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ABSTRACT | The paper describes the recent state of the art in

hierarchical analog synthesis, with a strong emphasis on

associated techniques for computer-aided model generation

and optimization. Over the past decade, analog design automa-

tion has progressed to the point where there are industrially

useful and commercially available tools at the cell levelVtools

for analog components with 10–100 devices. Automated tech-

niques for device sizing, for layout, and for basic statistical

centering have been successfully deployed. However, successful

component-level tools do not scale trivially to system-level

applications. While a typical analog circuit may require only 100

devices, a typical system such as a phase-locked loop, data

converter, or RF front-end might assemble a few hundred such

circuits, and comprise 10 000 devices or more. And unlike

purely digital systems, mixed-signal designs typically need to

optimize dozens of competing continuous-valued performance

specifications, which depend on the circuit designer’s abilities to

successfully exploit a range of nonlinear behaviors across levels

of abstraction from devices to circuits to systems. For purposes

of synthesis or verification, these designs are not tractable when

considered Bflat.[ These designs must be approached with

hierarchical tools that deal with the system’s intrinsic design

hierarchy. This paper surveys recent advances in analog design

tools that specifically deal with the hierarchical nature of

practical analog and RF systems. We begin with a detailed

survey of algorithmic techniques for automatically extracting a

suitable nonlinear macromodel from a device-level circuit. Such

techniques are critical to both verification and synthesis

activities for complex systems. We then survey recent ideas in

hierarchical synthesis for analog systems and focus in particular

on numerical techniques for handling the large number of

degrees of freedom in these designs and for exploring the space

of performance tradeoffs early in the design process. Finally, we

briefly touch on recent ideas for accommodating models of

statistical manufacturing variations in these tools and flows.

KEYWORDS | Computer-aided design; integrated circuits;

modeling; simulation

I . INTRODUCTION

Automated analog integrated circuit design is becoming a

viable solution for increasing design productivity for

critical analog components. Over the past decade, analog

design automation has progressed to the point where

there are industrially useful and commercially available

tools at the cell levelVtools for analog components with

10–100 devices. Automated techniques for device sizing,

for layout, and for basic statistical centering have been

successfully deployed. Gielen and Rutenbar [2] offer a

fairly complete survey of the area. However, successful

component-level tools do not scale trivially to system-level
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applications. While a typical analog circuit may require

only 100 devices, a typical system such as a phase-locked

loop, a data converter, or an entire RF front-end might

assemble a few hundred such circuits and comprise

10 000 devices or more. And unlike purely digital

systems, mixed-signal designs typically need to optimize

dozens of competing continuous-valued performance

specifications, which depend on the circuit designer’s

abilities to successfully exploit a range of nonlinear be-

haviors across levels of abstraction from devices to circuits

to systems. Such designs are also increasingly being

integrated in large system-on-chip (SOC) environments,

in challenging (i.e., highly scaled digital CMOS [1])

fabrication processes. Verifying, optimizing, and synthe-

sizing such complex systems is generally not tractable

when they are considered Bflat.[ These designs must be

approached with hierarchical tools that deal with the

system’s intrinsic design hierarchy. In any hierarchical

approach macromodels or behavioral models are the

bridge between the different levels in the hierarchy, both

top-down and/or bottom-up.

This paper surveys recent advances in analog design

tools that specifically deal with the hierarchical nature of

practical analog and RF systems. We begin in Section II

with a detailed survey of algorithmic techniques for

automatically extracting a suitable nonlinear macromodel

from a device-level circuit. Such techniques are critical to

both verification and synthesis activities for complex

systems; they allow us to simulate large systems, in practical

amounts of time, with just enough fidelity for the behaviors

we seek to model. We then survey in Section III recent

ideas in hierarchical synthesis and optimization for analog

systems. We focus in particular on numerical techniques for

handling the large number of degrees of freedom in these

designs and for exploring the space of performance tradeoffs

early in the design process. Finally, in Section IV we briefly

touch on recent ideas for accommodating models of

statistical manufacturing variations in these tools and flows.

Section V offers concluding remarks.

II . ALGORITHMIC MACROMODELING
TECHNIQUES

Electronic systems today, especially those for communica-

tions and sensing, are typically composed of a complex mix

of digital, analog, and RF circuit blocks. Simulating or

verifying such systems is critical for discovering and

correcting problems prior to fabrication, in order to avoid

refabrication which is typically very expensive. Simulating

entire systems to the extent needed to generate confidence

in the correctness of the to-be-fabricated product is,

however, also usually very challenging in terms of com-

putation time. Full transistor-level verification of large

systems can simply be prohibitive in terms of CPU time.

A common and useful approach towards verification in

such situations, both during early system design and after

detailed block design and layout, is to replace large and/or

complex blocks by small macromodels that replicate their

input–output functionality well and to verify the macro-

modeled system. The macromodeled system can be

simulated rapidly in order to evaluate different choices

of design-space parameters. Such a macromodel-based

verification process affords circuit, system, and architec-

ture designers considerable flexibility and convenience

through the design process, especially if performed

hierarchically using macromodels of differing sizes and

fidelity.

The key issue in the above methodology is, of course,

the creation of macromodels that represent the blocks of

the system well. This is a challenging task for the wide

variety of communication and other circuit blocks in use

today. The most prevalent approach towards creating

macromodels is manual abstraction. Macromodels are

usually created by the same person who designs the

original block, often aided by simulations. While this is the

only feasible approach today for many complex blocks, it

does have a number of disadvantages compared to the

automated alternatives that are described in this paper.

Simulation often does not provide abstracted parameters

of interest directly (such as poles, residues, modulation

factors, etc.); obtaining them by manual postprocessing of

simulation results is inconvenient, computationally ex-

pensive, and error prone. Manual structural abstraction of

a block can easily miss the very nonidealities or

interactions that detailed verification is meant to discover.

With semiconductor device dimensions shrinking below

100 nm and nonidealities (such as substrate/interconnect

coupling, degraded device characteristics, etc.) becoming

increasingly critical, the fidelity of manually generated

macromodels to the real subsystems to be fabricated

eventually is becoming increasingly suspect. Adequate

incorporation of nonidealities into behavioral models, if at

all possible by hand, is typically complex and laborious.

Generally speaking, manual macromodeling is heuristic,

time consuming, and highly reliant on detailed internal

knowledge of the block under consideration, which is

often unavailable when subsystems that are not designed

in-house are utilized. As a result, the potential time-to-

market improvement via macromodel-based verification

can be substantially negated by the time and resources

needed to first generate the macromodels.

It is in this context that there has been considerable

interest in automated techniques for the creation of

macromodels. Such techniques take a detailed description

of a blockVfor example, a SPICE-level circuit netlistVand

generate, via an automated computational procedure, a

much smaller macromodel. The macromodel, fundamen-

tally a small system of equations, is usually translated into

Matlab/Simulink form for use at the system level. Such an

automated approach, i.e., one that remains sustainable as

devices shrink from deep submicron to nanoscale, is es-

sential for realistic exploration of the design space in
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current and future communication circuits and other

system applications.

Several broad methodologies for automated macro-

modeling have been proposed. One is to generalize,

abstract, and automate the manual macromodeling

process. For example, common topological elements in a

circuit are recognized, approximated, and conglomerated

(e.g., [18] and [19]) to create a macromodel. Another class

of approaches attempts to generate symbolic macromodels

that capture the system’s input–output relationship, e.g.,

[20]–[25]. Yet another class (e.g., [26]–[28]) employs a

black-box methodology. Data is collected via many

simulations or measurements of the full system and a

regression-based model is created that can predict outputs

from inputs. Various methods are available for the

regression, including data mining, multidimensional

tables, neural networks, genetic algorithms, etc.

In this paper, we focus on another methodology for

macromodeling, often termed algorithmic. Algorithmic

macromodeling methods approach the problem as the

transformation of a large set of mathematical equations to a

much smaller one. The principal advantage of these

methods is generalityVas long as the equations of the

original system are available numerically (e.g., from within

SPICE), knowledge of the circuit structure, operating

principles, etc., is not critical. A single algorithmic method

may therefore apply to entire classes of physical systems,

encompassing circuits and functionalities that may be very

disparate. Four such classes, namely linear time-invariant
(LTI), linear time-varying (LTV), nonlinear (nonoscillatory),
and oscillatory are discussed in this section. Algorithmic

methods also tend to be more rigorous about important

issues such as fidelity and stability, and often provide bet-

ter guarantees of such characteristics than other methods.

A. Macromodeling LTI Systems
Often referred to as reduced-order modeling (ROM) or

model-order reduction (MOR), automated model generation

methods for LTI systems are the most mature among

algorithmic macromodeling methods. Any block composed

of resistors, capacitors, inductors, linear controlled sources,

and distributed interconnect models is LTI (often referred

to simply as Blinear[). The development of LTI MOR

methods has been driven largely by the need to Bcompress[

the huge interconnect networks, such as clock distribution

nets, that arise in large digital circuits and systems.

Replacing these networks by small macromodels makes it

feasible to complete accurate timing simulations of digital

systems at reasonable computational expense. Although

interconnect-centric applications have been the main

domain for LTI reduction, it is appropriate for any system

that is linear and time invariant. For example, Blinear

amplifiers,[ i.e., linearizations of mixed-signal amplifier

blocks, are good candidates for LTI MOR methods.

Fig. 1 depicts the basic structure of an LTI block. uðtÞ
represents the inputs to the system, and yðtÞ the outputs in

the time domain; in the Laplace (or frequency) domain

their transforms are UðsÞ and YðsÞ, respectively. The

definitive property of any LTI system [29] is that the input

and output are related by convolution with an impulse

response hðtÞ in the time domain, i.e., yðtÞ ¼ xðtÞ $ hðtÞ.
Equivalently, their transforms are related by multiplication

with a system transfer function HðsÞ, i.e., YðsÞ ¼ HðsÞXðsÞ.
Note that there may be many internal nodes or variables

within the block. The goal of LTI MOR methods is to

replace the block by one with far fewer internal variables,

yet with an acceptably similar impulse response or transfer

function.

In the majority of circuit applications, the LTI block is

described to the MOR method as a set of differential

equations, i.e.,

E _x ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CTxðtÞ þ DuðtÞ: (1)

In (1), uðtÞ represents the input waveforms to the block

and yðtÞ the outputs. Both are relatively few in number

compared to the size of xðtÞ, the state of the internal

variables of the block. A, B, C, D, and E are constant

matrices. Such differential equations can be easily formed

from SPICE netlists or AHDL descriptions, especially for

interconnect applications, the dimension n of xðtÞ can be

very large.

The first issue in LTI ROM is to determine what aspect

of the transfer function of the original system should be

retained by the reduced system; in other words, what

metric of fidelity is appropriate. In their seminal 1990

paper [30], Pileggi and Rohrer used moments of the

transfer function as fidelity metrics, to be preserved by the

model reduction process. The moments mi of an LTI

transfer function HðsÞ are related to its derivatives, i.e.,

m1 ¼
dHðsÞ

ds

!

!

!

!

s¼s0

; m2 ¼
d2HðsÞ

ds2

!

!

!

!

s¼s0

; & & & ; (2)

where s0 is a frequency point of interest. Moments can be

shown to be related to practically useful metrics, such as

delay in interconnects.

In [30], Pileggi and Rohrer proposed a technique,

asymptotic waveform evaluation (AWE) for constructing a

reduced model for the system (2). AWE first computes a

Fig. 1. LTI block.
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number of moments of the full system (2), then uses these

in another set of linear equations, the solution of which

results in the reduced model. Such a procedure is termed

explicit moment matching. The key property of AWE was

that it could be shown to produce reduced models whose

first several moments (at a given frequency point s0) were

identical to those of the full system. The computation

involved in forming the reduced model was roughly linear

in the size of the (large) original system. While explicit

moment matching via AWE proved valuable and was

quickly applied to interconnect reduction, it was also

observed to become numerically inaccurate as the size of

the reduced model increased beyond about ten. To

alleviate these, variations based on matching moments at

multiple frequency points were proposed [31] that

improved numerical accuracy. Nevertheless, the funda-

mental issue of numerical inaccuracy, as reduced model

sizes grew, remained.

In 1994, Gallivan et al. [32]–[34] identified the reason

for this numerical inaccuracy. Computing the kth moment

explicitly involves evaluating terms of the form A'kr, i.e.,
the kth member of the Krylov subspace of A and r. If A has

well-separated eigenvalues (as it typically does for circuit

matrices), then for k ( 10 and above, only the dominant

eigenvalue contributes to these terms, with nondominant

ones receding into numerical insignificance. Furthermore,

even with the moments available accurately, the procedure

of finding the reduced model is also poorly conditioned.

Recognizing that these are not limitations fundamental to

the goal of model reduction, the authors of [32] and [34]

proposed alternatives. They showed that numerically

robust procedures for computing Krylov subspaces, such

as the Lanczos and Arnoldi (e.g., [35]) methods, could be

used to produce reduced models that match any given

number of moments of the full system. These approaches,

called Krylov-subspace MOR techniques, do not compute

the moments of the full system explicitly at any point, i.e.,

they perform implicit moment matching. In addition to

matching moments in the spirit of AWE, Krylov-subspace

methods were also shown to capture well the dominant

poles and residues of the system. The Padé-via-Lanczos

(PVL) technique [34] gained rapid acceptance within the

MOR community by demonstrating its numerical robust-

ness in reducing the DEC Alpha chip’s clock distribution

network.

Krylov-subspace methods are best viewed as reducing

the system (1) via projection [36]. They produce two

projection matrices, V and WT , such that the reduced

system is obtained as

WTE
|ffl{zffl}

Ê

_x ¼ WTAV
|fflffl{zfflffl}

Â

xðtÞ þ WTB
|ffl{zffl}

B̂

uðtÞ

yðtÞ ¼ CTV
|{z}

Ĉ
T

xðtÞ þ DuðtÞ: (3)

For the reduction to be practically meaningful, q, the
size of the reduced system, must be much smaller than n,
the size of the original. If the Lanczos process is used, then

WTV ( I (i.e., the two projection bases are bi-orthogonal).

If the Arnoldi process is applied, then W ¼ V and

WTV ¼ I.
The development of Krylov-subspace projection meth-

ods marked an important milestone in LTI macro-

modeling. However, reduced models produced by both

AWE and Krylov methods retained the possibility of

violating passivity or even being unstable. A system is

passive if it cannot generate energy under any circum-

stances; it is stable if for any bounded inputs, its response

remains bounded. In LTI circuit applications, passivity

guarantees stability. Passivity is a natural characteristic of

many LTI networks, especially interconnect networks. It is

essential that reduced models of these networks also be

passive, since the converse implies that under some

situation of connectivity, the reduced system will become

unstable and diverge unboundedly from the response of

the original system.

The issue of stability of reduced models was recognized

early in [32], and the superiority of Krylov-subspace

methods over AWE in this regard also noted. Silveira et al.
[37] proposed a coordinate transformed Arnoldi method

that guaranteed stability, but not passivity. Kerns et al. [38]
proposed reduction of admittance-matrix-based systems by

applying a series of nonsquare congruence transforma-

tions. Such transformations preserve passivity properties

while also retaining important poles of the system.

However, this approach does not guarantee matching of

system moments. A symmetric version of PVL with

improved passivity and stability properties was proposed

by Freund and Feldmann in 1996 [39].

The passivity-retaining properties of congruence trans-

formations were incorporated within Arnoldi-based re-

duction methods for RLC networks by Odabasioglu et al. in
1997 [40], [41], resulting in an algorithm dubbed PRIMA

(Passive Reduced-Order Interconnect Macromodeling

algorithm). By exploiting the structure of RLC network

matrices, PRIMA was able to preserve passivity and match

moments. Methods for Lanczos-based passivity preserva-

tion [42], [43] followed.

All the above LTI MOR methods, based on Krylov-

subspace computations, are efficient (i.e., approximately

linear-time) for reducing large systems. The reduced

models produced by Krylov-subspace reduction methods

are not, however, optimal, i.e., they do not necessarily

minimize the error for a macromodel of given size. The

theory of balanced realizations, well known in the areas of

linear systems and control, provides a framework in which

this optimality can be evaluated. LTI reduced-order

modeling methods based on truncated balanced realiza-

tions (TBR) (e.g., [44] and [45]) have been proposed.

Balanced realizations are a canonical form for linear

differential equation systems that Bbalance[ controllability
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and observability properties. While balanced realizations

are attractive in that they produce more compact

macromodels for a given accuracy, the process of

generating the macromodels is computationally very

expensive, i.e., cubic in the size of the original system.

However, recent methods [46] that combine Krylov-

subspace techniques with TBR methods have been

successful in approaching the improved compactness of

TBR, while substantially retaining the attractive computa-

tional cost of Krylov methods.

B. Macromodeling LTV Systems
LTI macromodeling methods, while valuable tools in

their domain, are inapplicable to many functional blocks

in mixed-signal systems, which are usually nonlinear in

nature. For example, distortion or clipping in amplifiers,

switching, and sampling behavior, etc., cannot be captured

by LTI models. In general, generating macromodels for

nonlinear systems, as we shall see later, is a difficult task.

However, a class of nonlinear circuits (including RF

mixing, switched-capacitor, and sampling circuits) can be

usefully modelled as LTV systems. The key difference

between LTV systems and LTI ones is that if the input to an

LTV system is time shifted, it does not necessarily result in

the same time shift of the output. The system remains

linear, in the sense that if the input is scaled, the output

scales similarly. This latter property holds, at least ideally,

for the input-to-output relationship of circuits such as

mixers or samplers. It is the effect of a separate local

oscillator or clock signal in the circuit, independent of the

signal input, that confers the time-varying property. This is

intuitive for sampling circuits, where a time shift of the

input, relative to the clock, can be easily seen not to result

in the same time shift of the original outputVsimply

because the clock edge samples a different time sample of

the input signal. In the frequency domain, more appro-

priate for mixers, it is the time-varying nature that confers

the key property of frequency shifting (upconversion or

downconversion) of input signals. The time-varying nature

of the system can be Bstrongly nonlinear,[ with devices

switching on and offVthis does not impact the linearity of

the signal input-to-output path.

Fig. 2 depicts the basic structure of an LTV system

block. Similar to LTI systems, LTV systems can also be

completely characterized by impulse responses or transfer

functions; however, these are now functions of two

variables, the first capturing the time variation of the

system and the second the changes of the input [29]. The

detailed behavior of the system is described using time-

varying differential equations, e.g.,

EðtÞ _x ¼ AðtÞxðtÞ þ BðtÞuðtÞ

yðtÞ ¼ CðtÞTxðtÞ þ DðtÞuðtÞ: (4)

Time variation in the system is captured by the

dependence of A, B, C, D, and E on t. In many cases of

practical interest, this time variation is periodic. For

example, in mixers, the local oscillator input is often a sine

or a square wave; switched or clocked systems are driven

by periodic clocks.

The goal of macromodeling LTV systems is similar to

that for LTI ones: to replace (4) by a system identical in

form, but with the state vector xðtÞ much smaller in

dimension than the original. Again, the key requirement is

to retain meaningful correspondence between the transfer

functions of the original and reduced systems.

Because of the time variation of the impulse response

and transfer function, LTI MOR methods cannot directly

be applied to LTV systems. However, Roychowdhury

[47]–[49] showed that LTI model reduction techniques

can be applied to LTV systems, by first reformulating (4) as

an LTI system similar to (1), but with extra artificial inputs

that capture the time variation. The reformulation first

separates the input and system time variations explicitly

using multiple time scales [50] in order to obtain an

operator expression for Hðt; sÞ. This expression is then

evaluated using periodic steady-state methods [51]–[53] to

obtain an LTI system with extra artificial inputs. Once this

LTI system is reduced to a smaller one using any LTI MOR

technique, the reduced LTI system is reformulated back

into the LTV system form (4). The use of different LTI

MOR methods within this framework has been demon-

strated, including explicit moment matching [47] and

Krylov-subspace methods [48], [49], [54]. Moreover,

Phillips [54] showed that the LTV-to-LTI reformulation

could be performed using standard linear system theory

concepts [29], without the use of multiple time scales.

C. Macromodeling Nonoscillatory Nonlinear Systems
While wires, interconnect, and passive lumped ele-

ments are purely linear, any mixed-signal circuit block

containing semiconductor devices is nonlinear. Nonline-

arity is, in fact, a fundamental feature of any block that

provides signal gain or performs any function more

complex than linear filtering. Even though linear approx-

imations of many nonlinear blocks are central to their

design and intended operation, it is usually important to

consider the impact of nonlinearities with a view to

limiting their impact. For example, in Blinear[ amplifiers

and mixers, distortion and intermodulation, caused solely

Fig. 2. LTV block.
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by nonlinearities, must typically be guaranteed not to

exceed a very small fraction of the output of the linearized

system. This is especially true for traditional RF and

microwave designs. Such weakly nonlinear systems com-

prise an important class of blocks that can benefit from

macromodeling. Additionally, many nonlinear blocks of

interest are not designed to be approximately linear in

operation. Examples include digital gates, switches,

comparators, etc., which are intended to switch abruptly

between two states. While such operation is obviously

natural for purely digital systems, strongly nonlinear

behavior is also exploited in analog blocks such as sampling

circuits, switching mixers, analog-to-digital converters, etc.

Furthermore, oscillators and PLLs, which are common and

basic components in mixed-signal systems, exhibit complex

dynamics which are fundamentally strongly nonlinear.

Unlike for the classes of linear systems considered in

the previous sections, no technique currently exists that is

capable, even in principle, of producing a macromodel that

conforms to any reasonable fidelity metric for completely

general nonlinear systems. The difficulty stems from the

fact that nonlinear systems are richly varied, with

extremely complex dynamical behavior possible that is

very far from being exhaustively investigated or under-

stood. This is in contrast to linear dynamical systems, for

which comprehensive mathematical theories exist (see,

e.g., [29]) that are universally applicable. In view of the

diversity and complexity of nonlinear systems in general,

it is difficult to conceive of a single overarching theory or

method that can be employed for effective macromodel-

ing of an arbitrary nonlinear block. It is not surprising,

therefore, that macromodeling of nonlinear systems has

tended to be manual, relying heavily on domain-specific

knowledge for specialized circuit classes, such as ADCs,

phase detectors, etc.

In recent years, however, linear macromodeling

methods have been extended to handle weakly nonlinear

systems. Other techniques based on piecewise approxima-

tions have also been devised that are applicable to some

strongly nonlinear systems. As described below in more

detail, these approaches start from a general nonlinear

differential equation description of the full system, but

first approximate it to a more restrictive form, which is

then reduced to yield a macromodel of the same form. The

starting point is a set of nonlinear differential-algebraic

equations (DAEs) of the form

_q xðtÞð Þ ¼ f xðtÞð Þ þ buðtÞ

yðtÞ ¼ cTxðtÞ (5)

where fð&Þ and qð&Þ are nonlinear vector functions.

1) Polynomial-Based Weakly Nonlinear Methods: To

appreciate the basic principles behind weakly nonlinear

macromodeling, it is first necessary to understand how the

full system can be treated if the nonlinearities in (6) are

approximated by low-order polynomials. The polynomial

approximation concept is simply an extension of lineari-

zation, with fðxÞ and qðxÞ replaced by the first few terms of

a Taylor series about an expansion point x0 (typically the

dc solution); for example

fðxÞ ¼ fðx0Þ þ A1ðx' x0Þ þ A2ðx' x0Þ
)2 þ & & & (6)

where ai represents the Kronecker product of a with itself

i times. When (6) and its qð&Þ counterpart are used in (5),

a system of polynomial differential equations results. If

qðxÞ ¼ x (assumed for simplicity), these equations are of

the form

_xðtÞ ¼ fðx0Þ þ A1ðx' x0Þ þ A2ðx' x0Þ
)2 þ & & & þ buðtÞ

yðtÞ ¼ cTxðtÞ: (7)

The utility of this polynomial system is that it becomes

possible to leverage an existing body of knowledge on

weakly polynomial differential equation systems, i.e.,

systems where the higher order nonlinear terms in (6)

are small compared to the linear term. In particular,

Volterra series theory [55] and weakly nonlinear pertur-

bation techniques [56] justify a relaxation-like approach

for such systems, which proceeds as follows. First, the

response of the linear system, ignoring higher order

polynomial terms, is computedVdenote this response by

x1ðtÞ. Next, x1ðtÞ is inserted into the quadratic term

A2ðx' x0Þ
2
(denoted a distortion input), the original input

is substituted by this waveform, and the linear system

solved again to obtain a perturbation due to the quadratic

termVdenote this by x2ðtÞ. The sum of x1 and x2 is then

substituted into the cubic term to obtain another weak

perturbation, the linear system solved again for x3ðtÞ, and
so on. The final solution is the sum of x1, x2, x3, and so on.

An attractive feature of this approach is that the

perturbations x2, x3, etc., which are available separately

in this approach, correspond to quantities like distortion

and intermodulation which are of interest in design. Note

that at every stage, to compute the perturbation response,

a linear system is solvedVnonlinearities are captured via

the distortion inputs to these systems.

The basic idea behind macromodeling of weakly

nonlinear systems is to exploit this fact; in other words,

to apply linear macromodeling techniques, appropriately

modified to account for distortion inputs, to each stage of

the relaxation process above. In the first such approach,

proposed in 1999 by Roychowdhury [49], the linear system

is first reduced by LTI MOR methods to a system of size q1,
as shown in Fig. 3, via a projection basis obtained using

Krylov-subspace methods. The distortion inputs for the
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quadratic perturbation system are then expressed in terms

of the reduced state vector of the linear term, to obtain an

input vector of size q21 . The quadratic perturbation system

(which has the same linear system matrix, but a different

input vector) is then again reduced via another projection

basis, to size q2. This process is continued for higher order

terms. The overall reduced model is the union of the

separate reduced models with outputs summed together,

as depicted in Fig. 3. By tailoring the projection bases for

each nonlinearly perturbed linear system, this approach

focusses on accuracy; however, this is achieved at the cost

of increased macromodel size q1þ q2þ & & &. Recognizing
the size issue, Phillips in 2000 [57], [58] proposed that a

single projection basis be applied to the system (8)

(analogous to LTI MOR systems) and also observed that

Carlemann bilinearization [59] could be employed to

obtain a canonical equation form. Intuitively, the use of a

single projection basis consolidates the commonality in the

three reduced models shown in Fig. 3, leading to smaller

overall models.

In 2003, Li and Pileggi proposed the NORM method

[60], which combines and extends the above two

approaches. Similar to [49], NORM generates tailored

projection bases for each perturbed linear system, but

instead of retaining separate macromodels as in Fig. 3, it

compresses these projection bases into a single projection

basis. NORM then employs this single projection basis to

reduce the system (6) as proposed in [57]. A particularly

attractive property of NORM is that it produces a

macromodel that matches a number of multidimensional

moments of the Volterra series kernels [55] of the

systemVindeed, the distortion terms for each perturbed

system are pruned to ensure matching of a specified

number of moments. The authors of NORM also include a

variant that matches moments at multiple frequency

points. Fig. 4 shows an example of a NORM modeling

result for the third-order intermodulation product for a

double-balanced RF mixer.

2) Piecewise Approximation Methods: The polynomial

approximations discussed above are excellent when the

intended operation of the system exercises only weak

nonlinearities, as in power amplifiers, Blinear[mixers, etc.

Outside a relatively small range of validity, however,

polynomials are well known to be extremely poor global

approximators. This limitation is illustrated in Fig. 5,

where it can be seen that, outside a local region where

there is a good match, even a sixth-degree Taylor-series

approximation diverges dramatically from the function it is

meant to represent.

It is for this reason that other ways of approximating

(5) that have better global approximation properties than

polynomials have been sought. One approach is to

represent the nonlinear functions fð&Þ and qð&Þ in (5) by

piecewise linear (PWL) segments. The state space is split

into a number of disjoint regions, and within each re-

gion, a linear approximation is used that matches the

nonlinear function approximately within the region. By

using a sufficiently large number of regions, the nonlinear

function can be represented accurately over the entire

Fig. 3. Overall reduced-order model for a weakly nonlinear system.
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domain of interest. From a macromodeling perspective,

the motivation for PWL approximations is that since the

system is linear within each region, linear macromodeling

methods can be leveraged.

Piecewise linear approximations are not new in circuit

simulation, having been employed in the past most

notably in attempts to solve the dc operating point

problem [61], [62]. One concern with these methods is a

potential exponential explosion in the number of regions

as the dimension of the state space grows. This is espe-

cially the case when each elemental device within the

circuit is first represented in piecewise form, and the

system of circuit equations is constructed from these

piecewise elements. A combinatorial growth of polytope

regions results via cross-products of the hyperplanes that

demarcate piecewise regions within individual devices. To

circumvent the explosion of regions, which would

severely limit the simplicity of a small macromodel,

Rewienski and White proposed the Trajectory PWL

method (TPWL) [63] in 2001. In TPWL, a reasonable

number of Bcenter points[ is first selected along a

simulation trajectory in the state space, generated by

exciting the circuit with a representative training input.

Around each center point, system nonlinearities are

approximated by linearization, with the region of validity

of the linearization defined implicitly, as consisting of all

points that are closer to the given center point than to any

other. Thus, there are only as many piecewise regions as

center points, and combinatorial explosion resulting from

intersections of hyperplanes is avoided. The implicit

piecewise regions in TPWL are in fact identical to the

Voronoi regions defined by the collection of center points

chosen. Within each piecewise region, the TPWL

approach simply reduces the linear system using existing

LTI MOR methods to obtain a reduced linear model. The

reduced linear models of all the piecewise regions are

finally stitched together using a scalar weight function to

form a single-piece reduced model. The weight function

identifies, using a closest-distance metric, whether a test

point in the state space is within a particular piecewise

region and weighs the corresponding reduced linear

system appropriately.

The TPWL method, by virtue of its use of inherently

better PWL global approximation, avoids the blow-up that

occurs when polynomial-based methods are used with

large inputs. It is thus better suited for circuits with strong

nonlinearities, such as comparators, digital gates, etc.

However, because PWL approximations do not capture

higher order derivative information, TPWL’s ability to

reproduce small-signal distortion or intermodulation is

limited.

To address this limitation, Dong and Roychowdhury

proposed a piecewise polynomial (PWP) extension [64] of

TPWL in 2003. PWP combines weakly nonlinear MOR

techniques with the piecewise idea, by approximating the

nonlinear function in each piecewise region by a

polynomial, rather than a purely linear, Taylor expansion.

Each piecewise polynomial region is reduced using one of

the polynomial MOR methods outlined above, and theFig. 5. Limitations of global polynomial approximations.

Fig. 4. NORM [60] modeling example. Double-balanced mixed (left) with extracted model for third-order intermodulation

product (middle and right). Example shows a maximum error of 8% over all RF frequencies.
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resulting polynomial reduced models are stitched together

with a scalar weight function, similar to TPWL. Thanks to

its piecewise nature, PWP is able to handle strong

nonlinearities globally; because of its use of local Taylor

expansions in each region, it is also able to capture small-

signal distortion and intermodulation well. Thus, PWP

expands the scope of applicability of nonlinear macro-

modeling to encompass blocks in which strong and weak

nonlinearities both play an important functional role.

PWP is illustrated using the fully differential op-amp

shown in Fig. 6. The circuit comprises 50 MOSFETs and

39 nodes. It was designed to provide about 70 dB of dc

gain, with a slew rate of 20 V=!s and an open-loop 3-dB-

bandwidth of f0 ( 10 kHz. The PWP-generated macro-

model was of size 19, a number that refers to the size of the

differential equation system describing the macromodel

(i.e., roughly analogous to the number of nodes in the

circuit). The macromodel is compared against the full

SPICE-level op-amp using a number of analyses and

performance metrics, representative of actual use in a real

industrial design flow. Fig. 7 shows the results of

performing dc sweep analyses of both the original circuit

and the PWP-generated macromodel. Note the excellent

match. Fig. 8 compares Bode plots obtained by ac analysis;

two ac sweeps, obtained at different dc bias points, are

shown. Note that PWP provides excellent matches around

each bias point.

If the op-amp is used as a linear amplifier with small

inputs, distortion and intermodulation are important

performance metrics. As mentioned earlier, one of the

strengths of PWP-generated macromodels is that weak

nonlinearities, responsible for distortion and intermodu-

lation, are captured well. Such weakly nonlinear effects are

best simulated using frequency-domain harmonic balance

(HB) analysis, for which we choose the one-tone sinusoidal

input V in1 ' V in2 ¼ A sinð2"* 100tÞ and Cload ¼ 10 pF.

The input magnitude A is swept over several decades and

the first two harmonics plotted in Fig. 9. It can be seen that

for the entire input range, there is an excellent match of

the distortion component from the macromodel versus

that of the full circuit. Note that the same macromodel is

used for this harmonic balance simulation as for all the

other analyses presented. Speedups of about 8.1* were

obtained compared to the harmonic balance simulations.

Another strength of PWP is that it can capture the

effects of strong nonlinearities excited by large-signal

swings. To demonstrate this, a transient analysis was run

with a large, rapidly rising input; the resulting waveforms

are shown in Fig. 10. The slope of the input was chosen to

excite slew-rate limiting, a dynamical phenomenon caused

by strong nonlinearities (saturation of differential ampli-

fier structures). Note the excellent match between the

original circuit and the macromodel. The macromodel-

based simulation ran about 8* faster.

Unfortunately, two problems are shared by all the

piecewise trajectory-based modeling techniques, both the

Fig. 6. Current-mirror op-amp with 50 MOSFETs and 39 nodes.

Fig. 7. DC sweep of op-amp from Fig. 6.
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original TPWL linear form [63] and the generalized

quadratic PWP extension of [64]. As noted in Tiwary and

Rutenbar [85], all the trajectory methods are fragile in the

face of insufficient training waveforms to build the

essential trajectory Bcoverage[ of the state space. One

can remedy this with a more rigorous training regime, of

course. However, this creates a new problem: simulation

inefficiency. Trajectory models interpolate from all the

visited linearizations to estimate the behavior at any new

point in the state space. Curing the undertraining problem

can easily increase the number of trajectory samples from

tens or hundreds to 10 000 or more and destroy any

simulation speedup gains we sought to achieve. The same

authors demonstrate a solution, the so-called scalable
trajectory model [85]. Using ideas from data mining, they

show how to cluster trajectory linearizations in the state

space, prune away redundant linearizations, and synthe-

size estimated linearizations to represent each cluster of

similar points. Then, instead of interpolating based on all

visited trajectory points, they use a fast high-dimensional

nearest neighbor lookup strategy in the trajectory space to

select only the Brelevant[ linearizations to use to predict

the local dynamics. The strategy allows the designer to

train the model with a wide variety of potentially useful

waveforms but enables the model to interpolate from a

minimal set of the most locally relevant linearizations,

preserving most of the speedup gains we originally sought.

Fig. 11 shows an example from [85] of a simple common-

mode feedback (CMFB) op-amp replaced in a sample-and-

hold amplifier context with a scalable trajectory model.

Fig. 8. AC analysis of op-amp from Fig. 6: (left) AC sweep (at common-mode dc bias 2.5 V) and (right) AC sweep

(at common-mode dc bias 2.0 V).

Fig. 9. Harmonic analysis of current-mirror op-amp: full op-amp

(solid line) and PWPmodel (discrete points).

Fig. 10. Transient analysis of current-mirror op-amp with

fast step input.
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Additional work on the scalable model [86] showed how to

output loading effects and apply additional model-order

reductions to obtain faster models which can be success-

fully reinserted in an arbitrary system-level design.

D. Macromodeling Oscillatory Systems
Oscillators are ubiquitous in electronic systems. They

generate periodic signals, typically sinusoidal or square-

like waveforms, that are used for a variety of purposes.

From the standpoint of both simulation and macromodel-

ing, oscillators present special challenges. Traditional

circuit simulators such as SPICE [65], [66] consume

significant computer time to simulate the transient

behavior of oscillators. As a result, specialized techniques

based on using phase macromodels (e.g., [67]–[76]) have

been developed for the simulation of oscillator-based

systems. The most basic class of phase macromodels

assumes a linear relationship between input perturbations

and the output phase of an oscillator. A general time-

varying expression for the phase #ðtÞ can be given by

#ðtÞ ¼
Xn

k¼1

Z1

'1

hk#ðt; $Þikð$Þd$: (8)

Fig. 11. Example of scalable trajectory model from [85]. (a) CMFB op-amp with 40 MOSFETs, 24 nodes. (b) SPICE versus model

accuracy for a scalable trajectory model of CMFB op-amp, hierarchically reinserted into sample-and-hold design.
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The summation is over all perturbations ik to the

circuit; hk#ðt; $Þ denotes a time-varying impulse response

to the kth noise source. Very frequently, time-invariant

simplifications of (8) are employed [77]. Linear models

suffer, however, from a number of important deficiencies.

In particular, they have been shown to be inadequate for

capturing fundamentally nonlinear effects such as injec-

tion locking [82]. As a result, automatically extracted

nonlinear phase models have recently been proposed

[78], [79], [82]–[84] that are considerably more accurate

than linear ones. The nonlinear phase macromodel has

the form

_%ðtÞ ¼ vT1 tþ %ðtÞð Þ & bðtÞ: (9)

In the above equation, v1ðtÞ is called the perturbation

projection vector (PPV) [79]; it is a periodic vector

function of time, with the same period as that of the

unperturbed oscillator. A key difference between the

nonlinear phase model (9) and traditional linear phase

models is the inclusion of the phase shift %ðtÞ inside the

perturbation projection vector v1ðtÞ. %ðtÞ in the nonlinear

phase model has units of time; the equivalent phase shift,

in radians, can be obtained by multiplying %ðtÞ by the free-
running oscillation frequency !0.

We illustrate the use of (9) by applying it to model the

VCO inside a simple PLL [80], shown in block form in

Fig. 12. Using the nonlinear macromodel (9), we simulate

the transient behavior of the PLL and compare the results

with a full simulation and with linear models. The

simulations encompass several important effects, includ-

ing static phase offset, step response, and cycle slipping.

Fig. 13 depicts the static phase offset of the PLL when a

reference signal of the same frequency as the VCO’s free-

running frequency is applied. The PLL is simulated to

locked steady state and the phase difference between the

reference and the VCO output is shown. The fact that the

LPF is not a perfect one results in high-frequency ac

components being fed to the VCO, affecting its static phase

offset. Observe that both the full simulation and the

nonlinear macromodel (9) predict identical static phase

offsets of about 0.43 radians. Note also that the linear

phase macromodel fails to capture this correctly, reporting

a static phase offset of 0.

Fig. 14 depicts the step response of the PLL at different

reference frequencies. Fig. 14(a) shows the step responses

using the full simulation, the linear phase model, and the

nonlinear macromodel when the reference frequency is

1:07f0. With this reference signal, both the linear and

nonlinear macromodels track the reference frequency

well, although, as expected, the nonlinear model provides

a more accurate simulation than the linear one. When the

reference frequency is increased to 1:074f0, however, the
linear phase macromodel is unable to track the reference

correctly, as shown in Fig. 14(b). However, the nonlinear

macromodel remains accurate. The breakdown of the

linear model is even more apparent when the reference

frequency is increased to 1:083f0, at which the PLL is

unable to achieve stable lock, as shown in Fig. 14(c). Note

that the nonlinear macromodel remains accurate.

Finally, Fig. 15 illustrates the prediction of cycle

slipping. A reference frequency f ref ¼ 1:07f0 is provided

and the PLL is brought to locked steady state. When a

sinusoidal perturbation with amplitude 5 mA and duration

10 VCO periods is injected, the PLL loses lock. As shown in

Fig. 15(a), the phase difference between the reference

signal and the VCO output slips over many VCO cycles,

until finally, lock is reachieved with a phase shift of '2".

Both nonlinear and linear macromodels predict the

qualitative phenomenon correctly in this case, with the

nonlinear macromodel matching the full simulation better

than the linear one. When the injection amplitude is

reduced to 3 mA, however, as shown in Fig. 15(b), the

linear macromodel fails, still predicting a cycle slip. In

reality, the PLL is able to recover without slipping a cycle,

as predicted by both the nonlinear macromodel and the

full simulation.Fig. 12. Functional block diagram of PLL.

Fig. 13. PLL static phase offset when fref ¼ f0 .
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E. Nonlinear Macromodelling: Current and
Future Applicability

It should be noted that the problem of extracting

nonlinear macromodels by algorithm is a very difficult

problem. However, for future design sustainability, it is of

great importance to solve this problem in practically useful

ways. Of the methods surveyed above, the techniques for

nonlinear oscillator macromodelling are the most mature

at this pointVthe extraction techniques involved are being

adopted by a number of CAD and semiconductor

companies. The weakly nonlinear macromodelling meth-

ods discussed above are the most specialized, whereas the

trajectory-piecewise strongly nonlinear macromodelling

methods are perhaps the most broadly applicable. How-

ever, they are also, as already noted above, the most

heuristically based technique of the three; it is expected

that considerably more research will be required before

these techniques achieve the reliability and robustness

necessary for broad industrial deployment.

III . HIERARCHICAL SYNTHESIS
TECHNIQUES

Recent years have seen the emergence of commercial CAD

tool support for analog cell-level circuit and layout

synthesis. Gielen and Rutenbar [2] offer a fairly complete

survey of the area. Analog synthesis consists of two major

steps: 1) circuit synthesis followed by 2) layout synthesis.

Most of the basic techniques in both circuit and layout

synthesis rely on powerful numerical optimization engines

coupled to Bevaluation engines[ that qualify the merit of

some evolving analog circuit or layout candidate. Fig. 16

shows the basic flow of most current tools. The goal of

analog circuit synthesis is to create a sized circuit

Fig. 14. Step response of PLL model with varying values of fref. (a) Response with fref ¼ 1:07f0. (b) Response with fref ¼ 1:074f0.

(c) Response with fref ¼ 1:083f0.
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schematic from given circuit specifications. It is a difficult

and critical step for several reasons: 1) most analog circuits

require a custom optimized design; 2) the design problem

is typically underconstrained with many degrees of

freedom; and 3) it is common that many (often

conflicting) performance requirements must to be taken

into account, and tradeoffs must be made that satisfy the

designer using these tools.

We focus in this paper on the circuit, rather than layout

synthesis. The former is a numerical problem that relies

heavily on the macromodeling ideas of the previous

section; the latter relies more on combinatorial optimiza-

tion techniques (see [3]). Given a circuit schematic and the

circuit’s performance specifications, the sizes and biasing

of all devices have to be determined such that the circuit

meets the specifications at some optimal cost. It is the

optimization engine that determines these optimal values,

while the evaluation engine assesses the performance. In

many cases, the initial sizing produces a near-optimal

design that is further fine-tuned with a circuit optimization

tool, e.g., to improve yield and design robustness. The

performance of the resulting design is then verified using

detailed circuit simulations with a simulator such as SPICE.

Although successful, these simulation-based circuit

optimization methods still have to be used with care by

designers because the run times (and therefore also the

initial debug time) may still be long, especially since the

optimizer may produce improper designs if the right

design constraints are not added to the optimization

problem. Reducing the CPU time, and the complexities of

specifying the best set of design constraints, are active

areas of research.

The flow of Fig. 16 presents several challenges when

we try to scale these ideas from circuits to systems.

Simulation-based synthesis (e.g., [87]–[90]) uses efficient

numerical optimization to visit many circuit candidates

and fully evaluates each candidate via detailed simulation.

This methodology works very well for circuits having in the

range of a few hundred devices. However, for larger

circuits, the simulation time required for a single

simulation is too large to do a practical simulator-in-the-

loop circuit sizing. Also, due to the curse of dimension-

ality, the design space in which to search for optimal

design points becomes too large for these circuits to be

handled by these Bflat[ optimization-based tools.

We survey approaches to handling these larger system-

level problems in this section. Targeting the explicitly

hierarchical structure of these designs is of critical

importance. Macromodeling also plays a central role, but

it is perhaps surprising that the performance-oriented

techniques of the previous section are a necessary but not

yet sufficient response to these problems. In particular, we

need a different sort of modeling abstraction, which builds

parameterized tradeoff models, of the circuit components,

for use in system-level analysis and synthesis.

A. Macromodeling Revisited
One might be tempted to believe that the only problem

with the optimization-based flow of Fig. 16 is the

burdensome CPU time needed to evaluate each proposed

solution candidate, since it relies on full device-level

simulation for maximum fidelity and flexibility [87]. Thus,

replacing some or all of the circuit level components with

appropriate macromodels seems a good solution strategy.

If we can make the necessary simulation evaluations run

sufficiently fast, perhaps we can use these Bflat[ synthesis

strategies without additional modification.

Unfortunately, the Binstance oriented[ model extrac-

tion techniques of Section II are a necessary but not

sufficient solution to this problem. Let us consider a

concrete example to explain the problem. Suppose we

want to synthesize device-level sizing/biasing for a PLL.

Fig. 15. Cycle slipping of PLL model for different noise amplitudes.

(a) PLL cycle slipping, for a noise amplitude of 5 mA. (b) PLL

cycle slipping, for a noise amplitude of 3 mA.
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Fig. 12 shows a relatively generic system-level block

diagram for a PLL. Synthesis in this context means

determining all the device-level design details for all the

individual blocks of this design: the phase frequency

detector, the charge pump, loop filter, VCO, and divider.

Simulating this design flat, at device level, in either the

time domain or the frequency domain, may be expensive,

i.e., hours not minutes of CPU time. We could mitigate

this in several ways.

We could use an algorithmic modeling technique that

targets this specific class of oscillatory systems, such as

those we described in Section II-D. So, for example, we

might create a fast model that is highly specific to the

difficult VCO component in the PLL. We could also use

any general algorithmic modeling technique and extract a

general macromodel for any or all of the blocks. Fig. 17

shows an example from [86] in which a scalable trajectory

model for a current-starved ring oscillator VCO is inserted

into a simple 1 : 1 PLL.

If we are confident in our understanding of the

essential behaviors of the PLL’s constituent blocks (see

again Fig. 11), we could use a nonalgorithmic model, i.e., a

behavioral model that fits parameters to an expert-derived

circuit Btemplate[ comprising a small set of equations

which model only the essential dynamics of the circuit. For

example, consider the requirements arising from a GSM-

1800 design: frequency range around 1.8 GHz, phase noise

'121 dBc/Hz @ 600 kHz frequency offset, and settling

time of the loop for channel frequency changes below 1 ms

within 1e-6 accuracy. Starting with a set of expert-derived

top-down design models, using behavioral simulations

with generic behavioral models for the subblocks, [8]

shows how to derive the following characteristics for the

PLL subblocks: ALPF ¼ 1, KVCO ¼ 1e6 Hz/V, Ndiv ¼ 64,

fLPF ¼ 100 kHz. These specifications are then the starting

point for the device-level design of each of the subblocks.

For subsequent bottom-up system verification phase of a

system, [8] also shows how to employ more detailed

behavioral models that are tuned towards the actual

circuit design. The authors suggest an accurate behavioral

model for a designed VCO is given by the following

equation set [8]:

voutðtÞ ¼ A0 vinðtÞð Þ þ
Xk¼N

k¼1

Ak vinðtÞð Þ: sin !kðtÞð Þ

!kðtÞ ¼’k vinðtÞð Þ

þ 2"

Z t

t0

k: hstat2dynð$Þ + fstat vinð$Þð Þ
# $

:d$ (10)

where !k is the phase of each harmonic k in the VCO

output, Ak and ’k characterize the (nonlinear) static

characteristic of a VCO, and hstat2dyn characterizes the

dynamic voltage-phase behavior of a VCO, both as

extracted from circuit-level simulations of the real circuit.

Fig. 18 shows the resulting frequency response of both the

original device-level circuit (red) and the extracted

behavioral model (blue) for a low-frequency sinusoidal

input signal. One can see that this input signal creates a

side lobe near the carrier that is represented by the model

within 0.25 dB accuracy compared to the original

transistor-level circuit, while the gain in simulation time

is more than 30* [8].

It would seem, then, that the only problem is which of

these various macromodeling alternatives we should

select. However, all the models we have presented so far

have two fundamental characteristics.

1) Instance oriented: These models are extracted for

one specific circuit that is fully designed at device

Fig. 16. Basic flow of optimization-based analog circuit sizing.
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level. If we change any of the device-level design

variables, we must re-extract the model, which

may be costly.

2) Verification-oriented: These instance-specific mod-

els are intended to be used in scenarios where we

can amortize the cost of constructing the model

over a large number of simulation runs that will be

used to verify the correctness of the system-level

design assembled from these models.

For synthesis tasks in which we plan to visit a large

number of intermediate circuit design configurations, we

really want a parameterized macromodel. This means a

model that predicts the behavior of the circuit as a

function of its designable parameters, e.g., transistor

widths, lengths, biasing, etc. Since this is a much more

challenging problem than extracting an instance-specific

model, we usually are willing to accept some loss of model

fidelity. For example, we may be willing to ignore some

secondary or tertiary effects at this level, focus only on the

essential nonidealities, and strive to repair these omissions

when we do detailed circuit-level synthesis later, for each

circuit.

Fig. 17. Replacing the VCO in simple 1 : 1 PLL with scalable trajectory model. (a) Simple 1 : 1 PLL architecture with a current-starved

ring-oscillator VCO (highlighted in bold). (b) SPICE versus scalable trajectory model simulation results; figure shows

transient simulation result for PLL going into lock.
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B. Parametric Circuit Performance
Modeling Techniques

Parametric performance modelsVin contrast to the

instance models described in earlier sectionsVrelate the

achievable performances of a circuit (e.g., gain, band-

width, slew rate, or phase margin) to its design variables

(e.g., device sizes and biasing). These are also sometimes

called performance space or design space models. Fig. 19 for

example shows part of such a parametric model, displaying

the phase margin as a function of two design variables for a

CMOS operational amplifier [9], [10]. Such performance

models are used to speed up circuit sizing: in every

iteration of the synthesis procedure of Fig. 16, calls to the

transistor-level simulator are replaced by evaluations of a

suitable constructed parametric model. This not only

results in substantial speedups, once the performance

models have been created and calibrated, but in many

cases is the difference between a tractable and an

intractable system-level synthesis process. The model

building process is a one-time up-front investment that

has to be done only once for each circuit in each

technology.

Most approaches for performance model generation

are based on fitting or regression methods where the

coeffients of a prespecified modelVoften referred to as a

model templateVare fitted to have the model match as

closely as possible a sample set of simulated data points. As

a concrete example, consider the flow of Fig. 20. First, a

large set of data samples is generated by simulating well

chosen design points with SPICE. For instance, a design-

of-experiments (DOE) scheme can be used to sample the

design space. The use of SPICE simulations allows the

modeling of any nonlinear circuits and circuit character-

istics, as opposed to symbolic analysis techniques that are

restricted to rather linear circuit characteristics only. Next,

a model is fitted through these data points. If the modeling

error is too large, then additional data points can be

generated, or a more sophisticated model template has to

be chosen.

A recent example of such a fitting approach is the

automatic generation of posynomial performance models

for analog circuits, that are created by fitting a pre-

assumed posynomial equation template to simulation data

created according to a design of experiments scheme [9].

Such a posynomial model could then, for instance, be used

in the very efficient sizing of analog circuits through

convex circuit optimization.

Fig. 18. Frequency response of an extracted behavioral VCO model

(blue) compared to the underlying device-level circuit

response (red) [8].

Fig. 19. High-speed CMOS OTA (left) and performance model of phase margin as a function of two design variables (right).

Note that this is just a subset of the actual multidimensional parametric performance model.
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One of the core problems with all regression style

parameterized models is the need to balance the goodness-

of-fit of the model against the complexity (i.e., numerical

difficulty) of fitting the template coefficients necessary to

complete the model. For example, a linear model of the

circuit response is quite easy to fit, even for many

independent variables. But, unless we really expect the

behavior to be linear, it will likely be a poor fit to the

circuit’s actual behavior. The quadratic style posynomial

models of [9] are one response to this problem. This

particular model offers a wider range of nonlinearity, along

with a workable heuristic, to calculate numerically the

essential fitting parameters. The work in [91] takes this a

step further and develops a very efficient fitting strategy for

models of this type. One problem with higher dimensional

nonlinear templates is that they create numerically

challenging problems to solve for all the necessary fitting

coefficients. Both [9] and [91] use a quadratic performance

template for circuit performance fðXÞ

fðXÞ ¼ XTAX þ BTX þ C (11)

where X ¼ ½x1 & & & xN-
T
is the vector of designable circuit

parameters, A is an N * N matrix of coefficients, B is a

N-vector of unknown coefficients, and C is a single

unknown scalar coefficient. Our goal is find A, B, and C so

that the quadratic function of vector X closely matches a

large set of training data, e.g., sampled from many SPICE

simulations. For large N, i.e., for a design with many

degrees of freedom, we have OðN2Þ coefficients to solve

for, which can be daunting. The methodology in [91],

called ROAD, replaces the large unknown A matrix with a

carefully chosen low-rank approximation; the technique

employs the rank-one projection which can be solved for

numerically via an efficient, implicit power iteration in

OðNÞ steps. Fig. 21 shows one example of parametric

fitting using ROAD.

Another class of regression techniques borrows ideas

from data mining, which focuses on extracting meaningful

patterns (e.g., fitting predictive models) to large amounts

of high-dimensional data (e.g., training a model by means

of many SPICE runs). There is a range of useful techniques

from this domain. One of the first large-scale applications

of these ideas is the work of Liu et al. in [11]. A perennial

problem in the area of parametric modeling is how one

chooses the nonlinear template to which one will try to fit

the desired circuit behavior. References [9] and [91]

choose an explicit analytical form, a higher order quadratic

of (11). Reference [11] supports fitting to a more nonlinear

form by using a so-called boosted community of regressors.
The idea is to iteratively fit a sequence of regression

Fig. 20. Flow for template-based and template-free

performance modeling.

Fig. 21. Applying ROAD [91] projection-based quadratic fitting procedure to 0.25-!m CMOS op-amp. Results show that

low-rank approximation strategy is extremely accurate and also reduces fitting complexity from OðN2Þ to OðNÞ.
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models; later models in the sequence fit well in regions of

the design space where earlier models fit poorly. An

elegant numerical formulation, called boosting [93],

efficiently combines the predictions of the many individ-

ual models into a single final numerical value. The

technique has the attractive feature that any specific

nonlinear regressor may be used in the overall fitting

process; Liu et al. used a set of relatively small neural

networks [11]. Fig. 22 shows a relatively challenging

parametric fitting example, in which these ideas were used

to predict IIP3 as the design variables for an RF LNA were

varied uniformly, randomly over quite wide ranges of

values. Other applications of ideas from the data mining

world include [10] and [94].

Another recent approach is the CAFFEINE method

(Canonical Functional Form Expressions in Evolution)

which presents the first template-free model generation

approach, i.e., the designer does not have to specify a priori
a model template, but the model itself evolves as part of

the genetic-programming optimization process [12]. This

corresponds to the flow without functional template in

Fig. 20. Genetic programming is applied as a means of

traversing the space of possible symbolic expressions. A

grammar is specially designed to constrain the search to a

canonical form for functions. Novel evolutionary search

operators are designed to exploit the structure of the

grammar. Using multi-objective optimization, the ap-

proach generates a set of symbolic models which

collectively provide a tradeoff between error and com-

plexity. For the circuit of Fig. 19, Table 1 shows the

CAFFEINE-generated performance models for six differ-

ent performance characteristics that each have less than

10% training and test error. Table 2 then shows a possible

set of alternative models generated by CAFFEINE with

different tradeoff between error and complexity for the

phase margin of the circuit of Fig. 19.

Note that an operating-point driven formulation has

been used where the performance characteristics are

modeled as a function of bias currents and bias voltages. In

[13], it was shown that this method generates the most

accurate models of ten different methods that have been

compared, including regression with spline functions and

support vector machines. The results are repeated in

Fig. 23. Very recently, the method has been sped up sig-

nificantly by the use of implicit canonical form functions

and introns [14].

Fig. 22. Example data mining ideas for parametric circuit modeling. RF LNA at left has five designable variables, varying over ranges

shown. Histograms at right show fitting error for predicting IIP3, for one simple neural network, and ten boosted neural

net based regressors, for fitting 2000 simulated samples of IIP3, across uniform samples of the five design

variables. Boosted result makes fewer and much smaller errors [11].

Table 1 CAFFEINE-Generated Performance Models for Six Different Characteristics of the Circuit of Fig. 19, Which Each Have Less Than 10%

Training and Testing Error
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A final class of important parametric modeling tech-

nique are the Paretomethods [4], [5], [95], [96]. We briefly

review the fundamental idea of Pareto optimality, following

the discussion of [97]. The capability of any analog circuit is

defined using a set of performance metrics (e.g., dc gain,

bandwidth, power, slew rate for an operational amplifier).

Like any physical system, there are limits on how good

these metrics can be for any circuit topology. The set of all

possible performance metric values achievable by any

circuit topology defines the performance feasibility region of
the topology. These performance metrics are often

competing (e.g., gain and bandwidth), and certain portions

of the feasible region boundary define the tradeoff

relationship while trying to achieve the optimal values for

these metrics. These tradeoff surfaces are said to be Pareto
optimal. These are referred to equivalently as Pareto curves,
Pareto fronts, and Pareto tradeoffs.

Suppose that x 2 X . Rn is the vector of n design

variables. pðxÞ 2 P . Rm is the vector of circuit perfor-

mances. These performances can be categorized into

constrained performances pc (which must meet certain

specifications for acceptable circuit performance) and

objective performances po (which are to be optimized: we

assume minimized without loss of generality).

cðxÞ 2 C . Rl is the vector of constraint variables that

are needed to guarantee correct circuit operation.

gðc;pcÞ 2 F is the vector of real-valued constraint

functions to guarantee correct circuit behavior and

minimum acceptable performance ðg / 0Þ. These include
constraints like minimum UGF specification, dc biasing

conditions, etc.

The performance feasibility region of a circuit is the

subset of P over which the constraints g are met. Here, we

define the domination operator (a dominates b)

a 0 b , 8i21;...;kai / bi ^ 9i21;...;kai G bi: (12)

Fig. 23. Comparison of accumulated modeling error for six different performance characteristics of circuit of Fig. 19 for ten

different performance modeling methods, starting from the same original set of SPICE data points.

Table 2 CAFFEINE-Generated Performance Models of Phase Margin (PM), in Order of Decreasing Error and Increasing Complexity, for the

Circuit of Fig. 19

Rutenbar et al. : Hierarchical Modeling, Optimization, and Synthesis for System-Level Analog and RF Designs

Vol. 95, No. 3, March 2007 | Proceedings of the IEEE 659



The Pareto-optimal front is the set of points on the

feasible region boundary that are not dominated by any

other point in the feasible region. Computing the

performance feasibility region of a circuit topology will

imply computing the set of Bbest[ possible points in terms

of the objective performances and this is the Pareto-

optimal front. This front defines the capability limit of the

topology in terms of the objective performance metrics,

assuming all the constraints g are met.

The Pareto-optimal front generation problem can be

formulated as the following multi-objective optimization

problem:

Minimize poðxÞ ¼ po1ðxÞ; po2ðxÞ; . . . ; pokðxÞf g

s:t: g cðxÞ;pcðxÞð Þ / 0;x 2 X: (13)

A multi-objective optimization algorithm to solve this

problem will generate points on the Pareto-optimal front,

while satisfying two requirements. First, the solution set

should approximate the real Pareto front as closely as

possible and the algorithm should generate the solution set

as quickly as possible. Second, the solution points should

be uniformly spread out over a large extent of the Pareto

front. This is to enable reliable model building.

There are several approaches to generating the Pareto

front. An interesting characteristic of all such techniques is

that they leverage the core infrastructure of existing

circuit-level analog synthesis tools. In other words, one can

extend the engines that synthesize sizing/biasing for an

individual circuit with a specific set of performance targets

and use these instead to trace out the Pareto front. For

example, stochastic approaches such as the Watson tool [4]

exploit ideas from genetic algorithms and try to evolve

populations of sized circuits whose Bfitness[ is rewarded

proportionally to how well each candidate fill in gaps in

the evolving Pareto front and how Bdominated[ the point

is by other members of the population.
It is also possible to use more direct methods to find

these curves. Of these, the Normal Boundary Intersection
(NBI) method is most well known [96]. Suppose, via
circuit synthesis, we can find circuits that define the best

possible values of each individual performance objectives
poðxÞ ¼ fpo1ðxÞ; po2ðxÞ; . . . ; pokðxÞg. Roughly speaking,
we build the convex hull of these individual points and
then search in a direction normal to this hull, toward the

Pareto-optimal points, from a set of suitably uniformly
spaced points on this hull. Fig. 24 illustrates the idea for
the geometrically simplest case of a two-dimensional

Pareto front; in this case, the convex hull is simply the
chord between the points defining the two best values of
the two performance objectives. We search from the

points on the convex chord, adding an additional
constraint that we seek a circuit solution that: 1) lies on
this normal and 2) is maximally distant from the chord.

Such points will comprise the Pareto points we seek. A
version of the WiCKed synthesis tool uses NBI ideas for
automatically tracing Pareto points [5]. One challenge

with this formulation is the need to add the additional
points-on-the-normal constraint, which takes the possibly
numerically more difficult form of an equality constraint.
It is possible to relax this and formulate an NBI-like

method using only inequalities, as shown in [95]. The
attractive feature of this version is that the problem of
search along the normal is transformed into a problem of

search near the normal, which involves only inequalities
constraints, which are robustly handled by most industrial
synthesis engines.

Fig. 24. Illustrating NBI method [96] for tracing Pareto front in two dimensions. From individual minima for two performance

objectives (left) the convex hull H (chord, right) of these points is formed, then from the centroid of H

a search on the normal is performed to find the new Pareto point.
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Finally, it is worth noting that another significant

benefit of the Pareto-based model is dimensionality

reduction. That is, we replace the potentially large number

of degrees of freedom of a cell-level circuit with the

relatively small number of degrees of freedom of the

Pareto curve. To be concrete, suppose we have an amplifier

which has 20 CMOS devices; we need perhaps 20 widths

and 20 lengths to design this circuit. However, suppose

that at system level, all we really want to know is the best

point on the gain versus bandwidth Pareto curve. Then, we

have really reduced this to a single degree of freedom:

when we select a value for one of these dimensions, our

Pareto model uniquely specifies the other. This dimen-

sionality reduction and the fact that these sorts of tradeoff

analyses are extremely familiar to working circuit de-

signers accounts for recent interest in the Pareto models.

Of course, these do become quite unwieldy in more than

a few dimensions; this is the main drawback of the

approach.

Despite the progress made so far, still more research in

the area of automatic performance model generation is

needed to reduce analog synthesis times, especially for

hierarchical synthesis of complex analog blocks. The field

is a very active research area at the moment.

C. Hierarchical Synthesis Flows
Recall that our original motivations for the various

forms of modeling in the previous sections were twofold:

first, for full-system design verification, we needed

efficient instance-based macromodels that allowed use to

simulate large designs in tractable amounts of time;

second, for optimization-based synthesis flows which visit

many intermediate circuit solutions and evaluate each

with full simulation, we needed efficient parametric

models that let us quickly explore how changes circuit-

level changes affect system-level outcomes. In this sec-

tion, we briefly review how synthesis can be organized,

using all these modeling ideas.

The earliest approaches used top-down strategies.

Chang et al. [105], [106] described a constraint-driven

top-down design methodology where constraints are

propagated down the hierarchy for complex mixed-signal

systems. The methodology is demonstrated for some

practical design examples. The performance constraints

are also used to control the layout synthesis tools (place-

ment, routing). A second early approach that can be

mentioned here is the OASYS tool of [6]: at each level in

the design hierarchy, the performance specifications of

the subblocks within the selected block architecture have

to be determined based on the block’s overall specifica-

tions. This can be done in a top-down manner using

optimization methods at each level, until the device level

is reached and all devices have been sized. The complete

design flow is then an alternation of topology selection

(i.e., picking the right circuit-level architecture) and

specification translation (i.e., determining how specifica-

tions at one level decompose into specification at the

next). Reference [6] suggested a set of equation-based

strategies for this purpose.

Unfortunately, hierarchical techniques based on ad hoc
sets of equations have not proven to be very practical: they

require excessive amounts of effort to redirect for new

circuits and new technologies. One interesting work-

around strategy is to restrict the form of the equations

used to model devices, circuits, and systemVlevel

arrangements of blocks. For example, if one restricts all

performance objectives to a posynomial form, one can

apply powerful, efficient convex optimization techniques

to find solutions. These ideas have been applied at circuit

level (e.g., for op-amps [98] and LC oscillators [99]) and

for a few system-level designs (e.g., simple converters

[100] and PLLs [101]). However, the effort to transform

performance goals into the restrictive convex form can

itself be challenging, the quality of the fit may be

problematic, and each new circuit requires a new set of

burdensome hand-developed analytical equations.

In light of this, we can see why there is such interest in

parameterized macromodels. These potentially let us keep

the simulator-in-the-loop optimization flow in the style of

Fig. 16 but provide the necessary twin reductions in per-

candidate simulation times and number of degrees of

freedom being optimized. Phelps et al. [88] was one no-

table step in this direction who showed how some simple

macromodels for the essential blocks in an industrial

ADSL design could allow simulation-based synthesis to be

performed. The experiment showed how to resynthesize a

multiple-week industrial design overnight.

Today, the Pareto front techniques seem to be the most

powerful methods we have for reducing simulation times

and dimensionality. Given this, it is worth stepping

through a small but concrete example to show exactly

how many of the modeling ideas of the previous sections

come together. We use the small PLL example of [95] here.

The design scenario is outlined in Fig. 25. We want to

build a 1 : 2 PLL; the technology is 0.18-!m CMOS. The

main block of interest is the VCO, which uses a current

starved ring oscillator similar to the one highlighted in

Fig. 17(a). Evaluating the phase noise specification for the

overall PLL makes the problem too expensive to synthesize

by flattening the PLL; for example, simulating 3 !s of lock-

in requires roughly 2 h of CPU time. We resolve this by

macromodeling each of the blocks as follows.

1) The phase frequency detector, charge pump, and

frequency divider are replaced with standard

behavioral models, using ideas from [102]. These

will not be synthesized.

2) The loop filter is a simple passive RC filter and is

simply flattened and simulated directly. We

design the RC values as part of this synthesis task.

3) The VCO is replaced with a behavioral model

which embeds a Pareto tradeoff curve. Since

meeting the PLL-level jitter specification while
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minimizing power is the real challenge, we use an

industrial analog synthesis tool and ideas from the

NBI method and trace a jitter versus bias current

(i.e., power) for the VCO [95]. This appears in

Fig. 26. However, a Pareto curve is not a simulation

model: we need to embed this information

somehow in a simulation model. Fig. 27 shows

the solution. For the voltage versus frequency

nonlinearity, and dynamics of the VCO, we fit a

simple, conventional behavioral model with one

pole (for dynamics) and a third-order polynomial

nonlinearity. We then add the jitter versus current

Pareto tradeoff as a bias-current-dependent fre-

quency perturbation, again using ideas from [102].

In this way, we create a fully simulateable model

which has also one degree of freedomVthe VCO

Fig. 26. Extracted jitter versus bias current Pareto front for VCO of Fig. 25.

Fig. 25. 2 : 1 PLL hierarchical design scenario from [95].

Rutenbar et al.: Hierarchical Modeling, Optimization, and Synthesis for System-Level Analog and RF Designs

662 Proceedings of the IEEE | Vol. 95, No. 3, March 2007



bias current is an independent parameterVwhich

will be manipulated by the circuit synthesis process

to optimize the overall PLL.

The PLL was simulated for 4000 cycles at each

synthesis point and it took about 4 h to synthesize the

optimal circuit solution on a single CPU. The optimized

variable values for the PLL include the RC values for the

loop filter and the jitter and current for the VCO. Note that

this means that the overall synthesis has not given us the

device level sizing for the VCO, but rather, the best point

on the jitter versus bias current Pareto at which to operate

it. To finish this design, we thus need to search for the

sizing solution for the VCO that has these specified jitter

and current specifications. Recall that our Pareto curve is it

itself a regression fit based on a moderate number a

synthesis-derived circuits, so we do not simply have this

detailed VCO solution stored. However, it is easy to obtain,

since we know a good estimate of the circuit’s Pareto

tradoffs. Thus, one more synthesis completes the task.

Final PLL specifications appear in Table 3. To verify that

our final design does indeed meet the specs for the PLL, we

simulated the final transistor level circuit and its

equivalent macromodel. Fig. 28 shows the waveforms at

the input control voltage of the VCO for both the

macromodel version and the flat, SPICE-level simulation.

As can be seen from figure, the responses of the two

circuits match each other quite closely which confirms the

accuracy of our models.

The ability to use optimization-based synthesis to ex-

tract Pareto fronts has led to a variety of more sophis-

ticated approaches. For example, an alternative presented

recently is to use a multi-objective bottom-up (MOBU)

synthesis methodology [7]. Rather than traversing the

design hierarchy in a top-down manner, the hierarchy is

traversed in a bottom-up way. The core ideas are: 1) to

determine just tradeoffs among the performance objec-

tives, not whole feasibility regions, and 2) to directly use

designed circuits rather than models. We now discuss

this in detail. These cell-level Pareto optimal sets re-

turned by most analog multi-objective-based sizing tools

today can be directly exploited for system-level design,

in what amounts to a BMulti-Objective Bottom-Up[

(MUBU) methodology.

The design space for the next level up is the Bselection[

of a design for each of the subblocks. A Bselected[ subblock

design is actually pointing to a specific design from the

lower level tradeoff Pareto-hypersurface of that subblock.

The hierarchy traversal proceeds in an upwards fashion, in

the end providing an optimal system-level tradeoff. Fig. 29

illustrates this MOBU process. The example considered

here is an analog to digital converter, which contains a

number of op-amps as subblocks. First, using SPICE

simulations the Pareto tradeoff fronts of the op-amp are

constructed. Fig. 29 shows the slew rate versus gain-

bandwidth as example tradeoff. Following the MOBU

methodology, the Pareto-front data points of the op-amps

and other subblocks are then used to generate the Pareto

tradeoffs of the entire converter, using behavioral simula-

tions. Fig. 29 shows the example of the converter-level

tradeoff between the signal-to-noise ratio (SNR) versus

power consumption.

In MOBU, any design that is selected on any level is

already fully sized. An analog designer just has to choose a

solution at the system level according to the performance

specifications, and immediately all the design variables of

the complete system are set. MOBU simultaneously

provides both full sizings and flexibility in specifications.

In addition, once a given block has had its Pareto optimal

set generated in a given technology, it can be reused. In

top-down design a good feasibility-modeling approach is

necessary for success to make sure that feasible specifica-

tions are chosen for the subblocks. In contrast, MOBU

Fig. 27. Overall nonlinear behavior model for VCO: (a) topology

for modeling dynamics and nonlinear voltage-to-frequency

behavior and (b) verilog-A pseudo-code for adding phase

noise from the Pareto front of Fig. 26.

Table 3 PLL Performance Specification After Final Synthesis
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completely avoids explicit modeling of any performance

surfaces. The closest thing it has to a Bmodel[ is the

Pareto-optimal set, which collectively approximates a

performance surface with only Boptimal[ design points.

Of course, one could build a regression model, for example

by extending [4] for use in hierarchical design. Fig. 30

illustrates the differences between top-down and bottom-

up hierarchical design.

IV. STATISTICAL OPTIMIZATION
TECHNIQUES

A complete survey of statistical optimization techniques,

targeting yield and robustness for hierarchically specified

designs, is beyond the scope of this paper. We merely

outline the problem and note a few recent promising

efforts in this very challenging area.

Fig. 28. Comparison plot of the control voltage of the VCO for complete PLL simulation showing both the transistor-level

circuit and behavioral model.

Fig. 29. MOBU maps design points to performance points via

performance simulation as usual. It findsandkeeps just the tradeoff via

multi-objective optimization. It then propagates tradeoffs upwards

where they combine to make the next level’s optimal design space.

Fig. 30. Top-down design with feasibility modeling versus MOBU.

Shaded-out space for each block represents its performance

feasibility region, which feasibility modeling generates bottom-up.

Boundary curve line on one edge of the region represents the

Pareto-optimal set that MOBU generates bottom-up.
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Industrial design practice not only calls for fully op-

timized nominal design solutions but also expects high

robustness and yield in the light of varying operating con-

ditions (supply voltage or temperature variations) and

statistical manufacturing tolerances and mismatches [15],

[16]. Due to these fluctuations, the device parameters and

consequently also the circuit performance characteristics

will show fluctuations. The corresponding parametric yield

is the ratio of the number of acceptable (i.e., functional

and meeting all specifications) to all fabricated IC samples.

The yield of course depends on the nominal design point

chosen for the circuit. Unfortunately, the relation between

the (fluctuating) device parameters and the circuit

performances is in general a nonlinear transformation

that is not known explicitly but has to be simulated. All this

makes yield estimation a time-consuming task, which in

practice is often obtained by Monte Carlo simulations. An

overview of more efficient techniques that trade off

accuracy versus CPU time can be found in [2]. Note that

in practice not only the yield, but in general the robustness

of the design against variations of both technological and

environmental parameters, has to be maximized. This

implies techniques for variability minimization and design

centering.

The most straightforwardVand, sadly, still the most

practically encountered solutionVis to evaluate the circuit

performance not only in the nominal design point, but also

in a set of predefined worst case process, voltage, and

temperature (P,V,T) corners. The circuit then needs to

satisfy the specifications in all corners. The problem with

this approach is that the CPU time increases with the

number of corners that needs to be simulated and that the

number of corners becomes intractably large in nanometer

technologies. In addition, for any reasonably complex system

level design, we do know not in advance which of these

intractable number of design corners is actually the worst

corner for each individual circuit specification. Corner-based

design also easily leads to overly pessimistic worst case

design. Hence, the current trend is to move towards true

statistical yield optimization, where the statistical distribu-

tion of the parameter variations is considered.

Handling difficult statistics, with complex correlations,

for complex circuits with difficult-to-simulate analog

behaviors, remains a challenge. We simply mention a

few notable efforts here. In the area of simulation-based

synthesis, the WiCked approach [17] uses worst case

parameter distances as robustness objectives to obtain a

nominal design that satisfies all specifications with as

much safety margin as possible for process variations. The

resulting formulation is the same as for design centering

and can be solved efficiently using the generalized

boundary curve. Design centering, however, still remains

a second step after the nominal design. The efficient

projection-based quadratic modeling ideas of the ROAD

approach [91] actually apply very effectively to the

statistical case, since one can build statistical response

surfaces with this idea. In combination with efficient

numerical techniques like APEX [103] to estimate the pdfs

of nonlinear circuits, ROAD can be used as an effective

post-nominal robust optimizer. An example appears in

Fig. 31, which shows a successful post-nominal robustness

optimization for an RF LNA. Finally, the convex modeling

ideas mentioned in Section III-B can also be applied in this

context, e.g., [104] formulates a novel system-level

exploration methodology based on geometric centering

ideas that can be rendered in a convex form.

Fig. 31. Applying ROADmethodology for post-nominal statistical robustness optimization on RF LNA in 0.25-!m SiGe process [91].

Rutenbar et al. : Hierarchical Modeling, Optimization, and Synthesis for System-Level Analog and RF Designs

Vol. 95, No. 3, March 2007 | Proceedings of the IEEE 665



V. CONCLUSION

In this paper, we have attempted to review the recent state

of the art in hierarchical analog synthesis, with a strong

emphasis on associated techniques for computer-aided

model generation and optimization. There are industrially

useful and commercially available tools at the cell

levelVtools for analog components with 10–100 devices.

However, successful component-level tools do not scale

trivially to system-level applications. These hierarchically

specified designs need to optimize many competing

continuous-valued performance specifications, which de-

pend on the circuit designer’s abilities to successfully exploit

a range of nonlinear behaviors across levels of abstraction

from devices to circuits to systems. For purposes of synthesis

or verification, these designs are not tractable when

considered Bflat.[ These designs must be approached with

hierarchical tools that deal with the system’s intrinsic design

hierarchy. We reviewed recent ideas in analog modeling and

synthesis that specifically deal with the hierarchical nature

of practical mixed-signal and RF systems: algorithmic

techniques for automatically extracting a suitable nonlinear

macromodel from a device-level circuit; parametric model-

ing techniques; ideas for hierarchical synthesis, in partic-

ular, numerical techniques for handling the large number of

degrees of freedom in these designs, and for exploring the

space of performance tradeoffs early in the design process.

Finally, we briefly touched on emerging ideas for accom-

modating models of statistical manufacturing variations in

these tools and flows.

As more analog and RF designs migrate onto difficult

SOC-style digital platforms, we expect to see a continuing

demand for these sorts of hierarchically oriented modeling

and synthesis tools and, in particular, tools to help designs

deal with the challenges to circuit robustness posed by

nanometer technologies. h
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