qsort• L3 = [1]

L4 = [4]

qsort• L5 = []

L6 = [9]

qsort• qsort• qsort• qsort•

TA

TB TC

TD TE TF TG

HA

HB HC

HD HE HF HG

Figure 3. The heap and task tree for the the quicksort example.
Heaps are shown as gray boxes. As shown by the dashed arrows,
pointers in heaps may point to higher, but not lower or cross, heaps.

is an isomorphism between the heap tree and the task tree as defined
by the ownership relation, the disentanglement property holds. As a
corollary, we can establish the following: if TA is neither an ancestor
nor a descendant of TB, then objects in HA do not reference objects
in HB and objects in HB do not reference objects in HA. In other
words, if TA and TB are concurrent tasks that may be executed in
parallel, then HA and HB are guaranteed to be “disentangled”. As
suggested by disentanglement, in the quicksort example shown in
Figure 3, all pointers in the memory point “up” in the heap tree: if
an object in heap HA points to another object in another heap HB,
then HB is an ancestor of HA.

In Sections 3.1 and 3.2, we make precise this high-level de-
scription of hierarchical heaps and disentanglement by presenting a
semantics that restricts a task’s memory access to its own heap and
ancestor heaps. We prove that a program evaluated with hierarchi-
cal heaps and restricted memory access has the same behavior as it
would have under a standard operational semantics, thus establishing
the disentanglement property.

Garbage Collection. When considered in the context of the heap
tree, the disentanglement property leads us to observe that any
leaf heap H in the heap tree can be collected by the task T that
owns that heap independently of all the other heaps and tasks. This
holds because, via disentanglement, H does not have any “roots”
or pointers into it. Thus, garbage collection of H can proceed as
all the other tasks are executing. A moving (copying) or a non-
moving collection can be used. We can generalize this observation
to any subtree in the heap tree as follows: the heaps in any subtree
of the heap tree can be collected independently of all other heaps.
As with a leaf of the heap tree, a subtree of heaps has no incoming
pointers from outside the subtree, and thus the collection can proceed
concurrently with all other tasks operating on the other heaps. This
means that we can garbage collect a subtree of heaps by stopping
only those tasks that own them as we allow other tasks to continue
executing. Furthermore, the subtree can be garbage collected in
parallel by taking advantage of disentanglement: all the leaves can
be collected in parallel and, after their collections are completed,
the parents of the leaves may be collected in parallel, and so on until
the root is reached.

For example, in Figure 3, we can garbage collect heaps HB,HD

and HE , which form a subtree rooted at HB, by stopping only the
tasks TB,TD and TE , which own the heaps. To garbage collect the
subtree, we can collect HD and HE in parallel, and then HB.

In Section 3.3, we make precise this informal description of
garbage collection and establish its correctness by showing that
collection does not free rechable locations (memory safety) or alter
the behavior of the program (meaning preservation).

Types τ ::= nat | τ1 → τ2 | τ1 × τ2
Large Values v ::= n | fun f x is e end | 〈ℓ, ℓ〉

Heaps H ::= ∅ | H[ℓ 7→ v]
(Heap) Paths P ::= [] | H :: P

Expressions e ::= x | ℓ | v | e e |

fst(e) | snd(e) | 〈e, e〉 | ⊳ e, e⊲ | ◭ T,T ◮

Tasks T ::= H · e

Figure 4. Syntax of λHP

Heap typing ⊢Σ′ H : Σ

⊢Σ ∅ : ·

· ⊢Σ,Σ′ v : τ ⊢Σ′ H : Σ

⊢Σ′ H[ℓ 7→ v] : Σ, ℓ : τ

Path typing P : Σ

[] : ·
S-EPath

⊢Σ2
H : Σ1 P : Σ2

H :: P : Σ2,Σ1

S-Path

Expression typing Γ ⊢P e : τ

Γ, x : τ ⊢Σ x : τ
S-Var

Γ ⊢Σ,ℓ:τ ℓ : τ
S-Loc

Γ ⊢Σ n : nat
S-Nat

Γ, x : τ, f : τ→ τ′ ⊢Σ e : τ′

Γ ⊢Σ fun f x is e end : τ→ τ′
S-Fun

Γ ⊢Σ e1 : τ1 Γ ⊢Σ e2 : τ2

Γ ⊢Σ 〈e1, e2〉 : τ1 × τ2
S-Pair

Γ ⊢Σ e1 : τ→ τ′ Γ ⊢Σ e2 : τ

Γ ⊢Σ e1 e2 : τ′
S-App

Γ ⊢Σ e : τ1 × τ2

Γ ⊢Σ fst(e) : τ1
S-Fst

Γ ⊢Σ e : τ1 × τ2

Γ ⊢Σ snd(e) : τ2
S-Snd

Γ ⊢Σ e1 : τ1 Γ ⊢Σ e2 : τ2

Γ ⊢Σ ⊳ e1, e2 ⊲ : τ1 × τ2
S-Par

Γ ⊢Σ T1 : τ1 Γ ⊢Σ T2 : τ2

Γ ⊢Σ ◭ T1,T2 ◮ : τ1 × τ2
S-ParA

Task typing Γ ⊢Σ T : τ

⊢Σ′ H : Σ Γ ⊢Σ,Σ′ e : τ

Γ ⊢Σ′ H · e : τ
S-RunTask

Figure 5. Statics of λHP

3. The Language

We present an ML-style functional calculus called λHP and an
operational semantics that accounts for memory allocation and the
scheduling of tasks, and enforces the property that tasks access
memory only in their own heap and ancestor heaps. We then
show that any λHP program is disentangled in that it may be run
safely and that it is both deterministic and equivalent to a standard
“flat” semantics where memory is treated conventionally. We then
formalize a hierarchical memory manager on top of λHP and prove
its correctness.

3.1 A Core Calculus for Disentanglement

Abstract syntax. Figure 4 shows the syntax of the language λHP.
The types include natural numbers (as the sole base type), functions
and products. To present a precise accounting of memory oper-
ations, we distinguish between large values v, which are always
allocated in the heap, and small values consisting only of memory
locations, written ℓ. Large values include natural numbers, named
recursive functions and pairs of heap locations. Large values are not
irreducible, but rather step to heap locations ℓ, which are the only

3

ℓ fresh

H; v→P ℓ; H[ℓ 7→ v]
D-Alloc

H :: P; ℓ1
lookup
−−−−−→ fun f x is e end

H :: P; ℓ2
lookup
−−−−−→ v

H; ℓ1 ℓ2 →P [ℓ1, ℓ2/ f , x]e; H
D-AppE

H; e1 →P e′1; H′

H; e1 e2 →P e′1 e2; H′
D-AppS1

H; e2 →P e′2; H′

H; ℓ1 e2 →P ℓ1 e′2; H′
D-AppS2

H :: P; ℓ
lookup
−−−−−→ 〈v1, v2〉

H; fst(ℓ)→P v1; H
D-FstE

H; e→P e′; H′

H; fst(e)→P fst(e
′); H′

D-FstS
H :: P; ℓ

lookup
−−−−−→ 〈v1, v2〉

H; snd(ℓ)→P v2; H
D-SndE

H; e→P e′; H′

H; snd(e)→P snd(e
′); H′

D-SndS

H; e1 →P e′1; H′

H; 〈e1, e2〉 →P 〈e
′
1, e2〉; H′

D-PairS1
H; e2 →P e′2; H′

H; 〈ℓ1, e2〉 →P 〈ℓ1, e
′
2〉; H′

D-PairS2
H;⊳ ℓ1, ℓ2 ⊲→P 〈ℓ1, ℓ2〉; H

D-ParE

H; e1 →P e′1; H′

H;⊳ e1, e2 ⊲→P ⊳ e′1, e2 ⊲; H′
D-ParS1

H; e2 →P e′2; H′

H;⊳ ℓ1, e2 ⊲→P ⊳ ℓ1, e
′
2 ⊲; H′

D-ParS2
T1 = ∅ · e1 T2 = ∅ · e2

H;⊳ e1, e2 ⊲→P ◭ T1,T2 ◮; H
D-Activate

T1 = H1 · ℓ1 T2 = H2 · ℓ2

H;◭ T1,T2 ◮→P 〈ℓ1, ℓ2〉; H ⊎ H1 ⊎ H2

D-ParAE
T1 ⇒H::P T ′1

H;◭ T1,T2 ◮→P ◭ T ′1,T2 ◮; H
D-ParAS1

T2 ⇒H::P T ′2

H;◭ T1,T2 ◮→P ◭ T1,T
′
2 ◮; H

D-ParAS2

Figure 6. Dynamics of λHP

Lookup

H(ℓ) = v

H :: P; ℓ
lookup
−−−−→ v

LU1
ℓ < dom(H) P; ℓ

lookup
−−−−→ v

H :: P; ℓ
lookup
−−−−→ v

LU2

Task transitions H; e→P e′; H′

H · e⇒P H′ · e′
D-TaskStep

Figure 7. Auxiliary dynamic judgments of λHP

irreducible values of the language. Since small values consist only
of locations, we use the term “value” to refer to a large value and
“location” to refer to a small value.

In λHP, we organize memory as a tree of heaps and restrict
expressions to access only part of the memory (along a path going
up the hierarchy). A heap, written H (and variants), is simply a
mapping from locations to (large) values. A heap path or simply a
path, written as P (and variants), is a list or stack of heaps. A path
represents a leaf-to-root path in the heap tree; it is the collection of
heaps to which an expression has access.

Expressions of λHP include locations and (large) values, introduc-
tion and elimination forms for the standard types such as function ap-
plication, projection and pair creation, and parallel tuples ⊳ e1, e2 ⊲.
Parallel tuples are evaluated sequentially by default, but may be
activated for parallel evaluation. An active parallel tuple, ◭ T1,T2 ◮,
consists of two parallel tasks, T1 and T2, which correspond to the
components of the tuple.

A task, H · e, consists of an expression e and a heap H. The
heap H serves as the portion of the memory that is private to the
expression e, i.e., H is visible only to the expression e (including
subexpressions of e). The reader may wonder why we introduce
tasks as a level of indirection in the syntax since they can take only
one form (H · e). When we formalize the memory manager, we will
introduce another form of task, and the separation will make the
presentation cleaner, so we adopt it now.

Statics. Figure 5 illustrates the static semantics of the calculus.
Apart from the treatment of memory, the statics semantics of λHP is
relatively standard. We first describe the typing of heaps and paths.

We ascribe type signatures to heaps and paths. A signature
is a mapping from locations to types. The heap typing judgment

⊢Σ′ H : Σ ascribes the signature Σ to heap H under path signature Σ′,
allowing the values in H to refer to locations in Σ′. The empty heap
∅ is given the empty signature ·. The signature for a non-empty heap
H is defined inductively: each binding ℓ 7→ v extends the signature
with ℓ : τ if v has type τ under the union of Σ′ and the signature Σ
of H. By typing the contents of a heap under locations from both
the path Σ′ and the heap Σ, we allow a value in the heap to refer to
locations in both the private and shared parts of the memory.

The signature of a path P, which is a list of disjoint heaps, is the
union of the signatures of the individual heaps making up the path.

The expression typing judgment has the form Γ ⊢Σ e : τ,
indicating that e has type τ under variable context Γ and path
signature Σ. Most of the typing rules seem standard: a location is
well-typed if it is in the path signature and all the other expressions
are typed in the usual way. There is an important point, however. An
expression is typed only with respect to a path and not the whole
memory, and the expression therefore may not have access to the
whole memory. This point becomes evident when typing parallel
tuples and tasks. The rule for active parallel tuples, S-ParA, requires
that each constituent task be well-typed under the the same path
signature. For each task H · e, the typing rule ensures that e is well-
typed under the union of the path signature, representing the shared
memory, and the signature of H, representing the private memory.

Dynamics. The dynamics for λHP, shown in Figure 6, use a small-
step transition judgment H; e→P e′; H′, which indicates that under
heap H and path P, e steps to e′ and produces new heap H′. In
the judgment, H is the hierarchical heap that is private to this
computation and will be used for lookup as well as allocation. The
path P is the shared memory for e, consisting of the hierarchical
heaps on the path from H to the root (excluding H).

The step relation uses the heaps on the path for lookups but
not for allocation. In other words, the heaps on the path are read-
only and are never modified; for this reason, we think of evaluation
taking place in the context of a path, which we write as a subscript
of the evaluation judgment. The impact of the distinction between
heaps and paths can be seen in the rules for lookup and allocation.

The auxiliary lookup judgment P; ℓ
lookup
−−−−→ v, defined in Figure 7,

indicates that looking up the location ℓ in path P results in v. The
rules are defined inductively on the path P: the rule looks first in
the heap at the head of the path (the private heap) and, if ℓ is not
found, the rest of the path is scanned recursively. The allocation

4

rule D-Alloc allocates a fresh location ℓ in the heap H, binds the
location to v, and returns ℓ.

The rules for function and product types are standard for a call-
by-value calculus with left-to-right evaluation. Function application
and projection evaluate the subexpressions down to heap locations,
look up the locations in the path, and perform the operation. For
technical reasons, the function application rule requires that the
location ℓ2 be bound, but doesn’t immediately use the value.

Sequential and inactive parallel tuples evaluate the first compo-
nent to a location, followed by the second. If both components of
a parallel tuple are evaluated fully before the tuple is activated, it
changes into a pair 〈ℓ1, ℓ2〉 (rule D-ParE). A parallel tuple may also
be activated at any time, non-deterministically, by rule D-Activate.
This models the possibility that another processor may begin evalu-
ating one of the components in parallel. The activation rule changes
the tuple into an active parallel tuple with two new tasks (each
with a new, initially empty, private heap). Once a parallel tuple
is activated, either component task may evaluate at any time us-
ing rules D-ParAS1 and D-ParAS2. (The rule D-ParAS2 does not
require e1 to be fully reduced to a location.)

The transition judgment for tasks, T ⇒P T ′ indicates that, under
path P, task T steps to T ′. It doesn’t include a private heap since
that is internal to the task. Only the internal private heap may be
modified, so P is read-only. Rule D-TaskStep (Figure 7) allows e to
step using the expression step judgment.

When a component of a parallel tuple is stepped (the premises
of D-ParAS1 and D-ParAS2), the heap for the tuple, H, is consed
onto the current path and becomes part of the shared memory. This
means that a heap becomes read-only when it is not at a leaf of the
heap tree. When both components of an active parallel tuple are
evaluated down to locations, the tuple steps to an ordinary pair using
rule D-ParAE and merges the two local heaps into the parent heap.

3.2 Disentanglement

We state and prove one of this paper’s key contributions: that
purely functional programs written in λHP have the disentanglement
property. Recall that we have defined disentanglement informally
as the property that parallel tasks can only access data allocated
by ancestors. We have formulated the semantics of λHP based on
this property by restricting a task to access only the locations that
are allocated in its own and its ancestors’ heaps. To prove that an
arbitrary λHP program has the disentanglement property, we first
show that a well-typed program never gets stuck. This familiar type
safety property guarantees that the restrictions placed on the memory
accesses do not cause a program to get stuck (such as by accessing
a memory location in a sibling or descendant heap).

We then show that a well-typed program yields the same result
and exhibits the same termination behavior as it does under more
traditional semantics. In other words, we show that, for a well-
typed program, a run using hierarchical heaps and a run using
conventional semantics either 1) produce the same result or 2) both
do not terminate. This result also suffices to show that λHP programs
are deterministic. We prove it by giving a standard operational
semantics for terms which syntactically resemble λHP without heap
locations or active parallel tuples. We define a transformation, called
flattening, from arbitrary λHP expressions to such flat expressions,
and show that the operational semantics of Figure 6 coincide with
the storeless semantics up to flattening.

Type Safety. We first establish that well-typed terms do not be-
come stuck by establishing progress and preservation. The proofs
are straightforward, but two lemmas are required. The first states
that if a path P is well-typed with a context that contains ℓ, then P
contains a binding for ℓ with a value of the correct type.

Lemma 1. If P : Σ, ℓ : τ, then there exists a value v such that

P; ℓ
lookup
−−−−→ v and Γ ⊢Σ,ℓ:τ v : τ.

Proof. By construction. �

The second lemma is an important property of heaps, which
states that a merged heap is well-typed.

Lemma 2. If H : Σ and H′ : Σ′, then (H ⊎ H′) : Σ,Σ′.

Proof. By induction on the derivation of H′ : Σ′. If H′ = ∅, then the
result is trivial. Otherwise, H′ = H′′[ℓ 7→ v] and Σ′ = Σ′′, ℓ : τ. By
induction, (H⊎H′′) : Σ,Σ′′. By the heap typing rules and weakening,
H ⊎ H′ = (H ⊎ H′′)[ℓ 7→ v] : Σ,Σ′′, ℓ : τ = Σ,Σ′. �

We now state and prove the preservation and progress lemmas.

Lemma 3 (Preservation). If Γ ⊢Σ2 ,Σ1
e : τ and H : Σ1 and P : Σ2

and H; e →P e′; H′, then H′ : Σ′
1

where Σ′
1

is an extension of Σ1,
and Γ ⊢Σ2 ,Σ

′
1

e : τ.

Proof. By induction on the derivation of H; e→P e′; H′. �

Lemma 4 (Progress). If · ⊢Σ2 ,Σ1
e : τ and H : Σ1 and P : Σ2,

then either e is a location or there exist e′ and H′ such that
H; e→P e′; H′.

Proof. By induction on the derivation of · ⊢Σ2 ,Σ1
e : τ. �

Correspondence with flattened semantics. Figure 8 defines the
flattening transformation, which converts a λHP expression into a
flat expression with no nested tasks and no free heap locations (but
which is still a valid expression in the λHP syntax). The judgment
‖e‖P { ê indicates that expression e flattens to ê under path P.
The transformation is defined inductively. There are two important
rules to note. Locations are looked up in the path and the resulting
value is recursively flattened (this will terminate since heaps and
heap paths have no cycles). The flattened value is substituted for
the location. The rule for active parallel tuples recursively flattens
the two subexpressions, adding the local heaps to the path, and then
converts the active tuple into an inactive tuple, thus flattening the
hierarchy.

We make three observations about the flattening transformation:

• If e contains no active parallel tuples or heap locations (it may
be a source program that has not yet begun executing), then
‖e‖∅::[] { e.

• If ℓ ∈ dom(P) and ‖ℓ‖P { v̂, then v̂ is simply the value at ℓ
“lifted” so that it is closed with respect to the heap.

• Flattening is deterministic: if ‖e‖P { ê1 and ‖e‖P { ê2, then
ê1 = ê2.

Flattened expressions may be run using the simple operational
semantics of Figure 9. No path or heap is required, since these
expressions have no heap locations. There is now no notion of
“active” parallel tuples, and instead (formerly “inactive”) parallel
tuples may evaluate in parallel using rules F-ParS1 and F-ParS2.
While these parallel evaluation rules allow for nondeterministic
interleavings, evaluation is nevertheless deterministic. As usual,
we show this using an intermediate result, the diamond lemma,
which states that if an expression steps to two different expressions
in one step, they can be “brought back together” in one step. We
do not immediately prove confluence, the generalization of the
diamond property to multi-step evaluation. This will be part of the
disentanglement theorem.

Lemma 5 (Diamond Lemma). If e → e1 and e → e2, then there
exists e′ such that e1 → e′ and e2 → e′.

5

‖n‖P { n

‖e‖P { ê

‖fun f x is e end‖P { fun f x is ê end

‖e1‖P { ê1 ‖e2‖P { ê2

‖〈e1, e2〉‖P { 〈ê1, ê2〉

P; ℓ
lookup
−−−−−→ v ‖v‖P { v̂

‖ℓ‖P { v̂

‖e1‖P { ê1 ‖e2‖P { ê2

‖e1 e2‖P { ê1 ê2

‖e‖P { ê

‖fst(e)‖P { fst(ê)

‖e‖P { ê

‖snd(e)‖P { snd(ê)

‖e1‖P { ê1 ‖e2‖P { ê2

‖⊳ e1, e2 ⊲‖P { ⊳ ê1, ê2 ⊲

‖e1‖H1::P { ê1 ‖e2‖H2::P { ê2

‖◭H1 · e1,H2 · e2 ◮‖P { ⊳ ê1, ê2 ⊲

Figure 8. The flattening transformation

Proof. By induction on the derivations of e→ e1 and e→ e2. The
only cases in which the two derivations instantiate different rules are
(F-ParS1, F-ParS2) and (F-ParS2, F-ParS1). These are symmetric,
so we consider the first one. In this case, ⊳ e1, e2 ⊲ → ⊳ e′

1
, e2 ⊲

and ⊳ e1, e2 ⊲ → ⊳ e1, e
′
2
⊲, where e1 → e′

1
and e2 → e′

2
. Let

e′ = ⊳ e′
1
, e′

2
⊲. By rule F-ParS2, ⊳ e′

1
, e2 ⊲ → e′ and by rule F-

ParS1, ⊳ e1, e
′
2
⊲→ e′. �

We prove two lemmas regarding the flattening operation which
will be necessary in the disentanglement proof. First, flattening
commutes with substitution.

Lemma 6. If ‖v‖P { v̂ and ‖e‖P { ê, then ‖[v/x]e‖P { [v̂/x]ê.

Proof. By induction on the derivation of ‖e‖P { ê. �

Next, the flattening transformation is unaffected by changing the
structure of the path (as long as existing bindings are preserved) or
by adding bindings.

Lemma 7. Suppose dom(H1) ∩ dom(P) = ∅ and dom(H2) ∩
dom(H1 :: P) = ∅.

1. If ‖e‖H2::H1::P { ê then ‖e‖(H2⊎H1)::P { ê.

2. If ‖e‖H1::P { ê then ‖e‖(H2⊎H1)::P { ê.

Proof. Both parts are by induction on the flattening derivation.
The interesting case in both parts is the case for locations. (1) If

H2 :: H1 :: P; ℓ
lookup
−−−−→ v, then either H1(ℓ) = v or H2(ℓ) = v or

P; ℓ
lookup
−−−−→ v. In any of these cases, H2 ⊎ H1 :: P; ℓ

lookup
−−−−→ v. By

induction, ‖v‖H2⊎H1::P { ê.

(2) If H1 :: P; ℓ
lookup
−−−−→ v, then either H1(ℓ) = v or P; ℓ

lookup
−−−−→ v, so

H2 ⊎ H1 :: P; ℓ
lookup
−−−−→ v. By induction, ‖v‖H2⊎H1::P { ê. �

We now show that the hierarchical semantics of Figure 6 and the
“flattened” operational semantics of Figure 9 can simulate each other.
Lemma 8 shows one direction: a step of hierarchical evaluation can
be simulated by zero or one steps of flattened evaluation (possibly
zero since flattened evaluation does not have to perform allocation
or activation). Conversely, Lemma 9 shows that a single step of
flattened evaluation can be simulated by one or more steps of λHP

evaluation. This situation is shown graphically in Figure 10.

Lemma 8. Suppose that H; e →P e′; H′ and ‖e‖H::P { ê. Then
either ‖e′‖H′::P { ê or ‖e′‖H′::P { ê′ and ê→ ê′.

Proof. By induction on the derivation of H; e→P e′; H′. �

Lemma 9. Suppose that ê→ ê′ and ‖e‖H::P { ê. Then there exist
H′ and e′ such that H; e→∗P e′; H′ and ‖e′‖H′::P { ê′.

Proof. By induction on the derivation of ê→ ê′. �

Disentanglement. Finally, we state and prove the disentanglement
theorem, which formalizes the two properties (type safety and
correspondence with flattened semantics) outlined at the beginning
of this section. If a source program e is well-typed and it evaluates
to e′, then (1) e′ is not stuck and (2) for any flattened evaluation of e
to ê′ (e′ and ê′ need not be related), e′ and ê′ may be brought back
together in the style of confluence.

Theorem 1 (Disentanglement). Suppose e is a source program with
no active parallel tuples. If · ⊢· e : τ and ∅; e→∗

[]
e′; H′, then

1. Either e′ is a location or there exists e′′ such that

H′; e′ →[] e′′; H′′

2. If e→∗ ê′, then there exist H′′ and e′′ and ê′′ such that

H′; e′ →∗[] e′′; H′′

and ê′ →∗ ê′′ and ‖e′′‖H′′::[] { ê′′.

Proof. 1. We show by induction on the derivation of ∅; e→∗
[]

e′; H′

that ⊢· H′ : Σ for some Σ and that · ⊢Σ e′ : τ. From this, the result
follows from Lemma 4. If e′ = e and H′ = ∅, then ⊢· H′ : · and
the typing result on e′ was assumed. Otherwise, ∅; e→∗

[]
e0; H0

and H0; e0;→[] e′; H′. By induction, there exists Σ0 such that
⊢· H0 : Σ0 and · ⊢Σ0

e0 : τ. The typing result for e′ follows from
Lemma 3.

2. We have ‖e‖∅::[] { e. By inductive application of Lemma 8,
we have e →∗ ê′

1
and ‖e′‖H′::[] { ê′

1
. By a standard inductive

application of Lemma 5, there exists ê′′ such that ê′ →∗ ê′′ and
ê′

1
→∗ ê′′. By an inductive application of Lemma 9 to the latter

derivation, there exist e′′ and H′′ such that H′; e′ →∗
[]

e′′; H′′

and ‖e′′‖H′′::[] { ê′′.
�

Part (2) of Theorem 1, as well as its proof, is illustrated graphi-
cally in Figure 11. This statement is surprisingly powerful. In par-
ticular, it immediately implies that if e terminates with flattened
semantics, it terminates with hierarchical semantics, and vice versa,
that both semantics are deterministic and that they both produce the
same result up to flattening. Each of these statements is simply an
instantiation of Theorem 1.

Corollary 1. 1. If e →∗ v̂, then there exist ℓ and H such that
∅; e→∗

[]
ℓ; H and ‖ℓ‖H::[] { v̂.

2. If ∅; e →∗
[]
ℓ; H, then there exists v̂ such that e →∗ v̂ and

‖ℓ‖H::[] { v̂.

3. If ∅; e→∗
[]
ℓ; H and e→∗ v̂, then ‖ℓ‖H::[] { v̂.

4. If e→∗ v̂1 and e→∗ v̂2, then v̂1 = v̂2.

5. If ∅; e →∗
[]
ℓ1; H1 and ∅; e →∗

[]
ℓ2; H2, then there exists v̂ such

that ‖ℓ1‖H1::[] { v̂ and ‖ℓ2‖H2::[] { v̂.

3.3 Hierarchical Garbage Collection

We describe a hierarchical garbage collector, dubbed HGC, that
takes advantage of disentanglement to perform concurrent garbage
collection at the granularity of tasks. The collector HGC can collect
any heap in the heap hierarchy by stopping the task that owns
the heap along with its descendant tasks, while all other (non-
descendant) tasks continue executing. Any number of independent
heaps, which are not descendants and ancestors of each other, can
be collected in parallel. The collector HGC is thus able to perform
garbage collection without incurring additional synchronization

6

(fun f x is e end) v→ [fun f x is e end, v/ f , x]e
F-AppE

e1 → e′1

e1 e2 → e′1 e2

F-AppS1
e2 → e′2

(fun f x is e1 end) e2 → (fun f x is e1 end) e′2
F-AppS2

⊳ v1, v2 ⊲→ 〈v1, v2〉
F-ParE

e1 → e′1

⊳ e1, e2 ⊲→ ⊳ e′1, e2 ⊲
F-ParS1

e2 → e′2

⊳ e1, e2 ⊲→ ⊳ e1, e
′
2 ⊲

F-ParS2

e1 → e′1

〈e1, e2〉 → 〈e
′
1, e2〉

F-PairS1
e2 → e′2

〈v1, e2〉 → 〈v1, e
′
2〉

F-PairS2

fst(〈v1, v2〉)→ v1

D-FstE
e→ e′

fst(e)→ fst(e′)
D-FstS

snd(〈v1, v2〉)→ v2

D-SndE
e→ e′

snd(e)→ snd(e′)
D-SndS

Figure 9. The dynamics for the flattened semantics.

e1 e2 e3 e4 e5 e6

ê1 ê2 ê3

Lem. 8 Lem. 9

Figure 10. An illustration of the relationship between hierarchical
and flattened evaluation. Straight lines are (hierarchical or flattened)
evaluation and curved lines indicate the flattening transformation.

e ∅; e

H′; e′ê′ ê1

H′′, e′′ê′′

∗∗ Lem. 8

∗

Lem. 5

∗ Lem. 9

reflexivity

Lem. 9

Lem. 8

Figure 11. Theorem 1 and its proof. Assumptions are shown by
solid black lines, results of the theorem by dashed black lines and
intermediate results in the proof by dotted gray lines.

between the mutator and the collector. The main result of this
subsection is the proof of correctness for HGC.

We formalize the outlined hierarchical garbage collector for λHP.
The collector we formalize is a semispace copying collector, though
other garbage collection algorithms could be used as well. Since the
structure of a λHP program already contains hierarchical tasks and
heaps, formalizing the collection algorithm requires few changes to
the semantics. In fact, we simply need to introduce a new form for
tasks to represent a task which is locked for collection, and several
dynamic rules to perform garbage collection on tasks.

Our approach in formalizing the collection algorithm is inspired
by Morrisett et al. [40]. While they analyze only stop-the-world
collectors for sequential languages and their formalisms do not
capture some of the details that ours does, we borrow their language-
based approach for high-level descriptions of collection algorithms
as well as much of their notation.

Syntax. The first change is to introduce a new form of task, as
shown at the top of Figure 12. The new form, 〈H f ; S ; Ht; F〉 ·[e],
represents an expression e which is locked to perform garbage
collection. The tuple represents a heap which is in an intermediate
state of collection, in which some locations have already been copied
to the to-heap Ht and the rest remain in the from-heap H f . The
second component, S , is the scan set or frontier, the set of locations
that have been seen by the collector but not yet copied. The final
component, F, is a forwarding map. It is a finite map whose domain

Tasks T ::= H · e | 〈H; S ; H; F〉 ·[e]

⊢Σ′ F(H f) ⊎ Ht : Σ Γ ⊢Σ,Σ′ e : τ S = FL(Ht · e)

Γ ⊢Σ′ 〈H f ; S ; Ht; F〉 ·[e] : τ
S-GCTask

T →GC T ′

T ⇒P T ′
D-GCStep

S ′ = S ∪ (FL(F′(v)) \ (dom(Ht) ⊎ {ℓ
′})) ℓ′ fresh

F′ = F[ℓ 7→ ℓ′] H′t = [ℓ 7→ ℓ′](Ht[ℓ 7→ F(v)])

〈H f [ℓ 7→ v]; S ⊎ {ℓ}; Ht; F〉 ·[e]→GC

〈H f ; S ′; H′t ; F′〉 ·[[ℓ 7→ ℓ′](e)]

HGC-Copy

H · e→GC 〈H; FL(e); ∅; ∅〉 ·[e]
HGC-StartGC

dom(H f) ∩ S = ∅

〈H f ; S ; Ht; F〉 ·[e]→GC Ht · e
HGC-EndGC

Figure 12. Syntax, Statics and Dynamics for garbage collection

and codomain both consist of heap locations, and it maps locations
formerly bound in H f to the locations in Ht to which they have
been copied. This allows us to make sense of values in H f , which
may refer to locations which have already been renamed and copied
to Ht. The forwarding map models forwarding pointers, which
are commonly used to perform this function in practical copying
garbage collectors. For notational convenience, we implicitly extend
the domain of forwarding maps by mapping locations that are not in
the domain to themselves:

F(ℓ) :=

{

F(ℓ) ℓ ∈ dom(F)
ℓ ℓ < dom(F).

We will also use the notation F(e) to denote an expression in which
every free location ℓ has been replaced with F(ℓ). We extend F to
operate on heaps in the following way:

F(H) :={F(ℓ) 7→ F(v) | ℓ 7→ v ∈ H}

and on signatures in the following way:

F(Σ) :={F(ℓ) 7→ F(v) | ℓ 7→ v ∈ Σ}

A particularly common usage of the forwarding map is the
notation [ℓ 7→ ℓ′](e) (and similar for heaps and signatures), in
which e is forwarded with the singleton forwarding map forwarding
ℓ to ℓ′. In addition, we use F[ℓ 7→ ℓ′] to indicate the extension of
the map F with a mapping from ℓ to ℓ′.

7

Statics. The typing rule for the new form of task is given in
Figure 12. The rule uses the rules for typing heaps to assign a
signature to the concatenation of the from- and to-heaps. Since
values in H f might refer to locations that have already been copied,
we forward the values of H f before concatenating with Ht. The
expression must be well-typed under the concatenation of the global
signature Σ′ and this new signature Σ. In addition, the typing rule
also enforces a key invariant of garbage collection: that the scan set
S is equal to the set FL(Ht · e) of locations that appear free in either
e or a binding of Ht and are not bound in Ht. Formally,

FL(Ht · e) ,

FL(e) ∪
⋃

ℓ∈dom(Ht)

FL(Ht(ℓ))

\ dom(Ht)

Dynamics. Note that if a collection is in progress and the task is of
the form H ·[e], no rule allows e to step, so no changes are required
to the semantics to ensure that e is in fact locked during collection.
Instead, we introduce a new transition rule for tasks, D-GCStep,
which allows the task to proceed with collection. The auxiliary
judgment T →GC T ′ indicates that a step of garbage collection
transforms T into T ′.

Our garbage collection algorithm uses a small-step semantics,
where one step (atomically) copies a single location. A full garbage
collection will therefore involve many individual steps, which
can be freely interleaved with evaluation or collection on other
processors. Figure 12 gives the transition rules for collection. Rule
HGC-StartGC locks the task for collection and sets up the tuple
by using the existing heap, H, as the from-heap, initializing the
to-heap and the forwarding map to be empty and the scan set to
be FL(e), the roots of the expression. Rule HGC-Copy performs
one step of collection. The rule takes a location from S which is
present in H f , copies its value v, and adds to S the locations of v
which have not already been copied. Rule HGC-EndGC requires
that dom(H f) ∩ S = ∅, i.e. that there are no remaining locations
to be collected. If this is the case, e is unlocked and the to-heap
becomes the new heap.

Rule HGC-StartGC can apply to a task nondeterministically at
any time, and so our semantics does not specify when collections
can or should occur. Also note that a collection in the semantics
can collect any heap in the hierarchy at any time. An entire subtree
is locked, but only the heap at the root of that subtree is collected.
However, this property also means that, because our safety proofs
are parametrized over any possible evaluation, our theorems will
allow for a variety of possible policies for both when to trigger a
collection and what subtrees to collect at what times. For example,
the policy for collecting a subtree described in Section 2 may be
reproduced in the semantics by locking and collecting all leaves
of a subtree, then immediately locking and collecting their parents,
and so on until the root of the subtree is collected. Because any
collection occurs over a number of single steps, unrelated tasks can
execute or perform garbage collection while a collection is taking
place. Thus, we effectively model parallel collection.

3.3.1 Safety and Correctness Proofs

We will now proceed to prove that our collection algorithm is mem-
ory safe, that is, it never frees a location that will be dereferenced
later. Because our calculus is typed and dereferencing a freed loca-
tion is a stuck state, memory safety is an immediate corollary of type
safety. Thus, we only need to update the progress and preservation
proofs to handle the new rules. Several lemmas are required. One
important lemma is that garbage collection preserves typing, in that
if e is well-typed under heap H ⊎ H′ and H is discarded by garbage
collection, e is also well-typed under heap H′. The signature of
the higher levels of the hierarchy, notated Σ1 in the lemma, does
not change. Both H and H′ are typed under Σ1. We also allow the
expression to refer to additional locations in another signature, Σ2.

This contains locations at levels lower than the level being collected.
In using this lemma to prove preservation, we will only be inter-
ested in the case where Σ2 is empty because we want to show type
preservation of the expression whose heap is being collected. How-
ever, Σ2 is necessary for the proof of the lemma, when inducting on
expressions containing nested heaps.

Lemma 10. If ⊢Σ1
H ⊎ H′ : Σ and ⊢Σ1

H′ : Σ′ and Γ ⊢Σ1 ,Σ,Σ2
e : τ

and FL(H′ · e) ∩ dom(H) = ∅, then Γ ⊢Σ1 ,Σ
′ ,Σ2

e : τ.

Proof. By induction on the derivation of Γ ⊢Σ1 ,Σ,Σ2
e : τ. �

Lemma 11 states that typing of an expression is preserved by
performing renamings on both the expression and signature.

Lemma 11. If Γ ⊢Σ e : τ, then Γ ⊢[ℓ 7→ℓ′](Σ) [ℓ 7→ ℓ′](e) : τ.

Proof. By induction on the derivation of Γ ⊢Σ e : τ. �

We now restate the preservation and progress theorems and prove
them for the full language, including garbage collection.

Theorem 2 (Preservation). If Γ ⊢Σ2 ,Σ1
e : τ and H : Σ1 and P : Σ2

and H; e →P e′; H′, then H′ : Σ′
1

where Σ′
1

is an extension of Σ1,
and Γ ⊢Σ2 ,Σ

′
1

e : τ.

Proof. We consider the cases for garbage collection T →GC T ′

where, without loss of generality, e = ◭ T,T2 ◮ and τ = τ1 × τ2.

• HGC-StartGC. Then T = H · e1. By typing inversion, H : Σ
and Γ ⊢Σ2 ,Σ1 ,Σ

e1 : τ1. We have that ∅(H) ⊎ ∅ = H : Σ, so by
task typing, Γ ⊢Σ2 ,Σ1

〈H; FL(e1); ∅; ∅〉 ·[e1] : τ1. By definition,
FL(e1) = FL(∅ · e1).

• HGC-Copy. Then T = 〈Ht[ℓ 7→ v]; S ⊎ {ℓ}; Ht; F〉 ·[e1]. By
typing inversion, F(H f [ℓ 7→ v]) ⊎ Ht : Σ and Γ ⊢Σ2 ,Σ1 ,Σ

e1 : τ1.
We have F′(H f) ⊎ H′t = [ℓ 7→ ℓ′](F(H f) ⊎ Ht[ℓ 7→ F(v)]) =
[ℓ 7→ ℓ′](F(H f [ℓ 7→ v]) ⊎ Ht) : [ℓ 7→ ℓ′](Σ) and, since
[ℓ 7→ ℓ′](Σ2,Σ1,Σ) = Σ2,Σ1, [ℓ 7→ ℓ

′](Σ), Lemma 11 gives
Γ ⊢Σ2 ,Σ1 ,[ℓ 7→ℓ

′](Σ) [ℓ 7→ ℓ′](e1) : τ1. It is a straightforward exercise
to show that S ′ = FL(Ht ·[ℓ 7→ ℓ

′](e1)).

• HGC-EndGC. Then T = 〈H f ; S ; Ht; F〉 ·[e]. By typing inversion,
F(H f) ⊎ Ht : Σ and Γ ⊢Σ2 ,Σ1 ,Σ

e1 : τ1 and S = FL(Ht · e1), so
FL(Ht · e1) ∩ dom(H f) = ∅. If Ht : Σt, by Lemma 10, Γ ⊢Σ2 ,Σ1 ,Σt

e1 : τ1. By the task typing rules, we have Γ ⊢Σ2 ,Σ1
Ht · e1 : τ1.

�

Theorem 3 (Progress). If · ⊢Σ2 ,Σ1
e : τ and H : Σ1 and P : Σ2,

then either e is a location or there exist e′ and H′ such that
H; e→P e′; H′.

Proof. We consider the case of e = ◭ T1,T2 ◮ where either T1 =

〈H f ; S ; Ht; F〉 ·[e1] or T2 = 〈H
′
f
; S ′; H′t ; F′〉 ·[e2] or both. Without

loss of generality, suppose T1 = 〈H f ; S ; Ht; F〉 ·[e1]. If dom(H f) ∩
S = ∅, then apply HGC-EndGC. If ℓ ∈ dom(H f) ∩ S , then apply
HGC-Copy. In either case, T1 steps with D-GCStep. �

Together, the progress and preservation theorems imply the
standard type safety property: a well-typed term will not become
stuck. Formally, if · ⊢· e : τ, then, for some ℓ and H, we have
∅; e→∗

[]
ℓ; H. In particular, evaluation of e will never dereference a

freed memory location. This completes the proof of memory safety.
This is only half of the correctness of the garbage collector; we have
not yet shown that collection is meaning-preserving, i.e. that the
behavior of a garbage-collected program is identical to an execution
without collection. This property is straightforward to prove using
the same flattening machinery that was introduced in the previous
section. The proof simply requires extending the definitions and
proofs related to flattening to account for garbage collection. We

8

first extend the definition of flattening to cover tasks which are in
the process of collection:

‖e1‖(F(H f)⊎Ht)::P { ê1 ‖e2‖(F′(H′
f
)⊎H′t)::P { ê2

∥

∥

∥◭ 〈H f ; S ; Ht; F〉 · e1, 〈H
′
f ; S ′; H′t ; F′〉 · e2 ◮

∥

∥

∥

P
{ ⊳ ê1, ê2 ⊲

The two other rules for parallel tuples in which one task is of the
form H · e and the other is of the form 〈H f ; S ; Ht; F〉 ·[e] are omitted
but are defined in the natural way. We also require two more lemmas
regarding flattening, which will be used in the extension of the
simulation proof.

Lemma 12. If dom(H) ∩ dom(P) = ∅ and dom(F) ⊂ dom(H) and
‖e‖H::P { ê then ‖F(e)‖F(H)::P { ê.

Proof. By induction on the derivation of ‖e‖H::P { ê. The interest-
ing case is the case for a location ℓ. �

Lemma 13. If dom(H1) ∩ FL(e) = ∅ and ‖e‖(H1⊎H2)::P { ê then
‖e‖H2::P { ê.

Proof. By induction on the derivation of ‖e‖(H1⊎H2)::P { ê. The
interesting case is the case for a location ℓ. �

Lemma 14 is simply a restatement of Lemma 8, which showed
that a step of the hierarchical semantics can be simulated by zero
or one steps of the flattened semantics. The lemma now includes
garbage collection steps.

Lemma 14. Suppose that H; e →P e′; H′ and H :: P : Σ and
Γ ⊢Σ e : τ ‖e‖H::P { ê. Then either ‖e′‖H′ ::P { ê or ‖e′‖H′::P { ê′

and ê→ ê′.

Proof. The new cases are those that instantiate D-ParAS1 or D-
ParAS2 with one of the GC rules. We show that if T →GC T ′, then
for any T2, if ‖◭ T,T2 ◮‖H::P { ê then ‖◭ T ′,T2 ◮‖H::P { ê.

• HGC-Copy. Then T = 〈H f [ℓ 7→ v]; S ⊎ {ℓ}; Ht; F〉 ·[e]. Let

HT = F(H f [ℓ 7→ v]) ⊎ Ht

H′T = F′(H f) ⊎ [ℓ 7→ ℓ′](Ht[ℓ 7→ F(v)])

We have ‖e1‖HT ::H::P { ê1 and wish to show ‖e1‖H′
T

::H::P { ê1.

This follows from Lemma 12 since

[ℓ 7→ ℓ](HT) = [ℓ 7→ ℓ′](F(H f [ℓ 7→ v]) ⊎ Ht)
= [ℓ 7→ ℓ′](F(H f) ⊎ Ht[ℓ 7→ F(v)])
= F′(H f) ⊎ [ℓ 7→ ℓ′](Ht[ℓ 7→ F(v)])
= H′T

• HGC-StartGC. Then T = H1 · e1 and ‖e1‖H1::H::P { ê1. If F = ∅,
then F(H1)⊎∅ = H1, so ‖◭ 〈H1; FL(e1); ∅; ∅〉 · e1,T2 ◮‖H::P { ê.

• HGC-EndGC. Then T = 〈H f ; S ; Ht; F〉 · e1 and

‖e1‖F(H f)⊎Ht ::H::P { ê1

By typing, S = FL(Ht · e1), so dom(H f) ∩ FL(e1) = ∅ and
Lemma 13 gives ‖e1‖Ht ::H::P { ê1 and ‖◭Ht · e1,T2 ◮‖H::P { ê.

�

Finally, Theorem 4 states the correctness of HGC: the hierarchi-
cal semantics produces a value from an expression if and only if the
flattened semantics produces a value from the same expression, and
the two values agree up to flattening. It was earlier shown that the
flattened semantics is consistent with the non-collected hierarchical
semantics, so this is sufficient to show that garbage collection does
not change the meaning of a hierarchical program.

Theorem 4. Let e and τ be such that · ⊢· e : τ.

• If e→∗ v̂, then there exist ℓ and H such that ∅; e→∗
[]
ℓ; H and

‖ℓ‖H::[] { v̂.

• If ∅; e →∗
[]
ℓ; H, then there exists v̂ such that e →∗ v̂ and

‖ℓ‖H::[] { v̂.

Proof. These are simply items 1 and 2 of Corollary 1, and are in-
stances of Theorem 1, which is easily proven for the full language in-
cluding garbage collection by using Lemma 14 instead of Lemma 8
in the proof. �

4. The Design

There are three primary challenges to the design of a practical
implementation of the hierarchical semantics. These challenges
primarily stem from the fact that a practical design must handle
concurrency to realize parallelism.

• Scheduling: the semantics models scheduling using a non-
deterministic interleaving of threads; a practical design must
use a specific scheduler.

• Algorithms for the heap hierarchy: a practical design must
use efficient and correct data structures and algorithms to repre-
sent the heap hierarchy.

• Hierarchical garbage collection: a practical design must en-
sure correct and performant garbage collection.

4.1 Scheduling

For this design, we use a work-stealing scheduler as described by
Blumofe et al. [15]. This scheduler assigns every processor a double-
ended queue, or “deque”, containing tasks associated with that
processor. As a computation spawns new tasks, they are pushed onto
the bottom end of the processor’s deque. Once a task is completed,
the processor fetches the next task by popping the task from the
bottom end of the deque. If the processor finds the deque to be
empty, the processor steals a task from a randomly chosen victim
processor by popping from the top of the victim’s deque.

The semantics presented in Section 3.1 accounts for some of
the scheduler actions, such as the creation of parallel tasks, by
distinguishing between active and inactive parallel tuples. There is a
subtle but a crucial difference, however, between the management
of tasks in the semantics and in work stealing. The semantics allows
a parallel pair to be activated at any time by creating a task for
each component and by pairing each task with its own heap. In
work stealing, however, task creation is a lazy and asynchronous
operation: a task is created only when one of the components of a
parallel tuple is stolen, as the other component continues to execute
serially. This subtle difference creates a challenge for identifying
the heap for a task.

For example, consider a processor Q executing a parallel tuple
⊳ e1, e2 ⊲. To execute the tuple, the processor starts executing the
left component e1. Sometime after e1 is reduced to e′

1
, e2 may be

stolen and converted to a task T2 so that it can be executed by the
thief processor. Since the algorithm has not converted e1 to a task
before e2 was stolen, we don’t have a heap for it, and thus don’t
know the objects allocated during the execution of e1 thus far.

To solve this problem, we assign to each parallel pair of the form
⊳ e1, e2 ⊲ a level that corresponds to its nesting depth. For example,
if the expression e = ⊳ e1, e2 ⊲ has level m, then e1 and e2 have level
m + 1. We then use levels to identify the heap of a task by tracking
the levels at which steals take place.

4.2 Hierarchical Heaps

In our design, the abstract heaps of the semantics are implemented
using pages and chunks, described below. These smaller units of
memory are collected in data structures which we call superheaps,

9

5

A B C D

6

7

8

Legend

Chunk

Page

Pointer

n Level n

n Level n, activated

Figure 13. The structure of a superheap.

which implement the heap hierarchy. The structure of the pages,
chunks and superheaps allow efficient allocation, lookup, and other
required operations on heaps and the heap hierarchy.

Pages, Chunks, and Chunk Pool. To reduce contention at mem-
ory allocation, we partition memory into chunks, each of which is a
contiguous block of memory. Each chunk is further divided into one
or more contiguous pages. A page can coincide with a system-level
page, typically 4KB, but can be set to any power of two bytes.

Processors allocate and free chunks from and to a shared chunk
pool. Once a chunk is allocated, it is locally divided into individual
objects without further communication with other processors. Prior
work has proposed design techniques for such a data structure [21,
27, 38]. Typical designs maintain a number of free chunk lists,
each of which may, for example, contain chunks of a particular
size. A number of different allocation policies can be employed
to maximize efficiency and minimize fragmentation of the global
memory [10, 18].

Distinguishing between chunks and pages might seem redundant,
but it is not. Our design uses pages to find the chunk and the heap
to which a given object belongs to by storing this information in
the metadata for each page. Since a page size is a fixed power of
two, the start of the page containing a given object can be located
by truncating the address of the object. Once the page is found, a
simple look up suffices to find the relevant metadata.

Superheaps. In our design, we use superheaps to identify the heap
of a task by using levels. A superheap is a collection of chunks,
where each chunk is tagged with the level at which it is allocated.
The computation starts with a root superheap. During the execution,
each steal starts a superheap for the stolen task. Thus at any point in
the execution, a processor works on one superheap. When a steal
happens, we remember the level of the stolen task at the superheap
of the victim processor by marking it as “activated.” A heap in the
semantics corresponds to all chunks in one superheap belonging to
an activated level and possibly a contiguous range of unactivated
levels.

Figure 13 illustrates the structure of a superheap, where chunks
at each level are drawn together at the same “level.” The levels 5, 6,
and 7 are activated, since the scheduler has stolen the corresponding
right tasks at these levels. Level 8 is not yet activated since its
corresponding right task has not yet been activated and is still on
the processor’s deque. Levels 5 and 6 each correspond to a heap of
the semantics, and levels 7 and 8 together correspond to the local
heap of the currently running task. We store various pointers in each
chunk, such as a pointer to its level, and a pointer to the next chunk
in its level to aid in the implementation of various operations.

Heap operations To realize the semantics, the implementation of
heaps needs to support four key operations: creating heaps, merging
two heaps, allocating a new location in a heap, and looking up the
value of a location in a heap. The design allows creating a heap
by marking the level for the stolen task in the victim processor
as activated and creating a new superheap for the stolen task.
Merging two heaps corresponds to simply unioning their chunks.
The allocation operation is simply a bump allocation within the
current chunk. When the chunk is full, a new one is fetched from
the chunk pool and assigned a level. Looking up an object is simply
a pointer dereference.

4.3 Garbage collection

The semantics allow for collection of any heap in the memory hi-
erarchy. The heaps that are leaves of the heap hierarchy, however,
are special in the sense that they can be collected without communi-
cating with any other processor, since they are disentangled. In our
design, we therefore distinguish between two forms of collection.
Local collection performs garbage collection on a leaf in the heap
hierarchy; non-local collection collects all of the heaps in a subtree
of the hierarchy.

Local Collection. A processor starts a local collection by locking
its deque, ensuring thus that no tasks can be stolen during collection.
A steal of a task from the deque corresponds in the semantics to
the activation of a parallel tuple contained in the current expression,
so locking the expression in rule HGC-StartGC corresponds to
locking the deque.

After locking its deque, the processor proceeds to run a standard
algorithm such as Cheney (copying) collection [20] adapted for
hierarchical heaps. Such a collection would scan the root set (the
collecting processor’s stack) for all pointers within the scope of
collection. A pointer is considered to be within scope if it points to
an object residing in one of the levels being collected. All roots in
scope of the collection are copied to a new collection of chunks. The
in-scope check also appears in the semantics, since rule HGC-Copy
only copies locations that appear in both the scan set and the heap
being collected.

After all roots are copied, copy collection continues normally,
level-by-level in descending order. Any pointers to objects in scope
of the collection but in lower levels are copied and scanned once
collection gets to that level. Note that by the disentanglement
property, no pointers from lower levels to higher levels can exist, so
once a level is completely scanned, it does not need to be revisited.
Once copy collection completes, all chunks in the levels being
collected are released to the chunk pool, the processor’s deque
is unlocked and execution resumes (corresponding to transition
rule HGC-EndGC).

Non-Local Collection. As specified in Section 3.3, the GC seman-
tics allows non-deterministic collection of any heap in the hierarchy.
Here, we describe a specific non-local GC algorithm that collects
all heaps in a given subtree at each non-local collection. Other
algorithms are also possible.

A non-local collection starts by first choosing a subtree of the
heap hierarchy to collect and identifying the processors participating
in the collection. All participating processors then synchronize; each
locks its deque and starts collection. All other, non-participating,
processors continue to work on their execution as their accessible
data will not be affected by the collection.

Participating processors then, in parallel, scan their root sets
for all pointers within the scope of collection, just like for local
collection. These pointers are all copied to the corresponding to-
space. After all the roots are copied, collection proceeds level-by-
level in parallel across all superheaps involved in the collection.
However, each superheap is collected sequentially on its own.

10

Therefore, once collection on all of a parent superheap’s children is
completed, one processor will continue collection on the parent
superheap while the other processors remain idle. In this way,
collection proceeds up the hierarchy of heaps until complete, at
which point all the processors involved in the collection unlock their
deques and resume execution.

Open issues. Our design leaves open several important questions:
1) when to garbage collect, 2) whether to perform a local or non-
local collection and 3) if non-local, which heaps, or subtree, to
collect. The answers to these questions are not as straightforward
as in traditional collection algorithms, where relatively simple
amortization arguments can guide them. We leave the investigation
of these question to future work. In the implementation described
below, we choose a simple technique adopted from traditional
garbage collection literature.

5. Implementation and Evaluation

We describe a prototype implementation and preliminary evaluation
of the proposed hierarchical memory manager.

5.1 Implementation

We implement our hierarchical memory manager on top of Daniel
Spoonhower’s parallel extension of the MLton compiler [47]. As a
whole-program optimizing, high-performance compiler for Standard
ML, MLton [39] offers an excellent starting point for parallel
computing. Spoonhower extended MLton to support a number of
parallelism primitives including nested (fork-join) parallelism and
futures. Spoonhower implemented many different schedulers; we
use his implementation of a standard work-stealing scheduler.

Our implementation, which we call mlton-parmem, closely fol-
lows the design described in Section 4 but of course has to consider
many more details. One such detail is the treatment of stacks. MLton
executes all code with a traditional call stack, which is allocated
on the heap. We allocate computation threads’ initial stacks in their
associated heap. When the stack runs out of space, a new stack is
allocated in the same heap at the current level of the computation.
Upon first inspection, this model seems to blatantly violate disentan-
glement as a stack allocated in a lower level may have pointers in a
higher level by virtue of computation at that level. However, since
the stack cannot be pointed to from any object, there is no issue of
having parallel reads from another processor. In addition, since the
stack is explicitly scanned as a root set for collection, we keep track
of all the entangled pointers at collection time.

Currently, our implementation only supports local collection,
which collects unactivated levels in descending order until the first
activated level. For example, in Figure 13, local collection will
only collect level 8 as all lower levels (drawn higher in the figure)
have been activated. Our algorithm for deciding when to collect is
a straightforward adaptation of the corresponding algorithm from
traditional GC literature. We initiate a local collection when the local
heap becomes half full and we resize the heap to a small multiple (8
in our experiments) of the size of the live set.

5.2 Benchmarks

We evaluate performance under five benchmarks. Each benchmark
is written in a purely functional style and in three different dialects
of ML: Standard ML, our parallel extensions to it, dubbed “mlton-
parmem”, and Manticore.

All of our benchmarks use sequences as the core data struc-
ture. Sequences are implemented as weight-balanced trees with data
elements at the leaves. This data structure allows for naturally ex-
pressing parallel computation over the sequences. The benchmarks
use a manual approach to granularity control: any potentially paral-
lel operation first checks if the length of the input sequence is less

than or equal to a specified grain size. If so, the operation is carried
out sequentially without creating parallel tasks. If the length of the
input sequence is greater than the grain, the operation will create
the parallel tasks. The grain size can be supplied at run-time.

The MemStress benchmark is a synthetic benchmark designed
to heavily stress the memory manager by allocating a large amount
of data and releasing it almost immediately. This is achieved
by building, in parallel, an integer sequence (using the tabulate
operation on sequences) where, at each element, a large list is
sequentially allocated. The list’s tabulation function is simply the
identity function and the sequence’s element is then either the first
or second element of the list depending on whether the element
index is even or odd. Note that the amount of computation done
per allocation is very small, ensuring that the bulk of the work of
the program lies in the allocation and collection of the data. The
benchmark tabulates a 100,000 element sequence with granularity
100 and allocates a 10,000 element list per sequence element.

The Tabulate benchmark is designed to evaluate the performance
of an embarrassingly parallel sequence tabulation operation. In this
benchmark, a sequence is tabulated and every element is set to
a Fibonacci number, calculated each time. In our benchmark, we
tabulate a 100,000 element sequence with granularity 100. For each
element, the 20th Fibonacci number is calculated sequentially using
the classical recursive algorithm and stored.

The Raytracer benchmark is adapted from the raytracer bench-
mark written for the Manticore language [8]. It renders a 512px ×
512px scene in parallel. The original program was written in ID [42]
and does not use any special data structures to improve performance.

The SMVM benchmark performs a sparse matrix vector multi-
plication. The sparse matrix is represented in a typical fashion as a
sequence of rows, where each row only contains the non-zero entries
as an index-value pair. Multiplication is then done in parallel over
the rows. Our benchmark performed the test on a 10, 000 × 10, 000
matrix with granularity 100.

The DMM benchmark performs a dense matrix matrix multipli-
cation. The matrices are represented as a sequence of sequences.
Multiplication is then done in parallel over the rows of the first
matrix. Our benchmark performed the test on 500 × 500 matrices at
the granularity of individual dot-products.

5.3 Measurements

For our experiments, we use a 64-core AMD machine with 128 giga-
bytes of memory, but due to technical limitations of the underlying
MLton codebase, we are not able to utilize more than 32 cores. We
use interleaved NUMA allocation in all of our experiments. For the
grain sizes we use, our benchmarks create anywhere from several
thousand to hundreds of thousands of tasks.

In addition to our mlton-parmem compiler, we run our bench-
marks on the manticore compiler, the mlton compiler for Standard
ML and Spoonhower’s parallel extension of MLton, which we call
mlton-spoonhower. The memory manager of mlton-spoonhower al-
lows for parallel allocation, but performs stop-the-world sequential
collection. We choose this compiler as a naı̈ve baseline for compar-
ing parallel garbage collectors.

The Manticore compiler for Parallel ML [28] offers support for
an ML-like language extended with several paradigms for paral-
lelism, including fork-join parallelism and speculation. Manticore
uses an advanced NUMA-aware memory manager based on the
Doligez-Leroy-Gonthier and Appel semi-generational collectors. It
is a reasonably well-developed system with particular innovations
on memory management and has been shown to deliver good perfor-
mance [8, 11, 13, 28, 44]. Since it is based on ML, Manticore is a
good basis for comparison for the approach suggested in this paper.

We use the mlton compiler timings as the sequential baseline for
all our speedup calculations. We derive the sequential versions of our

11

mlton mlton-spoonhower mlton-parmem manticore

Benchmark Ts (s) T1 (s) O T32 (s) S T1 (s) O T32 (s) S T1 (s) O T32 (s) S

MemStress 26.91 22.85 0.85 9.63 2.37 21.61 0.80 2.61 10.30 79.29 2.95 2.67 10.09
Tabulate 19.06 24.32 1.28 0.99 19.18 22.46 1.18 0.95 20.13 32.46 1.70 1.04 18.28
Raytracer 10.29 10.92 1.06 0.71 14.46 12.60 1.22 0.51 20.18 11.18 1.19 0.36 28.51
SMVM 157.48 197.14 1.25 13.85 11.37 194.83 1.24 7.48 21.04 286.04 1.82 46.31 3.40
DMM 61.62 91.44 1.48 6.07 10.15 92.91 1.51 4.09 15.05 100.04 1.62 5.19 11.7

Figure 14. Selected runtimes and speedups

mlton-parmem

manticore

mlton-spoonhower

(a) Legend

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

(b) MemStress

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

(c) Tabulate

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

(d) Raytracer

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

(e) SMVM

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

(f) DMM

Figure 15. Speedup plots for selected benchmarks. X-Axis is Number of Processors, Y-Axis is Speedup.

benchmarks by replacing the par calls by sequential composition.
In performance evaluations, it is sometimes preferable to use highly
optimized serial code as a baseline. Since, however, we wish to
study the performance and the scalability of our memory manager,
doing so would obscure our results.

We run each benchmark five times and report the median of
the results in the tables and graphs. We measure two quantities
across these benchmarks. The first quantity is the single-processor
slowdown, or overhead, compared to a sequential run. As the
name suggests, the overhead indicates the overhead incurred by
the parallel runtime and memory manager and helps us establish the
practical viability of the compiler for parallel computations against
a sequential compiler. The second quantity is the speedup of the
mlton-spoonhower, mlton-parmem and Manticore compilers against
the mlton baseline.

5.4 Performance and Scalability

Figure 14 shows some of the key measurements across our bench-
marks using the following quantities.

• Serial run time, Ts, is the time in seconds for a serial run with
mlton.

• Uniprocessor run time, T1, is the uniprocessor run-time of the
parallel code reported in seconds;

• The overheard O is the overhead calculated as T1/Ts.

• 32-processor run time, T32, is the 32-processor run-time of the
parallel code reported in seconds;

• The speedup S is the 32-core speedup calculated as Ts/T32.

Across all the benchmarks , we notice that the overhead com-
pared to mlton is comparable for both mlton-spoonhower and
mlton-parmem and range between −15% and 51%. These mea-
surements suggest that there is some overhead to parallelism but
using a hierarchical memory manager is not significantly more
expensive than the naı̈ve parallel memory manager employed in
mlton-spoonhower. In fact, overheads of mlton-parmem are slightly
better in 3 benchmarks than those of mlton-spoonhower. The
manticore compiler incurs significantly larger overheads compared
to mlton. This is consistent with earlier observations with the Manti-
core compiler [12], which focuses on performant parallel execution
but not fast sequential execution. Our observed overhead of between
1.19 and 2.95 is in line with expectations [12].

In terms of scalability, which we can observe by comparing
the Speedup “S ” columns across compilers, our mlton-parmem
compiler delivers the best speedups for all benchmarks except
Raytracer. Figure 15 shows the speedup curves for individual
benchmarks. In all benchmarks, we observe that mlton-parmem
scales nicely up to 32 processors. While mlton-spoonhower also
scales reasonably in some benchmarks, it consistently fails to scale
as well as mlton-parmem. Indeed, in both SMM and DMM, we see
the speedup of mlton-spoonhower starting to plateau towards 32
processors. In MemStress, mlton-spoonhower fails to achieve much
more than 3× speedup regardless of the number of processors it
utilizes. The manticore compiler scales very well, but also trails
mlton-parmem, except in Raytracer. As programs compiled with
manticore typically suffer from large overhead over the baseline,
mlton, they require more processors in order to overcome the

12

overhead. Indeed, manticore requires about 3 processors just to
match the performance of mlton on the MemStress benchmark. In
Raytracer, the overhead of manticore against mlton poses less of a
problem and allows manticore to exhibit high scalability.

These results suggest that the proposed parallel hierarchical
memory manager can be implemented in the context of a high-
performance compiler such as MLton and can deliver good per-
formance. The overheads and the speedups that our mlton-parmem
compiler delivers suggest that the basic idea behind the approach
of coupling parallel scheduling and memory management is sound.
We note, however, that our comparative study does not carefully
account for many important factors that can have significant effects
on performance including various internal “hardwired” constants
such as block and page sizes and amortization constants that vary
between compilers. We leave a more careful implementation and a
more detailed experimental study for future work.

6. Related Work

There has been significant work on parallel garbage collection and
on scheduling for parallel programs, which we discuss below.

Garbage Collection. The work on parallel garbage collection
dates back at least to the multilisp [31] parallel collector. The
multilisp collector kept separate heaps for each processor and
had no shared heap. A variety of parallel collectors use a shared
heap, sometimes with a local block-allocated pool for allocation [6,
9, 21, 26, 32]. This requires significant synchronization among
the processors, and does not give the locality advantages of a
generational collector.

The Doligez-Leroy-Gonthier (DLG) collector [23, 24] intro-
duced the idea of having local nurseries (heaps) for each processor
in addition to a global heap. Memory is allocated in the local heaps
and promoted to the global heap on a local collection, or in various
other situations, such as when writing into state that is in the global
heap. The approach has a similar advantage as a single-level genera-
tional sequential collector—by the time a local heap is promoted to
the global heap, much of what has been allocated is already garbage.
Also if the local nursery fits in cache, its locations can be kept “warm”
in cache so that allocation is cheaper. Finally, the local collections
can be done independently. Several other parallel collectors have
refined the idea of local nurseries and a global heap [5, 8, 25, 37, 51].
These collectors differ in precisely how the two levels are divided
and what collection approach is used at each level. For example, the
original DLG collector allows the global heap to be collected concur-
rently using Dijkstra’s concurrent mark-sweep algorithm [22]. The
ABFR collector [8], on the other hand, uses a form of stop-the-world
copying collection on the global heap.

To handle mutable data, these two-level collectors ensure a
property similar to disentanglement by requiring that most or all
(depending on the strategy used by the individual collector) mutable
data be stored in the global heap. Thus, mutation-heavy programs
will require a great deal of global collection. In all of these collectors,
the decision to collect is based purely on when memory is full, or
perhaps when mutations happen across boundaries, but is not related
to scheduling decisions or other aspects of the tasks themselves. In
fact, they are agnostic to the tasks running on the processors.

Marlow et al. use a generational block-structured parallel col-
lector [38] with support for multiple generations. However, the
hierarchy does not form a tree, but rather is a sequence of global
heaps of varying size.

Pizlo et al. describe a hierarchical heap structure [43], which
has some similarities to ours. It is, however, designed for real-
time collectors, and in particular as a replacement for the Real-
time Specification for Java (RTSJ). The key difference is that the
hierarchical structure is meant to be (mostly) static and user-defined,

while ours is meant to be highly dynamic and invisible to the user.
The idea in their work is that real-time threads can use heaplets at
the leaf, and that each heaplet can support its own style of GC.

Bocchino et al. suggest using regions for parallel memory alloca-
tion [16]. Regions can be allocated in a tree hierarchy dynamically
based on the structure of the parallelism. Their motivation, however,
is very different. In particular they use typing rules on the regions to
statically prevent any race conditions. They have no discussion of
garbage collection within or across regions.

Morrisett et al. used an operational semantics for abstracting
garbage collection in a way similar to our operational semantics [40].
However, it was in a purely sequential context, and is more abstract
than ours, e.g. not even capturing the distinction between copying
and mark-sweep collection.

The results presented here build on our recent paper [4], which
proposed coupling computation and memory management.

Scheduling. Nearly all modern parallel programming languages
rely on a run-time scheduler to map tasks to processors. Determining
an optimal schedule is actually NP-hard [50], but a classic result by
Brent [17] shows that a 2-factor approximation can be computed
by using a greedy-scheduling principle. Brent’s theorem, however,
does not take into account the cost of the scheduling algorithm itself.
Over the years, many efficient scheduling algorithms implementing
Brent’s greedy principle have been developed and bounds have
been proven on runtime and space use [3, 15, 29, 30, 41], and
locality [1, 14]. These schedulers perform well in practice [3, 29, 48]
when the granularity of parallel tasks can be controlled so as to
prevent the creation of tiny tasks [2, 12, 49] Much of this work on
schedulers, however, does not try to couple the structure of memory
with that of the schedule as we do here.

7. Conclusion

This paper presents a memory management technique for parallel
functional programs that is based on the general strategy of closely
coupling the structure of the memory with that of the computation.
As we show, such close coupling enables using the invariants of the
semantics of the language, such as the disentanglement property, in
managing memory.

There are many interesting directions for future research. Here,
we consider fork-join programs, which include a relatively large
class of computations. Extending the technique to include other
forms of parallelism such as async-finish and futures may be inter-
esting and desirable. Another natural direction for future research
would be to extend the techniques to allow some mutable state. We
present an approach to realizing the semantics in practice by consid-
ering a work-stealing scheduler, by describing the data structures for
implementing hierarchical heaps, and by describing an algorithm
for performing garbage collection. The initial experimental results
for our extension of MLton suggest that the proposed techniques
can be implemented efficiently. The implementation, however, is
incomplete—it employs local collection only—and is not carefully
optimized. A natural next step would be to finish a complete and
optimized implementation that can perform both local and nonlocal
collections. Finally, it would be interesting to investigate if the tech-
niques described here can be applicable to other parallel languages
and systems [19, 28, 29, 33–36, 46].

Acknowledgments

This research is partially supported by the National Science Founda-
tion under grant numbers CCF-1320563 and CCF-1408940, by the
European Research Council under grant number ERC-2012-StG-
308246, and by Microsoft Research. We also thank the reviewers
for their insightful comments and in particular the idea of using
flattening to prove correctness.

13

References

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of
work stealing. Theory of Computing Systems (TOCS), 35(3):321–347,
2002.

[2] U. A. Acar, A. Charguéraud, and M. Rainey. Oracle scheduling:
Controlling granularity in implicitly parallel languages. In ACM

SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2011.

[3] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling parallel
programs by work stealing with private deques. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming

(PPOPP), 2013.

[4] U. A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan.
Coupling memory and computation for locality management. In Summit

on Advances in Programming Languages (SNAPL), 2015.

[5] T. A. Anderson. Optimizations in a private nursery-based garbage
collector. In J. Vitek and D. Lea, editors, 9th International Symposium

on Memory Management, pages 21–30, Toronto, Canada, June 2010.
ACM Press.

[6] T. A. Anderson, M. O’Neill, and J. Sarracino. Chihuahua: A concurrent,
moving, garbage collector using transactional memory. In TRANSACT,
2015.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling
for multiprogrammed multiprocessors. Theory Comput. Syst., 34(2):
115–144, 2001.

[8] S. Auhagen, L. Bergstrom, M. Fluet, and J. H. Reppy. Garbage
collection for multicore NUMA machines. In Proceedings of the

2011 ACM SIGPLAN workshop on Memory Systems Performance and

Correctness (MSPC), pages 51–57, 2011.

[9] K. Barabash, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman,
Y. Ossia, A. Owshanko, and E. Petrank. A parallel, incremental,
mostly concurrent garbage collector for servers. ACM Transactions on

Programming Languages and Systems, 27(6):1097–1146, Nov. 2005.

[10] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: A scalable
memory allocator for multithreaded applications. In 9th International

Conference on Architectural Support for Programming Languages and

Operating Systems, ACM SIGPLAN Notices 35(11), pages 117–128,
Cambridge, MA, Nov. 2000. ACM Press.

[11] L. Bergstrom. Parallel Functional Programming with Mutable

State. PhD thesis, The University of Chicago, June 2013. URL
http://manticore.cs.uchicago.edu/papers/bergstrom-phd.pdf.

[12] L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Lazy tree
splitting. J. Funct. Program., 22(4-5):382–438, Aug. 2012. ISSN
0956-7968.

[13] L. Bergstrom, M. Fluet, M. Rainey, J. Reppy, S. Rosen, and A. Shaw.
Data-only flattening for nested data parallelism. In Proceedings of the

18th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’13, pages 81–92, 2013. ISBN 978-1-4503-1922-
5.

[14] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In
Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA ’11, pages 355–366, 2011. ISBN 978-1-4503-
0743-7.

[15] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46:720–748, Sept. 1999.

[16] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A
type and effect system for deterministic parallel java. In Proc. ACM

SIGPLAN Conf. on Object Oriented Programming Systems Languages

and Applications (OOPSLA), pages 97–116, 2009.

[17] R. P. Brent. The parallel evaluation of general arithmetic expressions.
J. ACM, 21(2):201–206, 1974.

[18] A. G. Bromley. Memory fragmentation in buddy methods for dynamic
storage allocation. Acta Informatica, 14(2):107–117, Aug. 1980.

[19] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th

annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA ’05, pages 519–538.
ACM, 2005. ISBN 1-59593-031-0.

[20] C. J. Cheney. A non-recursive list compacting algorithm. Communica-

tions of the ACM, 13(11):677–8, Nov. 1970. .

[21] P. Cheng and G. Blelloch. A parallel, real-time garbage collector.
In ACM SIGPLAN Conference on Programming Language Design

and Implementation, ACM SIGPLAN Notices 36(5), pages 125–136,
Snowbird, UT, June 2001. ACM Press.

[22] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation.
Communications of the ACM, 21(11):965–975, Nov. 1978.

[23] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection
for multiprocessor systems. In 21st Annual ACM Symposium on

Principles of Programming Languages, pages 70–83, Portland, OR,
Jan. 1994. ACM Press. .

[24] D. Doligez and X. Leroy. A concurrent generational garbage collector
for a multi-threaded implementation of ML. In 20th Annual ACM

Symposium on Principles of Programming Languages, pages 113–123,
Charleston, SC, Jan. 1993. ACM Press.

[25] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank, and
D. Sheinwald. Thread-local heaps for java. In Proc. International

Symposium on Memory Management (ISMM), pages 183–194, 2002.

[26] T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep garbage
collector on large-scale shared-memory machines. In ACM/IEEE

Conference on Supercomputing, San Jose, CA, Nov. 1997.

[27] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage
collection for shared memory multiprocessors. In 1st Java Virtual

Machine Research and Technology Symposium, Monterey, CA, Apr.
2001. USENIX.

[28] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly threaded
parallelism in Manticore. Journal of Functional Programming, 20(5-6):
1–40, 2011.

[29] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. PLDI ’98, pages 212–223, 1998.

[30] J. Greiner and G. E. Blelloch. A provably time-efficient parallel
implementation of full speculation. ACM Trans. Program. Lang. Syst.,
21(2):240–285, Mar. 1999.

[31] R. H. Halstead. Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and

Systems, 7(4):501–538, Oct. 1985. .

[32] M. Herlihy and J. E. B. Moss. Lock-free garbage collection for
multiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 3(3):304–311, May 1992. .

[33] S. M. Imam and V. Sarkar. Habanero-Java library: a Java 8 framework
for multicore programming. In 2014 International Conference on

Principles and Practices of Programming on the Java Platform Virtual

Machines, Languages and Tools, PPPJ ’14, Cracow, Poland, September

23-26, 2014, pages 75–86, 2014.

[34] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In Proceedings of the 15th ACM SIGPLAN international conference

on Functional programming, ICFP ’10, pages 261–272, 2010. ISBN
978-1-60558-794-3.

[35] D. Lea. A Java fork/join framework. In Proceedings of the ACM 2000

conference on Java Grande, JAVA ’00, pages 36–43, 2000. ISBN
1-58113-288-3.

[36] S. Marlow. Parallel and concurrent programming in haskell. In Central

European Functional Programming School - 4th Summer School, CEFP

2011, Budapest, Hungary, June 14-24, 2011, Revised Selected Papers,
pages 339–401, 2011.

[37] S. Marlow and S. L. P. Jones. Multicore garbage collection with local
heaps. In Proceedings of the 10th International Symposium on Memory

Management (ISMM), pages 21–32, 2011.

14

[38] S. Marlow, T. Harris, R. James, and S. L. Peyton Jones. Parallel
generational-copying garbage collection with a block-structured heap.
In R. Jones and S. Blackburn, editors, 7th International Symposium

on Memory Management, pages 11–20, Tucson, AZ, June 2008. ACM
Press.

[39] MLton. MLton web site. http://www.mlton.org.

[40] G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory
management. In Proceedings of the Seventh International Conference

on Functional Programming Languages and Computer Architecture,
FPCA ’95, pages 66–77, 1995.

[41] G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling of nested
parallelism. ACM Transactions on Programming Languages and

Systems, 21, 1999.

[42] R. S. Nikhil. ID language reference manual, 1991.

[43] F. Pizlo, A. L. Hosking, and J. Vitek. Hierarchical real-time garbage
collection. In ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems, ACM SIGPLAN Notices
42(7), pages 123–133, San Diego, CA, June 2007. ACM Press.

[44] M. A. Rainey. Effective Scheduling Techniques for

High-Level Parallel Programming Languages. PhD
thesis, The University of Chicago, Aug. 2010. URL
http://manticore.cs.uchicago.edu/papers/rainey-phd.pdf.

[45] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and
A. Kyrola. Experimental analysis of space-bounded schedulers. In
Proc. ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA), pages 30–41, 2014.

[46] K. C. Sivaramakrishnan, L. Ziarek, and S. Jagannathan. Multimlton: A
multicore-aware runtime for standard ML. J. Funct. Program., 24(6):
613–674, 2014.

[47] D. Spoonhower. Scheduling Deterministic Parallel Programs.
PhD thesis, Carnegie Mellon University, May 2009. URL
https://www.cs.cmu.edu/ rwh/theses/spoonhower.pdf.

[48] O. Tardieu, B. Herta, D. Cunningham, D. Grove, P. Kambadur,
V. Saraswat, A. Shinnar, M. Takeuchi, and M. Vaziri. X10 and APGAS
at petascale. In Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’14, pages
53–66, 2014.

[49] A. Tzannes, G. C. Caragea, U. Vishkin, and R. Barua. Lazy scheduling:
A runtime adaptive scheduler for declarative parallelism. ACM Trans.

Program. Lang. Syst., 36(3):10:1–10:51, Sept. 2014.

[50] J. Ullman. NP-complete scheduling problems. Journal of Computer

and System Sciences, 10(3):384 – 393, 1975.

[51] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci: Simple
thread-locality for java. In Proc. European Conference on Oriented

Programming (ECOOP), pages 445–469. Springer, 2009.

15

