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Abstract— This article presents a hierarchical finite-set model
predictive control (MPC) scheme to enable autonomous operation
and self-balancing cascaded multilevel inverter. The proposed
approach is an alternative to MPC scheme based on a generic
cost function, which in some applications is ill fit or challenging
to design. The proposed controller has a hierarchical framework
to eliminate the overall cost function optimization and associated
weight factor design stage of the control objectives. The control
formulation approach allows for multiobjective optimization with
a cost-tolerance framework. The concept is well suited to simplify
the control design stage of cascaded H-bridge inverters at
the grid-edge with advanced functionality. The control scheme
achieves active and reactive power control with switching event
reduction while equalizing power draw from the independent
voltage sources. The latter of these objectives is made possible
by the proposed hierarchical approach to the control objective
tracking. The control is modularized for each phase, making
the system robust to unbalanced grid conditions. The concept is
explained in depth in simulation, and then tested experimentally
on hardware.

Index Terms— Cascaded multilevel inverter (CMI), model
predictive control (MPC), smart inverters.

I. INTRODUCTION

M
ULTILEVEL converters are a long-studied and widely

accepted class of power converters. When compared to

two-level converter topologies, multilevel topologies exhibit

improved harmonic content of the output voltage waveform,

reducing either the necessary switching frequency or output

filtering requirements, and reduced common-mode voltage

[1], [2]. They are often proposed in high-power applications,

as the increased number of series connected semiconductor

switches increases the voltage rating of the converter [3].
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Among these, the cascaded multilevel inverter (CMI) consists

of series connected H-bridges, and was first proposed in [4].

The modularity of the CMI deems it more reliable and capable

of fault-tolerant operation than other multilevel topologies

such as the neutral point clamped inverter and flying capacitor

inverter. The CMI topology has been proposed for a wide

range of applications, including photovoltaic inverters [5],

motor drives [6], and static VAR compensators [7]. Traditional

control techniques for the CMI incorporate linear controllers

and pulsewidth modulation (PWM) switching technique such

as phase-shifted PWM, space-vector PWM, and subharmonic

multilevel PWM [8], [9]. In general, linear controllers lack

the fast dynamic response that can be realized with modern,

computationally extensive control techniques. Furthermore,

incorporating them into a multiobjective control system gen-

erally requires cascading control loops, which is challenging

to design and increases complexity.

Model predictive control (MPC) is becoming a topic of

greater interest in power electronics and has recently achieved

adoption in industry [10], [11]. The subset known as finite-set

MPC is the most intuitive implementation of MPC, as control

actions are considered directly, and eliminates the need of a

modulator [12]–[15]. The phrase “control action” here refers to

either a specific sequence of gate signals applied to the semi-

conductor switches (referred to as optimal switching sequence

MPC) or the space vector that results for a specific sequence of

gate signals (referred to as optimal space vector MPC). Besides

an intuitive implementation, MPC tends to work well as an

inner control loop due to its fast dynamic response [16]–[18].

Finite-set MPC characteristics can be leveraged to tackle

constrained multiobjective control problem challenges within

the power electronics space [19]. Thus, finite-set MPC is a

potential solution toward resilient power electronics at the

grid-edge to enhance the power distribution system resiliency

in a straightforward manner [20]. Modern power converters

are commonly required to provide auxiliary services which

requires implementation of multiobjective control schemes.

As such, finite-set MPC is a promising solution toward grid-

enhancing power converters with advance functionality.

Despite these benefits, there are challenges in the MPC

formulation that have not been fully addressed [12], [21], [22].

In other words, what allows multiobjective MPC to boast its

simplicity is what creates difficulty in the design stage. The

cost function, while simple to implement, leaves its user to

determine how they should weight the objectives in the cost

function. Discussion in literature on how to design the weight
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factors is limited to trial-and-error techniques for finding an

optimal set-point [23], [24]. These techniques require the

user to observe the tracking performance of each control

objective and decide what the best behavior is. To be succinct,

the optimal weight factor ratio of multiobjective MPC tends

to be laborious to navigate and difficult to define, particularly

for cost functions with more than two objectives. Additionally,

a static weight factor ratio will likely not have optimal

performance for all considerable scenarios [25], e.g., in a grid-

connected inverter, the control object references should alter

due to a grid-fault. The concept of an adaptive weight factor

ratio for a power quality compensator was proposed in [26],

where the weight factor of each control objective’s cost in the

overall cost function adapts to the predicted optimal error of

each term. Still, such a control provides no guaranteed tracking

performance of its objectives and requires normalizing its

control objectives according to a predefined operating point.

Thus, some of the difficulties that arise when implementing

a multiobjective finite-set MPC stem from its use of a single

cost function. Furthermore, conventional finite-set MPC with

an overall cost function is not designed to drive any parameter

error to fall below an acceptable tolerance. The designed

weight factor ratios by themselves do not reveal nor confirm

any tracking capability of the control; only through extensive

tests can the control be evaluated which is a challenging

design strategy. Any reported weight factor ratios may become

unfit for a user who wants to emulate a controller under

new conditions. Ultimately, it is desirable and simpler for

end users to define their multiobjective controllers directly

based on desired tracking performance of the objectives,

while still being generally aware of tradeoffs associated with

multiobjective optimization.

This article proposes a method to achieve multi-objective

MPC without using an overall cost function for a CMI at the

grid-edge. The proposed approaches enable users to design the

controller according to acceptable tracking performance. This

is achieved by addressing each control objective hierarchically

instead of combining all control objectives in a single cost

function, and the objectives are evaluated in sequence. Thus,

the proposed control structure eliminates the need to design

weight factors for a generic cost function. By ranking control

objectives and defining an acceptable bound of error, the

objectives are tracked in a descending fashion. Control actions

that do not satisfy the error bound of an objective will be

removed before considering subsequent control objectives.

This will create stronger assurance of controller tracking for

critical objectives, while still allowing for local minimization

of less critical/slower dynamic control objectives.

The proposed concept is presented generally for finite-set

MPC of N objectives, then described for the presented case

study that enables resilient cascaded multilevel inverter at grid-

edge. The proposed MPC approach is well-suited for CMI with

advanced functionalities. The controller achieves active and

reactive power injection with switching event minimization

while simultaneously balancing the power drawn from the

individual DC voltage sources. The represented DC sources

could be battery cells connected to the grid through the

proposed CMI. The latter of these control objectives is made

Fig. 1. Hierarchical MPC developed for grid-connected CMI.

possible by the proposed hierarchical approach to the control

objective tracking, whereas traditional MPC requires complex

logic external to the cost function [27], [28]. These approaches

quickly become impractical as the number of cascaded bridges

increase, as the number of switching sequences increase

exponentially. Finally, the control is modularized for each

phase, making the CMI robust to unbalanced grid conditions.

Although it is beyond the scope of this article, the proposed

control scheme can be integrated with energy management

algorithms to optimize the power drawn from battery cells

while considering current stresses on the battery cells during

grid fast transients.

The remainder of this article is organized as follows.

Section II explains the grid interactive CMI, the foundation

of the predictive model, and reference generation for MPC

cost function. Section III details the hierarchical MPC concept,

and explains how it can be implemented on a controller with

sequential logic. In Section IV, the concept is demonstrated

for the presented case study in simulation, to investigate

the control procedure in detail. In Section V, the control is

implemented in a hardware experiment for one phase, where

multiple transients are induced on the system. Finally, Section

VI summarizes the findings.

II. SYSTEM DESCRIPTION

As mentioned in the introduction, the presented case study

for the hierarchical MPC framework is a CMI at the grid-edge.

Fig. 1 illustrates the CMI topology and summarizes the control

scheme. A second-order generalized integrator (SOGI) phase-

locked loop (PLL) detects the grid voltage angle [29]. The

SOGI orthogonal signal generation technique is particularly

beneficial for its inherent filtering of the grid voltage, making

the reference current signal robust to grid voltage harmonics

[30]. The reference current is assembled in the rotating refer-

ence (dq) frame, which is then converted to the reference grid

current in stationary frame. The dq frame conversion is made

possible by the orthogonal signal generation capability of the

SOGI, where the original and quadrature signals are inputs to

the Park transformation. The reference current is determined

using equations for single-phase active and reactive power in



EASLEY et al.: HIERARCHICAL MPC OF GRID-CONNECTED CMI 3139

the dq frame:

P∗
k =

1

2

(

vd,k i∗
d,k + vq,k i∗

q,k

)

Q∗
k =

1

2

(

vq,k i∗
d,k − vd,k i∗

q,k

)

(1)

where P∗
k and Q∗

k are the active/reactive power set-points

for the CMI. The subscript k indicates a discrete sampling

instant. vd,k and vq,k are the grid’s components in the rotating

reference frame, and i∗
d,k and i∗

q,k are decoupled components of

the reference current to be solved. This equation is rearranged

to calculate the reference current components in the dq frame,

and then converted to the original time-variant frame using the

inverse Park equation

i∗
d,k =

2
(

P∗
k vd,k + Q∗

kvq,k

)

v2
d,k + v2

q,k

i∗
q,k =

2
(

P∗
k vq,k − Q∗

kvd,k

)

v2
d,k + v2

q,k

(2)

i∗
k = i∗

d,k sin(θk) + i∗
q,k cos(θk) (3)

where θk is the grid angle detected by the PLL, and i∗
k is the

time-variant reference current. For current control, the finite-

set MPC evaluates each of the switching sequences or switch-

ing states, and compares it to the reference. The output current

predictions derive from the AC-side KVL equation

vinv = r(i) + L
di

dt
+ vg (4)

where L and r are the filter inductance and equivalent series

resistance (ESR), respectively. vg and vinv are the grid and

inverter voltages, respectively. This equation is discretized by

approximating the differential using forward Euler, assuming

constant inductance, and is rearranged to create an explicit

solution for the one-step ahead prediction of the output current

i M
k+1 =

(

1 −
r

L
TS

)

ik +
Ts

L

(

vM
inv,k+1 − vg,k

)

M ∈ Z : M ∈ [−2 2] (5)

where M is the output voltage level of the considered switch-

ing sequence; the applied output voltage is the output voltage

level M multiplied by the DC link voltage VDC. The associated

cost term for injected current is defined as

J
1 = |ik+1 − i∗

k | (6)

where J1 is the cost vector of injected grid current. This will

be explained more in Section III. The control also considers

changes in the switches gate logic as a control objective

to reduce the switching events and as a result the average

switching frequency. The cost is defined as

J
2 =

∑

i=a,b,c,d

2|Si,k+1 − Si,k |. (7)

The gate logic for each switching sequence is provided

in Table I. The summation in (7) is multiplied by two to

account for the other switch in the leg (San and Sbn). There

is a third control objective, referred to as sequence frequency

minimization, but further discussion of it is left for Section III.

The proposed sequence frequency minimization adds a unique

feature to CMI via the proposed hierarchical MPC scheme

that enables self-power balancing of its H-bridge cells, that is

balances the power drawn from battery cells.

TABLE I

SWITCHING SEQUENCES FOR ONE PHASE OF FIVE-LEVEL CMI

III. PROPOSED HIERARCHICAL PREDICTIVE CONTROL

Hierarchical MPC is first described in a conceptual way.

To aid in understanding the concept, and to address a few

exceptional cases of the control, we then describe how the

control is actualized in a discrete controller.

A. Hierarchical Model Predictive Control: Conceptualized

The hierarchical predictive control paradigm is presented

for N control objectives. The control is explained using two

types of vectors, called cost vectors and argument vectors.

Cost vectors are denoted with J, as is standard in the field

of convex optimization [31], [32]. The argument vectors are

denoted as P. For each control objective, there is an associated

pair of cost and argument vectors. The rank of the vectors’

associated objective is denoted by the vectors’ superscript. For

example, the cost and argument vectors associated with the

primary objective are denoted by J1 and P1, respectively. If a

subscript i is specified, then the expression is referring to the

i th element in the vector. J1
3 is referring to the third cost (cost

of switching sequence three) of the primary objective. Each

element has an associated switching sequence. Each objective

is denoted by its rank within the hierarchy. As described

earlier, switching sequences that are not projected to meet the

specified cost tolerance are removed from the optimization set

of the subsequent objective. This is denoted in the following

equation:

P
n =

{

i : J
n−1
i < εn−1

}

. (8)

Thus, Pn contains the arguments of the optimization set

for the subsequent objective n. Cost vectors JS×1 hold the

projected cost of each switching sequence that remains in

the optimization set. The value εn−1 is the cost tolerance of

the previous control objective (objective n − 1). Each control

objective, with the exception of the last control objective,

will use a cost tolerance for removing candidate-switching

sequences. Switching sequences are evaluated for each control

objective according to the objective’s P vector. The P vector

of an objective details all the switching sequences that will

have its cost measured for the objective

P
N ⊆ P

N−1 ⊆ · · · ⊆ P
2 ⊆ P

1
P

1 = {x ∈ N|x ≤ S} (9)

where S equals the number of possible switching sequences.

For the CMI, this is equal to 4H , where H is the number
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of H-bridges in cascade [33]. Also shown in (9) is the time-

invariant setting of P1. Definitely, J1 will be computed for

each possible switching sequence, as nothing else has allowed

switching sequences to be excluded. This means P1 will hold a

constant size, which is simply an array of incrementing natural

numbers from 1 to S. From (9), we see the P vectors may

decrease in size to objective N , but are not guaranteed to.

This reduction in the optimization set is dependent on the

chosen cost tolerances. In general, hierarchical MPC cannot

guarantee a consistent reduction in cost computations, but also

cannot exceed that of a traditional finite-set MPC. This will be

demonstrated in Section IV. Upon evaluation of all switching

sequences with respect to each control objective, the controller

will have determined a reduced optimization set, equal to

PN . Again, there is no guarantee to the size of PN , only a

guaranteed upper bound. However, since all sequences within

are deemed sufficient for proceeding objective s, the control

selects the sequence within this set which optimizes the N th

objective

sk+1 = arg min
{

J
N
}

. (10)

Thus, for the lowest rank objective, a cost tolerance need not

be defined.

B. Hierarchical Model Predictive Control: Actualized

For implementation in a microcontroller with sequential

logic, Algorithm I outlines how the controller can be imple-

mented. It is noted that the argument vector P1 is fixed, since

all switching sequences will be evaluated for the primary

objective. In block 1 of the algorithm, P2 is constructed, and

is of varying length. The bottom two lines of block 1 suggest

a scenario not yet considered: what if none of the switching

sequences allow any of the cost to be less than its associated

tolerance ε? A switching decision must still be made. The

most obvious workaround is to choose the switching sequence

which minimizes the cost, despite the cost exceeding the

defined bound. Effectively, this is what is done. However, it is

possible to continue optimizing subordinate objectives if there

are redundancies in the minimized cost. Redundant switching

sequences are especially prevalent in the CMI topology [8].

As an example, let us consider the following scenario: at

instant k, it is predicted that no switching sequence will

allow the injected current to meet the defined tolerance.

Additionally, when optimizing for grid current, it is determined

that applying an output voltage level of 0 will minimize cost.

For the five-level CMI, there are six switching sequences

which can achieve this voltage level. Thus, these six switching

sequences can be evaluated for subordinate objectives, while

still ensuring minimization of cost in injected current. Such

logic is described in Algorithm 2, which is nested in blocks

one through N − 1 in Algorithm 1.

Algorithm 2 is written in for an arbitrary objective U , where

U ∈ [1, N − 1]. Block 1 acts in a very similar way to

block N of Algorithm 1. Essentially, objective U is being

optimized with the optimization set developed from objective

U − 1. If a redundant optimal sequence is found, the vector

redundancies are filled with logic-high values in alignment

with the redundant sequences. The variable redundancy acts

as a flag to trigger block two of the algorithm. If no redundant

optimal sequences are detected, the control breaks out of Algo-

rithm 2 and Algorithm 1 and returns the optimal sequence.

However, if there are redundant optimal switching sequences

with respect to objective U , the control moves to block two,

which fills the argument vector PU with the detected redundant

sequences. In this scenario, the control returns to Algorithm 1

to evaluate Objective U + 1.

For the case study implemented in this article, the primary,

secondary, and tertiary objectives are (respectively): injected

grid current, switching events, and a term referred to as

sequence frequency. Sequence frequency is the frequency in

which the controller selects a particular switching sequence.

Applying the sequence frequency objective allows the con-

troller to eliminate bias among redundant switching sequences.

To better understand the purpose of this objective, we will

introduce a traditional finite-set MPC for the presented case

study. It optimizes injected grid current and minimizes switch-

ing events with the following cost function:

J = |ik+1 − i∗
k | + λ

∑

i=a,b,c,d

2|Si,k+1 − Si,k | λ � 1

sk+1 = arg min(J). (11)

The weight factor applied to the switch minimization term

is made sufficiently small so as not to affect the current

objective, which only depends on the output voltage level

M . The optimization procedure of such a control is similar

to block N of Algorithm 1, where J replaces JN , and P1

replaces PN . For implementation of this control, redundant

switching sequences are ignored. That is, when there are

two or more switching sequences that equally optimize the

control objective(s), the control will consistently select only

one of the sequences. If P1i and P1
i+1 minimize J equally,

the function will always return sk+1 as P1
i . This is common for

finite-set predictive control [19], [34]. For the traditional pre-

dictive control outlined by (11), consider the scenario where

the previous switching sequence was switching sequence 16

(M = 2), and to optimize injected grid current, the controller

will implement M = 1. There are four switching sequences

to achieve this; two sequences apply positive voltage across

cell one (sequences 12 and 13), the other two apply positive

voltage across cell two (switching sequences 11 and 14).

Considering both injected grid current and switching events

in the cost function, the controller will always select the first

switching sequence such that M = 1 (switching state 11) when

the previous switching state was switching state 16, since

J11 = J12 = J13 = J14. Undue bias toward this switching

sequence induces unequal power draw from the isolated DC

sources, which has practical consequences such as uneven

discharge rates of grid-connected battery storage systems.

When applying switching events in the cost function, it cannot

be said with certainty how the power draw characteristics will

behave for traditional finite-set MPC, since this depends on

the changes in the selected output voltage over time, which

depends on the output filter, sampling frequency, and DC

link voltages. However, without an objective to regulate the

selection of redundant switching sequences, the power draw
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characteristics are likely to be distinct for each source. This

will be demonstrated in Section V.

For hierarchical MPC, applying an objective to remove such

biases is simple. This objective is applied by creating a tertiary

cost vector J3 and incrementing J3
i each time the controller

selects switching sequence i . Mitigation of bias among the

possible switching sequences improves the equalization of

power draw from the isolated DC sources. An objective such

as this is difficult to apply directly in a traditional finite-set

MPC, since the cost increases without bound. Over time, this

objective would “dominate” the cost function, as its magnitude

of the cost quickly exceeds that of all other objectives. With

the hierarchical controller, this is impossible, as this objective

can only be optimized once the superordinate objectives fall

within their respective bounds.

Algorithm 1 HMPC, S Switching Sequences, N Objectives

Function [sk+1] = HMPC (measurements)

Initialization: sampling at Ts, Define ε1, ε2, . . . , εN−1

J1 ← J2 ← . . . ← JN ← [0 0 . . . 0]1×M , P1 ← [1 2

. . . M ]1×S J1
opt ← J2

opt ← . . . JN
opt ← ∞, i ← 1

1: Argument Reduction for Primary Objective

for each x ∈ P1 do

compute J1
x

if J1
x ≤ ε1 then

P2
i ← x , ++i

end if, end for, reset i

if length(P2) = 0 then → Optimize J1(Algo. 2)

else → descend …

2: Argument Reduction for Secondary Objective

for each x ∈ P2 do

compute J2
x

if J2
x ≤ ε2 then

P3
i ← x , ++i

end if, end for, reset i

if length(P3) = 0 then → Optimize J2 (Algo. 2)

else → descend …
...

N-1: Argument Reduction for ObjectiveN-1

for each x ∈ PN−1 do

compute JN−1
x

ifJN−1
x ≤ εN−1 then

PN
i ← x , ++i

end if, end for, reset i

if length(PN)=0 then → Optimize JN−1 (Algo. 2)

else → descend …

N: Optimization ofN th Objective

for each x ∈ PN do

ifJN
x < JN

opt then

sk+1 ← x , JN
opt ← JN

x

end if, end for

end N hierarchical if statements, Return sk+1, End func-

tion

While discussing this control, the feasibility of finite-set

MPC (and the proposed HMPC) for alternative applications

should be addressed. First, it should be established that the

Algorithm 2 Nested in Algorithm 1, Triggered If Cost Toler-

ance Cannot Be Met for Objective U

Initialization: redundancies = [0 0 … 0]1×S

1: Optimizing JU , Tracking Redundant Optimal

Sequences

for each x ∈ PU−1do

if J U
x < J U

opt then

sk+1 ← x , redundancy ← 0, reset redundancies

elseif J U
x = J U

opt then

redundancy ← 1, redundanciesx = 1

redundanciessk+1 ←1

end if, end for

2: Checking for Redundant Optimal Sequences

if redundancy = 1 then

for each x ∈ PU−1do

if redundanciesx = 1 then

PU
i ← PU−1

x , + + i

end if, end for

else break hierarchical if statements, Return sk+1, End

function

end if, End of Nested Algorithm

proposed HMPC can easily be expanded for CMI with a

larger number of series-connected H-bridge modules. If there

are N-series connected H-bridges, the possible control actions

and maximum size of the argument vectors can be defined

automatically from N . However, the number of possible

controls actions to implement increases exponentially with N .

In the selected application (with N = 2) there are 16 possible

control actions. This can be easily implemented at a high con-

troller sampling frequency. For instance, a sampling frequency

of 50 kHz is used in the hardware experiment of Section V, and

the sampling rate was limited primarily because of the analog-

to-digital converters for sensed measurements. To consider a

topology with 100 H-bridge modules (N = 100), there would

be 4100 unique control actions. Needless to say, evaluating

this number of control actions is not possible with a practical

embedded system at a reasonable sampling frequency. This is

inherent to any finite-set control, including traditional finite-

set MPC. Mitigation of this issue for such applications would

require a technique which carefully eliminates a substantial

number of control actions without removing the benefits of

finite-set MPC or introducing critical drawbacks, but further

discussion is outside the scope of this work.

IV. ILLUSTRATION OF CONCEPT

The main objective of this section is the detailed analysis

of the control procedure which is not feasible in the hardware

implementation of the system. For instance, we cannot collect

intermediate variables, for example, cost and argument vectors,

in real time at each discrete instant while still implementing

a practical controller sampling frequency. To overcome this,

we first simulate the hardware experiment. The sampling

frequency, filter size, and grid voltage are equal to that of the

hardware experiment in Section V. In Section IV-A, the track-

ing of each objective is studied in depth. In Section IV-B,
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Fig. 2. Injected phase current. At t = 0.1 s, ε1 is reduced from 0.8 to 0.3 A.

Fig. 3. Injected phase current, reference current, and tolerance band as ε1

is reduced from 0.8 to 0.3 A.

we examine the effect of model inductance error on current

tracking.

A. Objective Tracking Analysis

Data are collected for one phase of the modular control.

Fig. 2 shows the injected grid current for one phase during

a step-change in cost tolerances of objective one and two.

At t = 0.1 s, the cost tolerance of injected grid current

is reduced from 0.8 to 0.3 A, while the cost tolerance of

switching events is increased from 3 to 5. Fig. 3 shows the

reference current, injected current, and cost tolerance bounds

during this step change. An obvious reduction in current ripple

about the peaks is observed, and the controller is able to

maintain the current within this bound. Fig. 4 shows the

number of switching events, changes in gate signal logic,

during this transition. Since a relaxation of switching event

error bound has been implemented, the average number of

switching events per sampling instant increases by roughly

30%. Fig. 5 shows the better understand the decision making

procedure of the hierarchical MPC. The same parameters

are present that were shown in Fig. 3, but the next-state

predictions at each discrete sampling instant. The next-state

prediction of the selected switching sequence is highlighted

for each instant. It is noted that there are only five next-state

predictions per instant, yet some predictions are represented

by a darker point. This demonstrates that there exist only five

unique current predictions among the 16 possible switching

sequences, one unique prediction for each possible output

voltage level, and thus many predictions overlap. This agrees

with Table I, showing each switching sequence and its output

voltage level M. The instances in Fig. 3 occur before the

transition in cost tolerance. Prior to t = 0.09928 s, we see the

controller continues implementing M = 2, despite the fact that

it is not optimizing the injected current objective. Since these

control actions fall within the bounds of its cost tolerance,

Fig. 4. Number of switching events as ε1 is reduced from 0.8 to 0.3 A, and
ε2 increases from 3 to 5. These changes result in about a 30% increase in the
average number of switching events per discrete sampling instant.

Fig. 5. (a) Injected phase current, reference current, tolerance band, and
next-state current predictions for each discrete instant, evaluated with ε1 equal
to 0.8 A. The prediction of the selected switching sequence is highlighted.
(b) Cost and argument vectors at instant t = 0.09928 s. Cost tolerance of
objectives 1 and 2 are 0.8 A and 5 switching events, respectively.

switching sequences such that M ∈ [0, 2], are still being

considered as the controller moves to calculating switching

event computations. With the cost tolerance of objective two

set to three (switching events) switching sequences that require

more than one bridge gate inversion are removed. From

examining Table I, we see this will eliminate zero-voltage

levels, but retains all sequences such that M = 1, as well

as the previous switching state. Thus, switching sequences

11, 12, 13, 14, and 16 remain in the optimization set. From

there, the controller selects the switching state that has been

chosen the least. From this, we conclude the M = 1 switching

sequences have been chosen more frequently at this point, thus,

the control continues to implement switching sequence 16.

A transition in switching sequence occurs at t = 0.09928 s.

We see that the presently implemented voltage level of two is

no longer in the acceptable boundary. The cost and argument

vectors at the end of this iteration are shown in Fig. 5. After

computing J1, switching sequences 15 and 16 which produce

output voltage levels of negative two and positive two, respec-

tively, exceed ε1. Thus, P2 has both sequences removed from

the optimization set. However, since the currently selected
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Fig. 6. Injected phase current, reference current, tolerance band, and next-
state current predictions for each discrete instant, evaluated with ε1 equal to
0.3 A. The prediction of the selected switching sequence is highlighted.

switching state is 16, and the switching event tolerance is

three, all negative and zero output voltage levels are removed,

as they require at least four gate signal transitions. The only

switching sequences that remain in the set are those such

that M = 1, thus P3 contains the 11 through 14. Finally,

the controller selects among the reduced set according to

the level that has been selected the least, which is switching

state 14. Thus, the controller implements switching state 14 at

t = 0.0993 s. It is noted that the size of the cost vectors do

not change size; Fig. 5 only includes the cost vector elements

that were computed.

In Fig. 6, the current, reference current, and reduced tol-

erance band (ε1 = 0.3 A) are shown after t = 0.1 s

with the next-state current predictions. It is clear that fewer

voltage levels tend to fall within this error bound. In general,

the argument vectors P2 and P3 will be smaller in this scenario.

Thus, it will be more difficult to optimize their associated

objectives. This is also evidenced in Fig. 7, which shows the

power draw characteristics of the individual H-bridges for each

set of cost tolerances. In Fig. 7(a), the larger cost tolerance

for injected grid current induces greater equalization of power

draw from the two sources, with a difference in power draw of

roughly 5 W. The controller is better able to even the selection

of switching sequences. Fig. 7(b) shows the power draw of

each cell for the reduced ε1. The difference in power draw

increases to 65 W, as a result of the size reduction in P3.

As will be shown in the hardware results, this deviation is far

less than that of traditional MPC.

As discussed in Section III, hierarchical MPC does not

guarantee a consistent reduction in iterative computation when

compared to traditional finite-set MPC. However, hierarchical

MPC will not exceed the computation of traditional MPC.

To understand this, the iterative computations are directly

tracked in Fig. 8. Here, a computation is considered an

addition, subtraction, multiplication, division, or comparison.

A comparison is done when searching for an arg min, or find-

ing objectives which fall within their respective tolerances.

This tracking is done for a high-level explanation of how

computations differ for hierarchical MPC and not for a defin-

itive comparison of feasible sampling frequencies; this would

require an assumed architecture of the embedded system.

Furthermore, computations are only considered for the opti-

mization portion of the control (i.e., computations for reference

Fig. 7. Power injection from each of the isolated sources for (a) ε1 = 0.8
A and (b) ε1 = 0.3 A.

Fig. 8. Number of iterative computations as ε1 is reduced from 0.8 to 0.3 A,
and ε2 increases from 3 to 5. These changes result in an average iterative
computation count of roughly 239 to about 203.

signal generation are not included). Prior to the change in cost

tolerances at t = 0.1 s, we see computation varies between

170 and 315, with an average of about 239. There is a fixed

minimum number of computations associated with computing

J 1 and P2. The remaining computations are dependent on

the length of P2 and P3. For larger tolerances, the length

of succeeding argument vectors will increase, and iterative

computation will increase accordingly. Thus, following the

reduction in ε1 at t = 0.1 s, we see a reduction in iterative

computation. This is a result of P2 tending to be smaller, as the

current optimization constraint has become more difficult to

satisfy. It is noted that the comparable finite-set MPC has a

fixed number of iterative computations of 352. For the selected

error tolerances, the hierarchical MPC has a consistently

reduced number of computations.

B. Effect of Model Parameter Error on Current Tracking

Accurate next-state current prediction is dependent on

accurate estimation of the model parameters. For finite-set

model predictive current control with an inductive filter, model

inductance error is found to be much more critical than error
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Fig. 9. Current tracking for negative 50% relative error in model inductance.
(a) Injected phase current, reference current, and tolerance band as ε1 is
reduced from 0.8 to 0.3 A. (b) Injected phase current, reference current,
tolerance band, and next-state current predictions for each discrete instant,
evaluated with ε1 equal to 0.8 A and (c) ε1 equal to 0.3 A.

on the ESR of the filter [35]. Thus, we have restricted our

focus to relative error on the model inductance.

First, a relative error of negative 50% is applied to the

model inductance. That is, the inductance within the HMPC

algorithm is half of the physical inductance. The same tran-

sient from subsection A is applied here; namely, ε1 is reduced

from 0.8 to 0.3 A, and ε2 is increased from three to five at

time t = 0.1 s. The injected current, reference current, and

cost tolerance bounds are shown in Fig. 9(a). It is evident

that the current is maintained well within the defined bound.

In fact, the error magnitude appears lower on average than

was seen without model inductance error. The reason the

bound is maintained can be explained when looking back

to (5) which computes the next-state current prediction for

each output voltage level. With a reduced model inductance L,

the prediction overestimates the change induced on the current

from the estimated voltage across the filter. In Fig. 9(b), ε1 is

0.8 A, and the difference in predicted currents for each output

voltage level is around 1 A. The current predictions have

“spread out,” from the model-aligned inductance from Fig. 6,

where the predictions were roughly 0.5 A apart. Less output

Fig. 10. Current tracking for 100% relative error in model inductance.
(a) Injected phase current, reference current, and tolerance band as ε1 is
reduced from 0.8 to 0.3 A. (b) Injected phase current, reference current,
tolerance band, and next-state current predictions for each discrete instant,
evaluated with ε1 equal to 0.8 A and (c) ε1 equal to 0.3 A.

voltage levels are determined to be within the defined error

tolerance bound, and the current stays well within the bound

as a result. In Fig. 9(c), for most sampling instances, there

is no output voltage level which satisfies the cost tolerance

ε1. As a result, the control must select the output voltage

which minimizes the current error magnitude. This allows the

controller to maintain the defined boundary.

Next, a relative error of 100% is applied to the model induc-

tance. This is considered a worst-case scenario. The inductance

value in the controller is set to twice that of the physical

filter inductance. The previous transient is again applied at

t = 0.1 s, as shown in Fig. 10(a). Unlike the scenario of

underestimated model inductance, the overestimated model

inductance is unable to keep the current within the defined

bound. With positive relative error on the model inductance,

the control underestimates the change in inductor current.

In Fig. 10(b), we see the current predictions closer together for

each sampling instant. As a result, output voltage levels which

would not normally reside within the acceptable boundary
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Fig. 11. Hardware setup for experimental validation of proposed hierarchical
MPC scheme toward smart CMI.

TABLE II

SYSTEM SPECIFICATIONS

are kept within the optimization set for the secondary and

tertiary objectives. Since there are more zero voltage switching

sequences, they tend to be selected less frequently. As a

result, the control tends to select switching sequences with

lower voltage levels to satisfy the tertiary objective. Thus,

near the peak of the reference current, the injected current

tends to settle below the reference. In Fig. 10(c), the reduced

cost tolerance boundary contains more voltage levels than

was noted for reduced model inductance. Whereas reduced

model inductance still allowed for the current to be constrained

within the desired boundary set by ε1, the increased model

inductance cannot. It is worth mentioning that this case study

demonstrates a significant model parameter error as a worst-

case scenario which is rarely considered in practice, This

extreme model parameter error demonstrates the acceptable

performance of the proposed controller.

V. RESULTS AND DISCUSSION

The proposed hierarchical MPC scheme is tested experi-

mentally. For the case studies, a five-level CMI is tied to

a 120 VLN (RMS) grid. Table II details parameters of the

testbed, shown in Fig. 11. DC power supplies provide the DC

link voltages of the H-bridges, and a four-quadrant (power-

bidirectional) grid emulator is tied to the output of the CMI.

The control is implemented on a rapid control prototyping

device, the dSPACE CP1103. The CP1103 has embedded

analog-to-digital converters, and thus all measurements shown

in this section come from stored values sensed/computed by

Fig. 12. Dynamic response of traditional finite-set MPC for reduction in
power reference at t1 from (a) output voltage, grid voltage, and output current
and (b) power draw characteristics.

the CP1103. To store data in real time, the sampling rate of

the collected measurements are 12.5 kHz (one fourth of the

controller’s sampling frequency). The cost tolerances ε1 and ε2

are set to 0.2 A and five switching events, respectively. When

validating the control to system transients, its dynamic and

steady-state response is compared to a comparable, traditional

finite-set control scheme, and a standard PWM current control.

In all three control schemes, the current reference is developed

identically, which is described in Section II. In Section V-A,

the control is compared to standard finite-set MPC. In Section

V-B, the proposed control is compared to a current control

scheme which uses a multilevel subharmonic PWM switch-

ing scheme, and the modulation signal is developed from a

proportional-resonant (PR) control.

A. Comparison Against Traditional Finite-Set MPC

The standard model predictive current control implements

the cost function and control action defined in (10). Its

weight factor λ tied to switching event minimization is defined

in Table II as 1e−6. It is noted that this is done so the control

will only reduce switching events once the optimal output

voltage level M is selected. It is expected that the control

will select the same switching sequences for all λ less than

1e−4 but greater than 0. This statement is equivalent to saying

it is expected that the cost difference of the current predictions

between different voltage levels will always exceed 0.8 mA,

as the greatest cost produced by the switching event term

in J cannot exceed 8e−4. Thus, the designed cost function

will behave in a similar fashion to the proposed hierarchical

control, but does not include the sequence frequency objective.

Both the proposed control and finite-set MPC are tested for

a step change in power reference, from 1 kW to 0.5 kW. In

Fig. 12, the traditional finite-set MPC implements a reduced

power reference at t1. Within a few samples, the control

settles the current amplitude in alignment with the reduced

power reference, as shown in Fig. 12(a). In Fig. 12(b),
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Fig. 13. Dynamic response of the proposed control for reduction in power
reference at t2 . (a) Output voltage, grid voltage, and output current. (b) Power
draw characteristics.

the power-draw characteristics of each voltage source are

shown. There is evident double-frequency power ripple. This

is also evidenced on the DC-link voltages, which are used to

compute the output voltage in Fig. 12(a). Furthermore, there

is a notable distinction in power draw among the voltage

sources. In particular, the voltage source of the lower H-bridge

has notably larger power draw on average than that of the

upper H-bridge. Without an objective to equalize the selection

of switching sequences, the standard MPC selects only one

switching sequence for each output voltage level. This distinc-

tion is dependent on how the switching sequences are defined

and compared in the control algorithm, unlike the proposed

control. In Fig. 13(a), the proposed control is placed under

the same power reference reduction at t2. The control reduces

the output current to the reduced reference current amplitude

within a few sampling instants, as was seen with the traditional

finite-set MPC. In Fig. 13(b), the power draw characteristics of

each H-bridge are shown. The double-frequency power ripple

that was seen in traditional finite-set MPC still occurs for the

proposed control. However, there is only a slight distinction

in power draw between the voltage sources. This was noted

in Section IV, where implementing a small ε1 created a

slight distinction in power draw. Thus, the proposed control

successfully retains the fast reference tracking of traditional

finite-set MPC while substantially reducing the distinction in

power draw characteristics.

Next, each control is tested for a sag in grid voltage.

As noted in Table II, the reactive power reference (Q∗) is

0 under normal grid conditions. However, in the event of a

significant grid voltage sag, the inverter injects 250VAR to

support the grid voltage. In Fig. 14, the dynamic response

of traditional finite-set MPC is shown for a 20% sag in grid

voltage at t3. Shortly after t3, there is a notable adjustment in

the output current. Specifically, the amplitude of the current

has increased and lags the grid voltage. This suggests the

current reference has been adjusted to enable reactive power

Fig. 14. Dynamic response of traditional finite-set MPC for 20% grid voltage
sag at t3. (a) Output voltage, grid voltage, and output current. (b) Power draw
characteristics.

injection. However, in Fig. 14(a), substantial distortion occurs

at the current peaks. Furthermore, it is noted that the output

voltage of the CMI falls below the grid voltage during this

interval of current distortion. This voltage oscillation at the

DC side is a result of the erratic and disparate power drawn

from the voltage sources. In Fig. 14(b), the power draw

characteristics of the finite-set MPC are shown. Not only

is the power draw largely distinct for each voltage source,

but there is notable fluctuations in the power drawn over

time, marginalizing the stability of the DC-link voltages. This

unregulated power draw is inherent to the finite-set MPC,

making the traditional predictive control unable to reach the

desired output current. The same grid voltage sag is applied

to the proposed HMPC at t4. In Fig. 15(a), the current is

noted to increase in amplitude and lag the grid voltage, as was

noted in traditional finite-set MPC. However, the proposed

HMPC does not experience the current distortion previously

noted for the traditional finite-set MPC. In Fig. 15(b), there

is a slight increase in overall power draw from the voltage

sources, presumably caused by a slight reduction in efficiency

from the increased current demand of the converter. However,

stable and near-equal power draw characteristics are observed

from the voltage sources, and thus the control is able to

meet the demanded active and reactive power. The problem

observed using the traditional finite-set MPC can be mitigated

with increased DC-link capacitance. However, the stable and

equalized power draw characteristics of proposed control helps

to reduce the resultant voltage ripple across the DC-link, when

compared to a traditional finite-set MPC scheme. With the

proposed control, the sequence frequency objective can be

applied to the control as J3, and thus the control tends to select

redundant switching sequences more evenly. Furthermore, the

proposed hierarchical approach mitigated the trial and error

design stage of the weight factors of traditional MPC.

The total harmonic distortion of the grid current is found to

be 3.75% when injecting 1 kW of active power at steady state.
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Fig. 15. Dynamic response of proposed control for 20% grid voltage sag
at t4. (a) Output voltage, grid voltage, and output current. (b) Power draw
characteristics.

Fig. 16. FFT analysis of the proposed control scheme.

Fig. 17. Cascaded H-bridge topology and proportional-resonant-based current
control with subharmonic PWM.

The distortion of the comparable finite-set MPC is computed

as 3.78%, thus there is no notable distinction in the error of the

injected grid current between the two strategies. An FFT analy-

sis of the injected current for the proposed control scheme is

provided in Fig. 16. What is most notable is the continuous

nature of the harmonic content, which is inherent finite-set

MPC, which operates with a variable switching frequency.

Fig. 18. PR-based current control with subharmonic PWM with a reduction
in power reference at t5 . (a) Output voltage, grid voltage, and output current.
(b) Power draw characteristics.

Fig. 19. Proposed hierarchical MPC with a reduction in power reference
at t6. (a) Output voltage, grid voltage, and output current. (b) Power draw
characteristics.

TABLE III

CONTROL COMPARISON AT 1-kW POWER INJECTION

B. Comparison Against PR Current Control Scheme

The proposed control is also compared to a classical,

PWM-based current control scheme for the CMI topology,
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as shown in Fig. 17. The modulation technique is referred to

as multilevel subharmonic PWM [9]. A proportional-resonant

controller is used to provide a modulation signal that matches

the grid frequency. The gains of the controller, k p and kr ,

were tuned to 0.1 and 10, respectively. There was a tradeoff

when tuning the gains of transient response and power quality

at steady state. The carrier signals are set to 20 kHz. Since

finite-set MPC has a variable switching frequency, we could

not ensure the switching frequencies of both control scheme

were equal. In Fig. 18(a), the output current is tracked for

a 50% reduction in reference power at t5. First, it is noted

that the output voltage acts as a three-level switching scheme.

The subharmonic PWM scheme operates each H-bridge with

bipolar modulation. Thus, two cascaded H-bridged operate like

a three-level inverter. The new reference current is tracked

within a few grid cycles, or around 50 ms. In Fig. 18(b),

it is noted that the power draw of each H-bridge is roughly

equal. The issue of unequal power draw is not inherent to

this control scheme, as neither H-bridge operate with a zero-

voltage output level. In Fig. 19, the same transient is applied

to the proposed hierarchical MPC at t6. In Fig. 19(a), the new

reference current is tracked in under 200 µs. The control

applies negative output voltage during this time to drive the

current down to the updated reference. This modulation signal

of the PR-based control scheme is unable to reduce sufficiently

fast to match the transient response of the proposed control.

In Fig. 19(b), the power draw characteristics are shown for the

proposed control. There is only a slight distinction between the

power draw of the two H-bridges. This is because the tertiary

objective equalizes the rate of selection of redundant switching

sequences, which mitigates selection bias in standard finite-

set MPC. Furthermore, the current THD of the PR-based

control was computed as 5.84% at reduced power, while the

proposed control produced current with 3.92% THD. Thus,

the proposed control realizes significantly faster transient

response and improved power quality when compared to the

traditional control scheme, but is able to exhibit similar power

draw characteristics that traditional finite-set MPC cannot.

Table III documents the main findings of the results section.

As noted in Section IV, the difference in power draw can

be reduced further in the proposed control by increasing the

current tolerance ε1. Thus, in summary as presented in Table

III, the proposed hierarchical MPC is highly superior in power

balancing feature comparing to tradition MPC. In comparison

to PR current control, the proposed hierarchical MPC is highly

superior in current THD and dynamic response measures.

Finally, the proposed hierarchical can be implemented in a

straightforward manner which highlight its low control design

effort requirement comparing to traditional MPC and PR

current control techniques. This is due to the fact that the

proposed controller mitigated the control parameter tuning

effort which is needed in PR current control and weight factor

tuning effort which is needed in traditional MPC.

VI. CONCLUSION

This article presented a new approach within the scope

of finite-set MPC framework for power electronic converters.

The presented predictive control approach does not include

a generic cost function. Rather, control objectives are ranked

and given a cost tolerance, and switching sequences that do

not meet the specified cost tolerance are removed from the

optimization set of all the subsequent objectives. Not only does

this remove the need to select among the equivocal weight fac-

tor design procedures but it also allows for the implementation

of nonstandard control objectives. The proposed hierarchical

MPC is leveraged to enhance the operation of the cascaded

multilevel converter at grid-edge with a self-power balanc-

ing feature. This is demonstrated with an incrementing cost

objective referred to as sequence frequency, which equalizes

the controller’s selection of redundant switching sequences.

Applying this objective is shown to improve equality in

behavior, power draw, among the H-bridges in the CMI. The

theoretical analysis and experimental results demonstrate the

difference in power draw among the H-bridges is reduced by

over 75% when evaluated against a comparable implementa-

tion of conventional MPC. When compared to a traditional

PR-based control scheme, the proposed control scheme is

shown to exhibit similar power draw characteristics, while

maintaining superior dynamic response and power quality.

Finally, the tuning stage is mitigated in the proposed control

scheme which makes it superior to both PR-based control and

conventional MPC schemes. Illustration of concept via sim-

ulation and hardware experiments verify the control’s ability

to track its respective P and Q set points in case of a grid-

fault as a required feature for grid-supporting power converters

in the future high penetrated grid with power converters.

Finally, it is demonstrated that the proposed hierarchical MPC

computational cost is significantly reduced comparing to the

traditional MPC formulation.
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sity of Technology, Gdańsk, Poland, in 1995, and the
Ph.D. degree in political science from the University
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