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A b s t r a c t .  This paper describes a hierarchical estimation framework for 

the computation of diverse representations of motion information: The key 

features of the resulting framework (or family of algorithms) are a global 
model that constrains the overall structure of the motion estimated, a local 

model that is used in the estimation process, and a coarse-fine refinement 

strategy. Four specific motion models: affine flow, planar surface flow, rigid 

body motion, and general optical flow, are described along with their appli- 

cation to specific examples. 

1 I n t r o d u c t i o n  

A large body of work in computer vision over the last 10 or 15 years has been con- 

cerned with the extraction of motion information from image sequences. The motivation 

of this work is actually quite diverse, with intended applications ranging from data com- 

pression to pattern recognition (alignment strategies) to robotics and vehicle navigation. 

In tandem with this diversity of motivation is a diversity of representation of motion 

information: from optical flow, to affine or other parametric transformations, to 3-d ego- 

motion plus range or other structure. The purpose of this paper is to describe a common 

framework within which all of these computations can be represented. 

This unification is possible because all of these problems can be viewed from the 

perspective of image registration. That is, given an image sequence, compute a repre- 

sentation of motion that best aligns pixels in one frame of the sequence with those in 

the next. The differences among the various approaches mentioned above can then be 

expressed as different parametric representations of the alignment process. In all cases 

the function minimized is the same; the difference lies in the fact that it is minimized 

with respect to different parameters. 

The key features of the resulting framework (or family of algorithms) are a global 
model that constrains the overall structure of the motion estimated, a local model that is 

used in the estimation process 1, and a coarse-fine refinement strategy. An example of a 

global model is the rigidity constraint; an example of a local model is that displacement 

is constant over a patch. Coarse-fine refinement or hierarchical estimation is included in 

this framework for reasons that go well beyond the conventional ones of computational 

efficiency. Its utility derives from the nature of the objective function common to the 

various motion models. 

1.1 Hierarchical  e s t imat ion  

Hierarchical approaches have been used by various researchers e.g., see [2, 10, 11, 22, 19]). 

More recently, a theoretical analysis of hierarchical motion estimation was described in 

1 Because this model will be used in a multiresolution data structure, it is "local" in a slightly 
unconventional sense that will be discussed below. 
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[8] and the advantages of using parametric models within such a framework have also 

been discussed in [5]. 

Arguments for use of hierarchical (i.e. pyramid based) estimation techniques for mo- 

tion estimation have usually focused on issues of computational efficiency. A matching 

process that must accommodate large displacements can be very expensive to compute. 

Simple intuition suggests that if large displacements can be computed using low resolu- 

tion image information great savings in computation will be achieved. Higher resolution 

information can then be used to improve the accuracy of displacement estimation by 

incrementally estimating small displacements (see, for example, [2]). However, it can also 

be argued that  it is not only e~icient to ignore high resolution image information when 

computing large displacements, in a sense it is necessary to do so. This is because of 

aliasing of high spatial frequency components undergoing large motion. Aliasing is the 

source of false matches in correspondence solutions or (equivalently) local minima in the 

objective function used for minimization. Minimization or matching in a multiresolution 

framework helps to eliminate problems of this type. Another way of expressing this is 

to say that many sources of non-convexity that complicate the matching process are not 

stable with respect to scale. 

With only a few exceptions ([5, 9]), much of this work has concentrated on using a 

small family of "generic" motion models within the hierarchical estimation framework. 

Such models involve the use of some type of a smoothness constraint (sometimes allow- 

ing for discontinuities) to constrain the estimation process at image locations containing 

little or no image structure. However, as noted above, the arguments for use of a mul- 

tiresolution, hierarchical approach apply equally to more structured models of image 

motion. 
In this paper, we describe a variety of motion models used within the same hierar- 

chical framework. These models provide powerful constraints on the estimation process 

and their use within the hierarchical estimation framework leads to increased accuracy, 

robustness and efficiency. We outline the implementation of four new models and present 

results using real images. 

1.2 M o t i o n  Mode l s  

Because optical flow computation is an underconstrained problem, all motion estimation 

algorithms involve additional assumptions about the structure of the motion computed. 

In many cases, however, this assumption is not expressed explicitly as such, rather it is 

presented as a regularization term in an objective function [14, 16] or described primarily 

as a computational issue [18, 4, 2, 20]. 

Previous work involving explicitly model-based mot ion  estimation includes direct 

methods [17, 21], [13] as well as methods for estimation under restricted conditions [7, 9]. 

The first class of methods uses a global egomotion constraint while those in the second 

class of methods rely on parametric motion models within local regions. The description 

"direct methods" actually applies equally to both types. 

With respect to motion models, these algorithms can be divided into three categories: 

(i) fully parametric, (ii) quasi-parametric, and (iii) non-parametric. Fully parametric 

models describe the motion of individual pixels within a region in terms of a parametric 

form. These include affine and quadratic flow fields. Quasi-parametric models involve 

representing the motion of a pixel as a combination of a parametric component that is 

valid for the entire region and a local component which varies from pixel to pixel. For 

instance, the rigid motion model belongs to this class: the egomotion parameters constrain 

the local flow vector to lie along a specific line, while the local depth value determines the 
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exact value of the flow vector at each pixel. By non-parametric models, we mean those 

such as are commonly used in optical flow computation, i.e. those involving the use of 

some type of a smoothness or uniformity constraint. 

A parallel taxonomy of motion models can be constructed by considering local models 

that  constrain the motion in the neighborhood of a pixel and global models that  describe 

the motion over the entire visual field. This distinction becomes especially useful in ana- 

lyzing hierarchical approaches where the meaning of "local" changes as the computation 

moves through the multiresolution hierarchy. In this scheme fully parametric models are 

global models, non-parametric models such as smoothness or uniformity of displacement 

are local models, and quasi-parametric models involve both a global and a local model. 

The reason for describing motion models in this way is that it clarifies the relationship 

between different approaches and allows consideration of the range of possibilities in 

choosing a model appropriate to a given situation. Purely global (or fully parametric) 

models in essence trivially imply a local model so no choice is possible. However, in the 

case of quasi- or non-parametric models, the local model can be more or less complex. 

Also, it makes clear that by varying the size of local neighborhoods, it is possible to move 

continuously from a partially or purely local model to a purely global one. 

The reasons for choosing one model or another are generally quite intuitive, though 

the exact choice of model is not always easy to make in a rigorous way. In general, 

parametric models constrain the local motion more strongly than the less parametric 

ones. A small number of parameters (e.g., six in the case of affine flow) are sufficient 

to completely specify the flow vector at every point within their region of applicability. 

However, they tend to be applicable only within local regions, and in many cases are 

approximations to the actual flow field within those regions (although they may be very 

good approximations). From the point of view of motion estimation, such models allow 

the precise estimation of motion at locations containing no image structure, provided the 

region contains at least a few locations with significant image structure. 

Quasi-parametric models constrain the flow field less, but nevertheless constrain it 

to some degree. For instance, for rigidly moving objects under perspective projection, 

the rigid motion parameters (same as the egomotion parameters in the case of observer 

motion), constrain the flow vector at each point to lie along a line in the velocity space. 

One dimensional image structure (e.g., an edge) is generally sufficient to precisely esti- 

mate the motion of that point. These models tend to be applicable over a wide region 

in the image, perhaps even the entire image. If the local structure of the scene can be 

further parametrized (e.g., planar surfaces under rigid motion), the model becomes fully 

parametric within the region. 

Non-parametric models require local image structure that is two-dimensional (e.g., 

corner points, textured areas). However, with the use of a smoothness constraint it is 

usually possible to "fill-in" where there is inadequate local information. The estimation 

process is typically more computationally expensive than the other two cases. These 

models are more generally applicable (not requiring parametrizable scene structure or 

motion) than the other two classes. 

1.3 Paper Organization 

The remainder of the paper consists of an overview of the hierarchical motion estimation 

framework, a description of each of the four models and their application to specific 

examples, and a discussion of the overall approach and its applications. 
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2 H i e r a r c h i c a l  M o t i o n  E s t i m a t i o n  

Figure 1 describes the hierarchical motion estimation framework. The basic components 

of this framework are: (i) pyramid construction, (ii) motion estimation, (iii) image warp- 

ing, and (iv) coarse-to-fine refinement. 

There are a number of ways to construct the image pyramids. Our implementation 

uses the Laplacian pyramid described in [6], which involves simple local computations 

and provides the necessary spatial-frequency decomposition. 

The motion estimator varies according to the model. In all cases, however, the estima- 

tion process involves SSD minimization, but instead of performing a discrete search (such 

as in [3]), Gauss-Newton minimization is employed in a refinement process. The basic 

assumption behind SSD minimization is intensity constancy, as applied to the Laplacian 

pyramid images. Thus, 

I (x , t )  = I (x  - u (x ) , t  - 1) 

where x = (x, Y) denotes the spatial image position of a point, I the (Laplacian pyramid) 

image intensity and u(x) = (u(x, y), v(x, y)) denotes the image velocity at that point. 

the SSD error measure for estimating the flow field within a region is: 

E({u}) = E ( I ( x , t ) -  I ( x -  u ( x ) , t -  1)) 2 (1) 

X 

where the sum is computed over all the points within the region and {u} is used to denote 

the entire flow field within that region. In general this error (which is actually the sum 

of individual errors) is not quadratic in terms of the unknown quantities {u}, because 

of the complex pattern of intensity variations. Hence, we typically have a non-linear 

minimization problem at hand. 

Note that  the basic structure of the problem is independent of the choice of a motion 

model. The model is in essence a statement about the function u(x).  To make this 

explicit, we can write, 

u(x) = u(x; (2) 

where pm is a vector representing the model parameters. 

A standard numerical approach for solving such a problem is to apply Newton's 

method. However, for errors which are sum of squares a good approximation to Newton's 

method is the Gauss-Newton method, which uses a first order expansion of the individual 

error quantities before squaring. If {u}i current estimate of the flow field during the ith 

iteration, the incremental estimate {Su} can be obtained by minimizing the quadratic 

error measure 

E({Su}) = E ( A I  + V I .  5u(x)) 2 , (3) 

X 

where 

A I ( x )  -- I ( x , t )  - I ( x -  u / (x) ,  t -  1), 

that  is the difference between the two images at corresponding pixels, after taking the 

current estimate into account. 

As such, the minimization problem described in Equation 3 is underconstrained. The 

different motion models Constrain the flow field in  different ways. When these are used 

to describe the flow field, the estimation problem can be reformulated in terms of the un- 

known (incremental) model parameters. The details of these reformulations are described 

in the various sections corresponding to the individual motion models. 
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The third component, image warping, is achieved by using the current values of the 

model parameters to compute a flow field, and then using this flow field to warp I ( t  - 1) 

towards I(t),  which is used as the reference image. Our current warping algorithm uses 

bilinear interpolation. The warped image (as against the original second image) is then 

used for the computation of the error A I  for further estimation 2. The spatial gradient 

V I  computations are based on the reference image. 

The final component, coarse-to-fine refinement, propagates the current motion esti- 

mates from one level to the next level where they are then used as initial estimates. For 

the parametric component of the model, this is easy; the values of the parameters are 

simply transmitted to the next level. However, when a local model is also used, that 

information is typically in the form of a dense image (or images)---e.g., a flow field or a 

depth map. This image (or images) must be propagated via a pyramid expansion opera- 

tion as described in [6]. The global parameters in combination with the local information 

can then be used to generate the flow field necessary to perform the initial warping at 

this next level. 

3 M o t i o n  M o d e l s  

3.1 Affine Flow 

The  Model :  When the distance between the background surfaces and the camera is 

large, it is usually possible to approximate the motion of the surface as an affine trans- 

formation: 

U(X, y)  : al  "4- a2 x q- a3y  

v(x, y) = a4 + asX + a6y (4) 

Using vector notation this can be rewritten as follows: 

u(x) = X(x)a  (5) 

where a denotes the vector (al, a2, a3, a4, as, a6) T, and 

x x, 

Thus, the motion of the entire region is completely specified by the parameter vector a, 

which is the unknown quantity that needs to be estimated. 

The Estimation Algorithm: Let ai denote the current estimate of the afllne param- 

eters. After using the flow field represented by these parameters in the warping step, an 

incremental estimate ~a can be determined. To achieve this, we insert the parametric 

form of ~u into Equation 3, and obtain an error measure that is a function of 8a. 

E( a) = (al + (vl) x6 ) 
X 

Minimizing this error with respect to 6a leads to the equation: 

(v  O ( v  x ]  = - (V 

(6) 

(7) 

2 We have avoided using the standard notation k in order to avoid any confusion about this 
point. 
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E x p e r i m e n t s  wi th  the  afllne mo t ion  model :  To demonstrate use of the affine flow 

model, we show its performance on an aerial image sequence. A frame of the original 

sequence is shown in Figure 2a and the unprocessed difference between two frames of 

this sequence is shown in Figure 2b. Figure 2c shows the result of estimating an affine 

transformation using the hierarchical warp motion approach, and then using this to com- 

pensate for camera motion induced flow. Although the terrain is not perfectly flat, we 

still obtain encouraging compensation results. In this example the simple difference be- 

tween the compensated and original image is sufficient to detect and locate a helicopter 

in the image. We use extensions of the approach, like integration of compensated differ- 

ence images over time, to detect smaller objects moving more slowly with respect to the 

background. 

3.2 P l a n a r  Surface  Flow 

T h e  Model :  It is generally known that the instantaneous motion of a planar surface 

undergoing rigid motion can be described as a second order function of image coordinates 

involving eight independent parameters (e.g., see [15]). In this section we provide a brief 

derivation of this description and make some observations concerning its estimation. 

We begin by observing that the image motion induced by a rigidly moving object (in 

this case a plane), can be written as: 

1 
u(x) = Z---~A(x)t + B(x)w (8) 

where Z(x) is the distance from the camera of the point (i.e., depth) whose image position 

is (x), and o;] 

L(/+y2)/f -(xy)/f 
The A and the B matrices depend only on the image positions and the focal length f 

and not on the unknowns: t, the translation vector, w the angular velocity vector, and 

Z. 

A planar surface can be described by the equation 

klX + k2Y + k3Z = 1 (9) 

where (kl, k2,k3) relate to the surface slant, tilt, and the distance of the plane from 

the origin of the chose coordinate system (in this case, the camera origin). Dividing 

throughout by Z, we get 
1 x y 
- - = k t  +k2 +k3. 
z 7 Y 

Using k to denote the vector (kt, k2, k3) and r to denote the vector (z/f ,  y/f, 1) we obtain 

1 
Z(x) = r(x)Tk" 

Substituting this into Equation 8 gives 

u(x) -" (A(x)t)  (r(x)Tk) + B(x)~ (10) 
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This flow field is quadratic in (x) and can be written also as 

u ( x )  : al + a2x -t- aay + a7x 2 + a s x y  

v(x) = a4 + a s x  + a6y + a~xy  + asy  2 (11) 

where the 8 coefficients (az , . . . ,  as) are functions of the motion paramters t ,w and the 

surface parmeters k. Since this 8-parameter form is rather well-known (e.g., see [15]) we 

omit its details. 

If  the egomotion parameters are known, then the three parameter vector k can be used 

to represent the motion of the planar surface. Otherwise the 8-parameter representation 

can be used. In either case, the flow field is a linear in the unknown parameters. 

The problem of estimating planar surface motion has been has been extensively stud- 

ied before [21, 1, 23]. In particular, Negahdaripour and Horn [21] suggest iterative meth- 

ods for estimating the motion and the surface parameters, as well as a method of estimat- 

ing the 8 parameters and then decomposing them into the five rigid motion parameters 

the three surface parameters in closed form. Besides the embedding of these computations 

within the hierarchical estimation framework, we also take a slightly different, approach 

to the problem. 

We assume that the rigid motion parameters are already known or can be estimated 

(e.g., see Section 3.3 below). Then, the problem reduces to that of estimating the three 

surface parameters k. There are several practical reasons to prefer this approach: First, in 

many situations the rigid motion model may be more globally applicable than the planar 

surface model, and can be estimated using information from all the surfaces undergoing 

the same rigid motion. Second, unless the region of interest subtends a significant field 

of view, the second order components of the flow field will be small, and hence the 

estimation of the eight parameters will be inaccurate and the process may be unstable. 

On the other hand, the information concerning the three parameters k is contained in the 

first order components of the flow field, and (if the rigid motion parameters are known) 

their estimation will be more accurate and stable. 

T h e  E s t i m a t i o n  A l g o r i t h m :  Let ki denote the current estimate of the surface pa- 

rameters, and let t and w denote the motion parameters. These parameters are used to 

construct an initial flow field that is used in the warping step. The residual information 

is then used to determine an incremental estimate ~k. 

By substituting the parametric form of 6u 

~ u  = u - u 0 

= ( A ( x ) t )  ( r ( x ) T ( k 0  + 6 k ) )  + B ( x ) w  - (A(x) t )  ( r (x)Tk0)  + B(x)w 

= (A(x) t )  r(x)TSk (12) 

in Equation 3, we can obtain the incremental estimate ~k as the vector that minimizes: 

E(~k) = ~--~((AI + ( v I ) T ( A t ) r T ~ k )  2 (13) 

x 

Minimizing this error leads to the equation: 

[ ~ - ~ r ( t T A T ) ( v I ) ( V I ) T ( A t ) r T ) ] ~ k = - - ~ - ~ r ( t T A T ) ( V I ) A I  (14) 

This equation can be solved to obtain the incremental estimate ~k. 
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E x p e r i m e n t s  wi th  the  p lana r  surface  m o t i o n  model :  We demonstrate the appli- 

cation of the planar surface model using images from an outdoor sequence. One of the 

input images is shown in Figure 3a, and the difference between both input images is 

shown in Figure 3b. After estimating the camera motion between the images using the 

algorithm described in Section 3.3, we applied the planar surface estimation algorithm 

to a manually selected image window placed roughly over a region on the ground plane. 

These parameters were then used to warp the second frame towards the first (this process 

should align the ground plane alone). The difference between this warped image and the 

original image is shown in Figure 3c. The figure shows compensation of the ground plane 

motion, leaving residual parallax motion of the trees and other objects in the background. 

Finally, in order to demonstrate the plane-fit, we graphically projected a rectangular grid 

onto that plane. This is shown superimposed on the input image in Figure 3d. 

3.3 Rigid B o d y  M o d e l  

T h e  Model :  The motion of arbitrary surfaces undergoing rigid motion cannot usually 

be described by a single global model. We can however make use of the global rigid body 

model if we combine it with a local model of the surface. In this section, we provide a 

brief derivation of the global and the local models. Hanna [12] provides further details 

and results, and also describes how the local and global models interact at corner-like 

and edge-like image structures. 

As described in Section 3.2, the image motion induced by a rigidity moving object 

can be written as: 

u(x) = Z---~x) A(x) t  § B(x)~ (15) 

where Z(x) is the distance from the camera of the point (i.e., its depth), whose image 

position is (x), and 

0 

B(x)=  
L(fU+y2)/f -(~u)/f -xJ 

The A and the B matrices depend only on the image positions and the focal length 
f and not on the unknowns: t, the translation vector, ~ the angular velocity vector, and 

Z. Equation 15 relates the parameters of the global model, ~ and t, with parameters of 

the local scene structure, Z(x). 

A local model we use is the frontal-planar model, which means that over a local image 

patch, we assume that Z(x) is constant. An alternative model uses the assumption that 

6Z(x)-- the  difference between a previous estimate and a refined estimate--is constant 

over each local image patch. 

We refine the local and global models in turn using initial estimates of the local struc- 

ture parameters, Z(x), and the global rigid body parameters ~ and t. This local/global 

refinement is iterated several times. 

T h e  Es t ima t i on  Algor i thm:  Let the current estimates be denoted as Z/(x), ti and 

~i. As in the other models, we can use the model parameters to construct an initial flow 

field, ui(x), which is used to warp one of the image frames towards the next. The residual 

error between the warped image and the original image to which it is warped is used to 
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refine the parameters of the local and global models. We now show how these models are 

refined. 

We begin by writing equation 15 in an incremental form so that 

~u(x) = Z--~x) A(x) t  + B(x)w _ Z__~A(x)t01 - B(x)w 0 (16) 

Inserting the parametric form of ~u into Equation 3 we obtain the pixel-wise error as 

E(t ,  w, 1/Z(x))  = ( A I  + (v I )T  A t / Z ( x )  + ( v I ) T B ~  -- (~TI)T A t J Z I ( x )  -- ( v I )TBwi )  2 . 

(17) 
To refine the local models, we assume that 1/Z(x)  is constant over 5 x 5 image patches 

centered on each image pixel. We then algebraically solve for this Z both in order to 

estimate its current value, and to eliminate it from the global error measure. Consider 

the local component of the error measure, 

E, oca~ = ~ E(t ,  w, 1/Z(x)).  (18) 

5•  

Differentiating equation 17 with respect to 1/Z(x)  and setting the result to zero, we get 

- ~ 5 •  (AI  -- ( v I ) T A t J Z i ( x )  + (UI)TBw - (VI)TBwi) 
1/Z(x)  = (19) 

~-~5 • 5 ( (VI )TAt )  2 

To refine the global model, we minimize the error in Equation 17 summed over the 

entire image: 

fg,obal = ~ E( t ,w ,1 /Z(x ) ) .  (20) 

Image 

We insert the expression for 1/Z(x) given in Equation 19--not the current numerical 

value of the local parameter--into Equation 20. The result is an expression for EgtobaZ 

that  is non-quadratic in t but quadratic in w . We recover refined estimates of t and w 

by performing one Gauss-Newton minimization step using the previous estimates of the 

global parameters, t i and wi, as starting values. Expressions are evaluated numerically 

at t = tl and w --- wl. 

We then repeat the estimation algorithm several times at each image resolution. 

E x p e r i m e n t s  w i t h  t he  r igid b o d y  m o t i o n  mode l :  We have chosen an outdoor scene 

to demonstrate the rigid body motion model. Figure 4a shows one of the input images, 

and Figure 4b shows the difference between the two input images. The algorithm was 

performed beginning at level 3 (subsampled by a factor of 8) of a Laplacian pyramid. The 

local surface parameters 1/Z(x) were all initialized to zero, and the rigid-body motion 

parameters were initialized to t o -- (0, 0, 1) r and w -- (0, 0, 0) T. The model parameters 

were refined 10 times at each image resolution. Figure 4c shows the difference image 

between the second image and the first image after being warped using the final estimates 

of the rigid-body motion parameters and the local surface parameters. Figure 4d shows 

an image of the recovered local surface parameters 1/Z(x)  such that  bright points are 

nearer the camera than dark points. The recovered inverse ranges are plausible almost 

everywhere, except at the image border and near the recovered focus of expansion. The 

bright dot at the bot tom right hand side of the inverse range map corresponds to a leaf 

in the original image that is blowing across the ground towards the camera. Figure 4e 
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shows a table of rigid-body motion parameters that were recovered at the end of each 

resolution of analysis. 

More experimental results and a detailed discussion of the algorithm's performance 

on various types of scenes can be found in [12]. 

3.4 Genera l  Flow Fields 

T h e  Model :  Unconstrained general flow fields are typically not described by any global 

parametric model. Different local models have been used to facilitate the estimation pro- 

cess, including constant flow within a local window and locally smooth or continuous flow. 

The former facilitates direct local estimation [18, 20], whereas the latter model requires 

iterative relaxation techniques [16] It is also not uncommon to use the combination of 

these two types of local models (e.g., [3, 10]). 

The local model chosen here is constant flow within 5 • 5 pixel windows at each level 

of the pyramid. This is the same model as used by Lucas and Kanade [18] but here it is 

embedded as a local model within the hierarchical estimation framework. 

The Estimation Algor i thm:  Assume that we have an approximate flow field from 

previous levels (or previous iterations at the same level). Assuming that the incremental 

flow vector ~u is constant within the 5 x 5 window, Equation 3 can be written as 

E(6u) = ~_~(AI + V/T6u) 2 (21) 

X 

where the sum is taken within the 5 • 5 window. Minimizing this error with respect to 

6u leads to the equation, 

= - 

We make some observations concerning the singularities of this relationship. If the sum- 

ming window consists of a single element, the 2 • 2 matrix on the left-hand-side is an 

outer product of a 2 • 1 vector and hence has a rank of atmost unity. In our case, when 

the summing window consists of 25 points, the rank of the matrix on the left-hand-side 

will be two unless the directions of the gradient vectors V I  everywhere within the window 

coincide. This situation is the general case of the aperture e]]ect. 
In our implementation of this technique, the flow estimate at each point is obtained by 

using a 5 • 5 windows centered around that point. This amounts to assuming implicitly 

that the flow field varies smoothly over the image. 

Experiments  with the general flow model: We demonstrate the general flow algo- 

rithm on an image sequence containing several independently moving objects, a case for 

which the other motion models described here are not applicable. Figure 5a shows one 

image of the original sequence. Figure 5b shows the difference between the two frames 

that were used to compute image flow. Figure 5c shows little difference between the com- 

pensated image and the other original image. Figure 5d shows the horizontal component 

of the computed flow field, and figure 5e shows the vertical component. In local image 

regions where image structure is well-defined, and where the local image motion is sim- 

ple, the recovered motion estimates appear plausible. Errors predictably occur however 

at motion boundaries. Errors also occur in image regions where the local image structure 

is not well-defined (like some parts of the road), but for the same reason, such errors do 

not appear as intensity errors in the compensated difference image. 
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4 D i s c u s s i o n  

Thus far ,  we  have described a hierarchical framework for the estimation of image motion 

between two images using wrious models. Our motivation was to generalize the notion 

of direct estimation to model-based estimation and unify a diverse set of model-based 

estimation algorithms into a single framework. The framework also supports the combined 

use of parametric global models and local models which typically represent some type of 

a smoothness or local uniformity assumption. 

One of the unifying aspects of the framework is that the same objective function 

(SSD) is used for all models, but the minimization is performed with respect to different 

parameters. As noted in the introduction, this is enabled by viewing all these problems 

from the perspective of image registration. 

It is interesting to contrast this perspective (of model-based image registration) with 

some of the more traditional approaches to motion analysis. One such approach is to 

compute image flow fields, which involves combining the local brightness constraint with 

some sort of a global smoothness assumption, and then interpret them using appropriate 

motion models. In contrast, the approach taken here is to use the motion models to 

constrain the flow field computation. The obvious benefit of this is that the resulting 

flow fields may generally be expected to be more consistent with models than general 

smooth flow fields. Note, however, that the framework also includes general smooth flow 

field techniques, which can be used if the motion model is unknown. 

In the case of models that are not fully parametric, local image information is used to 

determine local image/scene properties (e.g., the local range value). However, the accu- 

racy of these can only be as good as the available local image information. For example, 

in homogeneous areas of the scene, it may be possible to achieve perfect registration even 

if the surface range estimates (and the corresponding local flow vectors) are incorrect. 

However, in the presence of significant image structures, these local estimates may be 

expected to be accurate. On the other hand, the accuracy of the global parameters (e.g., 

the rigid motion parameters) depends only on having sufficient and sufficiently diverse 

local information across the entire region. Hence, it may be possible to obtain reliable 

estimates of these global parameters, even though estimated local information may not 

be reliable everywhere within the region. For fully parametric models, this problem does 

not exist. 

The image registration problem addressed in this paper occurs in a wide range of 

image processing applications, far beyond the usual ones considered in computer vision 

(e.g., navigation and image understanding). These include image compression via motion 

compensated encoding, spatiotemporal analysis of remote sensing type of images, image 

database indexing and retrieval, and possibly object recognition. One way to state this 

general problem is as that of recovering the coordinate system that relate two images of 

a scene taken from two different viewpoints. In this sense, the framework proposed here 

unifies motion analysis across these different applications as well. 
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Fig.  1. Diagram of the hierarchical motion estimation framework. 

Fig.  2. Affine motion estimation: a) Original. b) Raw difference, c) Compensated difference. 
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Fig. 3. Planar surface motion estimation. 

a) Original image. 
b) Raw difference. 
c) Difference after planar compensation. 
c) Planar grid superimposed on the original image. 
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I Resolutiol~ I ~2 I T I 

(.oooo,.oooo,.oooo) I (.oooo,.oooo,l.oooo) 
32 • 30 (.0027,.0039,-.0001)!(-.3379,-.1352,.9314)! 

64 • 60 (.0038,0041,.0019) (-.3319,-.0561,.9416)! 

128 • 120 (.0037,.0012,.0008) (-.0660,-.0383,.9971) 

256 • 240 (.0029,0006,0013) (-.0255,-.0899,9956) 

Fig. 4. Egomotion based flow model. 

a) OriginM image from an outdoor sequence. 
b) Raw difference. 
c) Difference after ego-motlon compensation. 
d) Inverse range map. 
e) Rigid body parameters recovered at each resolution. 
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Fig. 5. Optical flow estimation. 

a) Original image. 

b) Raw difference. 
c) Difference after motion compensation. 
d) Horizontal component of the recovered flow field. 

e) Vertical component of the recovered flow field. 


