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Abstract

Background: The exploration of the structural topology and the organizing principles of genome-

based large-scale metabolic networks is essential for studying possible relations between structure

and functionality of metabolic networks. Topological analysis of graph models has often been

applied to study the structural characteristics of complex metabolic networks.

Results: In this work, metabolic networks of 75 organisms were investigated from a topological

point of view. Network decomposition of three microbes (Escherichia coli, Aeropyrum pernix and

Saccharomyces cerevisiae) shows that almost all of the sub-networks exhibit a highly modularized

bow-tie topological pattern similar to that of the global metabolic networks. Moreover, these small

bow-ties are hierarchically nested into larger ones and collectively integrated into a large metabolic

network, and important features of this modularity are not observed in the random shuffled

network. In addition, such a bow-tie pattern appears to be present in certain chemically isolated

functional modules and spatially separated modules including carbohydrate metabolism, cytosol and

mitochondrion respectively.

Conclusion: The highly modularized bow-tie pattern is present at different levels and scales, and

in different chemical and spatial modules of metabolic networks, which is likely the result of the

evolutionary process rather than a random accident. Identification and analysis of such a pattern is

helpful for understanding the design principles and facilitate the modelling of metabolic networks.

Background
Cellular metabolism is an essential process for the main-
tenance of life and metabolic networks have been exten-
sively studied [1-7]. Although a large variety of metabolic
reactions can be found in different organisms, metabolic
networks are highly conserved across them. It remains a
highly interesting and challenging problem to understand
the architectural characteristics and "design" principles of
the metabolic networks in relation to their function. An
important finding is that metabolic networks, as well as

other real-world complex networks, have topologies that
differ markedly to those found in simple randomly con-
nected networks [8], which suggests that their non-ran-
dom structures could imply significant organizing
principles of metabolic networks.

Cellular functions are carried out in a modular way [9],
while it has been suggested that biological modules corre-
lates with locally dense links in molecular networks [10].
Efforts have been directed towards the recognition of
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modules in metabolic networks using mathematical
methods, especially graph theory. Graph-theoretic meth-
ods analyze networks from topological point of view
using minimal prior knowledge about biological func-
tion, thus have the potential to give new insight into
metabolism based on the unbiased structural modules.
Newman and Girvan regarded a network has modularity
(or community) structure if its nodes could be properly
divided into groups within which the nodes are highly
connected, but between which they are much less con-
nected [11]. Several algorithms have been developed to
break up a metabolic network into modules [12-16],
while the corresponding modularity metric could be used
as a quantitative criterion to evaluate the decomposing
quality of a network [11]. Guimera et al. further proposed
that the modularity of networks must always be compared
to the null case of a random graph. They regarded a net-
work has statistically significant modularity if its modu-
larity metric, i.e., the largest modularity metric of all
possible partitions of the network, is statistically bigger
than that of the randomised counterparts [17]. They also
developed a simulated annealing algorithm to compute
the largest modularity metric of a network [14,18]. On the
other hand, it has been discovered, that the global meta-
bolic network is organized in the form of a bow-tie [19].
On the basis of such a bow-tie topology, Ma and Zeng
have proposed a decomposing algorithm based on the
shortest path combined with "majority rule" [16]. These
methodologies are useful for the analysis of the design
principle of metabolic network.

In this work, 75 metabolic networks were constructed
from organisms including 8 eukaryote, 56 bacteria and 11
archaea. By applying the decomposing method similar to
[16], the topological features of various graph models
were studied at different levels, sub-cellular localizations,
and biochemical pathways in the form of bow-tie. To
mine the inherent topology of metabolic networks, the
features from E.coli network were then compared with
those of the properly randomized counterparts that pre-
serve the linkage degree of each node and the total
number of directed and bi-directed arcs [20,21].

Results/discussion
Decomposing the metabolic networks

The metabolic networks of three microbes (Escherichia
coli, Aeropyrum pernix and Saccharomyces cerevisiae
iND750) were decomposed. Only the results of the E.coli
network are presented in this paper for illustration. The
other two networks displays similar features as the E.coli
network and the relevant analysis results are provided in
Additional file 1 (part II and III).

The metabolic network of E. coli K-12 MG1655 consists of
934 nodes and 1437 arcs. The largest connected part of

this network embraces 575 nodes and its topology exhib-
its a bow-tie architecture consisting of four parts: giant
strong component (GSC), substrate subset (S), product
subset (P) and isolated subset (IS). To further decrease the
complexity, the GSC part is reduced to a Core through the
method of [19]. See part I of Additional file 1 for a visual-
ization of the bow-tie structure for E.coli network.

The hierarchical clustering tree for the Core of the GSC,
obtained by our decomposition algorithm, is shown in
Figure 1. According to the modularity metric from New-
man and Girvan [11], 12 clusters of the Core appeared as
shown in Figure 2, in which the nodes belonging to the
same cluster have the highest degree of structural equiva-
lent, i.e., the clusters are still strongly connected (cluster
2,3,5,6,7,8 and 12), or most of the nodes are strongly con-
nected (cluster 1,4,9,10 and 11). Figure 3 illustrates the
decomposition of the whole metabolic network.

Matching modules to particular metabolic functions may
reveal the biological significance of this modularity
[16,18]. Following Guimerà and Amaral [18], we mapped
the modules to KEGG pathway [22,23]. A cartographic
representation [18] of the metabolic network is shown in
Figure 4, in which each node corresponds to a cluster. The
colours in Figure 4 represent different categories of metab-
olism while the coloured areas indicate the percentage of
respective metabolism within the module.

Figure 4 illustrates that some modules generated by our
algorithm are dominated by one major category of metab-
olisms. For instance, the reactions in the 3rd module are
mainly carbohydrate metabolisms that include the major-
ity of metabolites from TCA cycle with glyoxylate bypass,
as shown in Figure 5. However, the majority are mixtures
of pieces of several conventional biochemical pathways.
Extreme examples are module 1 and module 5. When
examining the nodes in them we found that there are
heavily overlapping compounds both by carbohydrate
and amino acid metabolism. It is difficult to assign these
metabolites to a single module because they are playing
dual and even multiple roles in several metabolism proc-
esses. For example, pyruvate in the 1st module is a key
metabolite that connects the metabolism of carbohy-
drates, amino acids and the energy metabolism. See Fig-
ure S5 in Additional file 1 for different pathways grouped
in module 5. On the other hand, a standard textbook
pathway can break into several modules, which is espe-
cially true for the three central pathways – Embden-Mey-
erhof-Parnas (EMP), tricarboxylic acid (TCA) and pentose
phosphate pathway (PPP). One possible explanation is
that the metabolites in these central pathways are used as
common precursors for biosynthesis of universal building
blocks [24] and are thus placed in different modules. Fig-
ure 6 shows how the 12 common precursors scatter in dif-
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The hierarchical clustering tree for the Core of the GSC for the E.coli networkFigure 1
The hierarchical clustering tree for the Core of the GSC for the E.coli network. See Additional file 2 for metabolite 
abbreviations of the E.coli network.
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ferent modules. This finding agrees with earlier
observations concerning the high diversity of the TCA and
EMP pathway [25,26], as well as the clustering results for
E.coli metabolic network obtained by other algorithms
[13,16,27].

It can be seen that the modules generated from topology
do not completely overlap with traditional biological
pathways. However, this purely graph-theoretic clustering
without any use of biology-specific details may provide
new insight into metabolism and useful hints to the func-
tional significance of those unknown reactions. Taking
module 3 as an example, parts of amino acid metabolites
and nucleotide biosynthesis metabolites are connected
closely around TCA cycle in module 3, which provides
convenient plugs interrelating with other modules. For
instance, acting as an important interface to other mod-
ules, aspartate (ASP-L) provides amino bases for the syn-
thesis of other categories of amino acid in module 4 and
module 5, and is also used for pyrimidine synthesis in
module 5; while 2-oxoglutarate (AKG), as the precursor of

glutamate family, is clustered into module 9 as the plug
between module 3 and module 9. Hopefully, more
research will clarify the biological significance of the
underlying difference between topological modules and
traditional pathways.

Hierarchical modularity of metabolic networks in the case 

of nested bow-tie

To further investigate the macroscopic structure of each
sub-network, the node distributions in the bow-tie struc-
ture of the sub-networks were listed in Table 1. It can be
seen that almost all of the twelve sub-networks have
formed bow-tie structures, similar to the global network.
We show the four parts of each sub-bowtie with distinct
colours in Figure 3, while in Figure 7 we illustrate the cor-
responding sub-tree of module 3 and its bow-tie structure.
The only exception is the 6th module, which doesn't have
the P part, but closely related with module 5 and module
7. This could be caused by our decomposing algorithm
that starts from decomposing the core of GSC, which con-
tains highly abundant reversible reactions.

Decomposition of the Core for the GSC of the E.coli metabolic networkFigure 2
Decomposition of the Core for the GSC of the E.coli metabolic network. This graph is drawn with the graph analysis 
software Pajek [39]. The nodes included in the biggest strongly connected component of each cluster are shown in red colour.
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As pointed out in the method part, with the dissimilarity
index defined in our algorithm, nodes that belong to the
same sub-tree are not necessarily connected to each other,
so are modules that correspond to the neighboured sub-
trees. For example, although the sub-tree of module 8 is
near that of module 7 in the hierarchical clustering tree
shown in Figure 1, module 8 is not connected with mod-
ule 7 but with module 4, 5 and 12, whose sub-trees are far
away, as Figure 4 shows. Thus the hierarchical tree cannot
reflect the actual linkage relation between modules. To
mine how the small modules are organized into bigger
ones, we drew a coarse-grained graph to illustrate the con-
nections between the GSC parts of the sub-networks as
Figure 8 shows. Each node in Figure 8 corresponds to a
cluster, while two nodes in Figure 8 are defined as being
connected if and only if the constituent nodes in corre-
sponding GSC parts are linked. Such connecting topology
is different from that in Figure 4, in which the arcs corre-
spond to the links between the sub-networks.

It is thus noted from the definition of strongly connected
graphs that, if some nodes in Figure 8 can be combined
into a strongly connected sub-graph, the merger of the
corresponding sub-networks may form a bigger bow-tie
whose GSC is the union of the individual GSC parts [28].
For example, the unions of clusters, such as {1,2,3},
{1,3,4}, {5,8,10,11,12}, and the union of all the twelve
clusters have bow-tie structures, but the following clusters
{1,2}, {4,9,10}, {10,11,12} can't form strongly con-
nected sub-graphs, thus are not bow-tie. In this way, dif-
ferent sub-networks of bow-tie structures can be
combined to form bigger bow-ties at higher level. In other
words, Figure 8 delineates the "roadmap" how little bow-
ties are nested into larger bow-ties through their GSC
parts.

The combination of different bow-ties was also compared
with the global bow-tie from proportional scale. One
hundred and fifty bow-ties were hierarchically generated

Decomposition of the E.coli metabolic network by expanding the clustering of the CoreFigure 3
Decomposition of the E.coli metabolic network by expanding the clustering of the Core. Triangles correspond to 
the nodes of the Core. The four parts (GSC, S, P, IS) of bow-tie structure for the modules are shown in distinct colours.
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by random combinations of a number of basic bow-ties
from the coarse-grained graph in Figure 8. Their node dis-
tributions of the four parts (GSC, S, P, and IS) were listed
in Table S3 of Additional file 1. The percentage discrepan-
cies of the four parts to those of the global one were also
summarized in Table S3. Interestingly, the node distribu-
tion of the nested bow-ties is approximately consistent
with that of the global network with an average absolute
error of 0.0854, which means each smaller bow-tie can be
considered as a miniature of the global one.

In this sense, metabolic networks seem to be designed in
such a way that many similar small modularized bow-tie
units, which are hierarchically nested and reoccur at dif-
ferent scales and levels, are coupled level-by-level into a
larger network.

Comparison between the E.coli network and an ensemble 

of randomly connected networks

Comparing metabolic network with randomized counter-
parts could reveal intrinsic difference between them
[17,20,21]. Sixty random networks were constructed by
reshuffling the links of the E.coli metabolic network
[20,21]. The graph metrics of the 60 random networks are
listed in Table S4 of Additional file 1 and the comparison
with the E.coli network is summarized in Table 2. Topo-

logical analysis revealed that the macroscopic structures of
the random networks still preserve a global bow-tie, but
substantial difference exists between the E.coli metabolic
network and randomized ones in term of the sizes of bow-
tie parts, average clustering coefficient and modularity
metric. It can be seen that the clustering coefficients of the
random networks are almost equal to zero, in big contrast
to that of the E.coli network. This clear difference implies
an overall loose connection of randomized networks but
a cliquish topology of the E.coli metabolic network [29].
Such different topological patterns are observably pre-
sented in their Cores, as Figure 9 shows. The Core of E.coli
network exhibits distinct cohesive areas being sparsely
linked together, while the randomized one is linked in
such an approximately equal density that almost no clear-
cut "cliques" appear within it.

Table 2 also shows that the modularity metric of the E.coli
network is some 22 standard deviations above that of the
randomized network. Thus the higher modularity of E.coli
network is unlikely to arise at random. According to the
scheme of Maslov et al. and Guimera et al. [17,21], meta-
bolic network exhibits significantly higher modularity
compared with those randomized counterparts statisti-
cally. On the other hand, since a network with modularity
metric higher than 0.7 could be thought as modular net-

Cartographic representation of the metabolic network for E.coliFigure 4
Cartographic representation of the metabolic network for E.coli. Each circle represents a module and is coloured 
according to the KEGG pathway classification of the reactions belonging to it, while the arcs reflect the connection between 
clusters. The area of each colour in one circle is proportional to the number of reactions that belong to the corresponding 
metabolism. The width of an arc is proportional to the number of reactions between the two corresponding modules. For sim-
plicity, bi-directed arcs are presented by grey edges.
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work [11], both E.coli network and its randomized ver-
sion, whose values of modularity are 0.85 and 0.76
respectively, could be judged as being modular according
to the module definition proposed by Newman and Gir-

van, i.e., the network can be broken up in such a way that
it has as many as within-module links and as few as pos-
sible between-module links. However, modules defined
like this and detected by simulated annealing are not com-

Bio-reactions in the 3rd module and the connection to other modulesFigure 5
Bio-reactions in the 3rd module and the connection to other modules. Each node represents a metabolite and is col-
oured according to the class of metabolism it participates in. This module contains the majority of metabolites from TCA cycle 
with glyoxylate bypass, in which the reactions are highlighted by red arcs. Nodes from other modules that link with module 3 
are shown by triangles, with module serial number shown in the parentheses. The metabolite abbreviations are listed in Addi-
tional file 2.

Table 1: Node distributions in the global structure of sub-networks obtained from the decomposition for E.coli network

Module Total 
nodes

Nodes in 
GSC

Percent of 
GSC

Nodes in S Percent of 
S

Nodes in P Percent of 
P

Nodes in 
IS

Percent of 
IS

Bow-tie

1 66 28 42% 21 32% 16 24% 1 2% Y

2 60 23 38% 1 2% 27 45% 9 15% Y

3 23 15 65% 3 13% 5 22% 0 0 Y

4 44 15 34% 14 32% 4 9% 11 25% Y

5 136 40 29% 17 13% 51 38% 28 20% Y

6 21 13 62% 6 29% 0 0 2 9% Y

7 49 14 29% 19 39% 9 18% 7 14% Y

8 19 8 42% 8 42% 3 16% 0 0 Y

9 94 15 16% 7 8% 32 34% 40 42% Y

10 28 7 25% 6 21% 5 18% 10 36% Y

11 18 9 50% 7 39% 1 6% 1 5% Y

12 17 10 59% 1 6% 6 35% 0 0 Y

Global 
network

575 234 41% 85 15% 177 31% 79 13% Y
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patible with the bow-tie like modules (see Figure S16 in
Additional file 1). While decomposing this random net-
work in the same way as the E.coli network by our algo-
rithm, we found that, no matter how the hierarchical
clustering tree was cut at different level, several uncon-
nected sub-networks consisted of many isolated nodes
would be generated. Figure 9(B) shows one manner of the
partitions that generates 12 clusters, in which the nodes
belonging to the same cluster are not linked together, and
the modularity metric corresponding to this decomposi-
tion is computed as only 0.0612. In contrast, each cluster
of the Core for E.coli network is connected (Figure 9(A)),
which could lead to bow-tie pattern decomposition. The
corresponding modularity metric of Figure 9A is 0.7062.
That is to say, structural equivalent nodes tend to connect
with each other in the real metabolic network, but split
away in random networks. This phenomenon could be
the result of local interactions within metabolic pathways.

In summery, in the sense of modules defined by Newman
and Girvan, both E.coli network and random ones are

modular organized. However, E.coli network has signifi-
cantly higher modularity, and also could be decomposed
as bow-tie modules, while the random network does not
exhibit modular organization in terms of bow-tie mod-
ules. These comparative results indicate that the highly
modularized bow-tie unit is an intrinsic and significant
feature of metabolic networks, rather than a random phe-
nomenon.

In addition, we have also seen that the use of degree-pre-
serving rewiring here provides some views into the statis-
tical and graph-theoretic differences between real
metabolic networks and random ones. We believe that
additional work is required to understand what the other
distinctions are, and what the biological significance is of
these differences.

Bow-tie units from a chemical and spatial viewpoint

Assuming that the highly modularized bow-tie unit is
common to metabolic networks, the bow-tie may be
observed from various systems such as cellular organelles

Distribution of the 12 precursors in the 12 modules of the E.coli metabolic networkFigure 6
Distribution of the 12 precursors in the 12 modules of the E.coli metabolic network. The three major pathways – 
Embden-Meyerhof-Parnas (EMP), tricarboxylic acid (TCA) and pentose phosphate pathway (PPP) for the generation of the 12 
precursors are outlined.
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and metabolic pathways of fundamental bio-molecules.
Reactions of the three basic metabolisms, carbohydrate
metabolism, lipid metabolism, and amino acid metabo-
lism, were retrieved from the database of [30] for 75
organisms (Eukaryote: 8; Bacteria: 56; Archaea: 11). Our
analysis shows that all the reactions in carbohydrate
metabolism have framed a bow-tie structure for all the
examined organisms, as being provided by part VII of
Additional file 1. But neither the lipid reactions nor the
amino acid reactions can build a bow-tie. One possible
explanation to this could be the different roles they play.
Carbohydrate metabolism plays a fundamental role in
nutrients and energy metabolism, which produces lots of
flexible intermediated metabolites for the biosynthesis of
lipids, amino acid and other materials.

Similar analysis was done to the reactions of the Saccharo-
myces cerevisiae iND750 [31] according to sub-cellular
localisations. Three cellular compartments, cytosol, mito-

chondrion, and peroxisome, were studied which include
relatively more metabolites. It was found that the sub-net-
works of cytosol reactions and mitochondrion reactions
could exhibit the bow-tie patterns as shown in Table 3. It
is known that mitochondrion is functionally relatively
independent organelle, while the majority of metabolic
reactions take place in cytosol. That the peroxisome reac-
tions do not form a bow-tie could be caused by the scar-
city of reaction information of peroxisome. However,
with the development of genomics, proteomics and
metabonomics, and the accumulation of sub-cellular
information of more reactions, we speculate that it is pos-
sible to find bow-tie structures in more organelles.

In brief, bow-tie pattern is also present in elementary
metabolism such as carbohydrates, and in cellular com-
partments of mitochondria and cytosol. These results
seem to indicate that the modularity of bow-tie patterns is
common to metabolic networks. At the same time, the

Corresponding sub-tree and bow-tie structure of module 3Figure 7
Corresponding sub-tree and bow-tie structure of module 3. (A) Sub-tree of module 3 (B) Bow-tie structure 
ofmodule 3 Each branch of the sub-tree corresponds to a red node in module 3, while the pink node titled "OASUC" also has 
parallelism in the sub-tree because it is included in the Core of E.coli network. These nodes were resulted from the decompo-
sition of the Core. Then by the "majority role" the Core clusters were expanded to the whole network, the pink (other than 
"OASUC"), green, and blue nodes were assigned to cluster 3. The metabolite abbreviations are listed in Additional file 2.
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complete bow-tie patterns in mitochondria and carbohy-
drates pathways could also imply some independent func-
tional clues.

Significance of modularity in the form of bow-tie structure

In the long evolutionary process of metabolism networks
and their components, the structure of modularity could
contribute significantly to the function of metabolic net-
works. Here, the recurrence of bow-tie structures suggests
that bow-tie modules may act as another kind of building
block of the genome-based metabolic network during the
evolutionary process, indicating that evolution might
copy and reuse existing modules to give rise to ever higher
forms of complexity when new function calls for it.

Another contribution would be network robustness. It is
argued that the GSC part in the bow-tie of the metabolic
network is robust against mutations because there are
multiple routes between any pair of nodes within the GSC
[19,32]. While a modular metabolic network which is
nested by many relatively independent and robust bow-
tie units, will provide more advantages in generating coor-
dinated response to various stimuli from environment
and further increase the robustness of the whole meta-
bolic system.

Moreover, selection of bow-tie as a structural building
unit seems to be a concise and smart option for construct-
ing metabolic networks. From the standard biochemical

The connections among the GSC parts of the twelve bow-tie like modulesFigure 8
The connections among the GSC parts of the twelve bow-tie like modules. The width of an arc is proportional to 
the number of links between the GSC parts of the two corresponding modules. For simplicity, bi-directed arcs are presented 
by grey edges.

Table 2: Comparison of the E.coli metabolic network with sixty randomized networks.

GSC S P IS Core C M

Mean of the sixty randomized networks 287 90 126 71 205 0.0027 0.7601

Standard deviation of the sixty randomized networks 15.86 10.23 14.37 13.72 12.43 0.0019 0.0043

E.coli network 234 85 177 79 163 0.0646 0.8527

Z-score -3.40 -0.52 3.53 0.61 -3.37 31.91 21.79

C: Average clustering coefficient of the network
M: Modularity metric of the network obtained by simulated annealing algorithm
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Comparison of the Core of E.coli network with that of a randomized networkFigure 9
Comparison of the Core of E.coli network with that of a randomized network. (A) 12 clusters of the Core for 
E.coli network (B) 12 clusters of the Core for a randomized network Both of the Cores are decomposed by our algo-
rithm. Different clusters are shown in different colours. These two networks include 163 and 227 nodes respectively. The net-
work in (A) and the decomposition result is just the same as that in Figure 2. The network in (B) is the Core of the 51st 

network in Table S4 of Additional file 1.
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point of view, the metabolic system is organized as a bow-
tie whose knot is made up of a small handful of activated
carriers and 12 precursors, with a large "fan-in" of nutri-
ents, and a large "fan-out" of products in biosynthetic
pathways[24,33]. Such organization pattern has been
reported to be present in various biological systems, such
as in signal transduction systems, transcription and trans-
lation processes, and immune systems [24,32-36]. The
bow-tie model here could give alternative view of the bio-
logical metabolites flow from the topological aspects,
where the knot is much thicker than that of above. We will
refer to thin bow-tie and thick bow-tie to distinguish these
two models. These two bow-tie models are similar in that
they both specially identify and isolate the carriers. It is
noted that, besides the carriers, the thin bow-tie model
includes only the 12 precursors as its knot, whereas the
thick bow-tie model here also contains these 12 precur-
sors, but together with the three essential pathways – TCA
(tricarboxylic acid) cycle, pentose phosphate pathways
and glycolysis pathways, which generate the precursors, as
well as much more metabolites and reactions. Although
different bow-tie models in details, the similar organiza-
tion pattern can both facilitate the kind of extreme heter-
ogeneity that allows for robust regulation, manageable
genome sizes and biochemically plausible enzymes [24].

The knot in our model denotes the most tightly connected
part of the network and is comprised of concentrated
intermediated metabolites. This thicker knot would possi-
bly allow the network to manipulate flexible controls
through the knot and provide more interfaces with inputs
and outputs to meet an emergency or process new metab-
olites. On the other hand, the thicker knot may reveal the
flexibility that the organism has in interchanging nutri-
ents and products. E. coli in particular heavily uses prod-
ucts of other organism metabolism as nutrients, as do
most organisms, but can also live on fairly minimal media
as well. The thick knot may reflect this flexibility, but fur-
ther research will be needed to full explain these connec-
tions.

Conclusion
In this survey we have attempted to reveal the topological
features of graph models from the view of the design prin-
ciple of metabolic networks. Our results suggest that met-

abolic networks exhibit hierarchical modularity in the
form of modularized bow-tie units, whereas this highly
structured modularity is not present in random graphs
with comparable statistical weight. This finding is consist-
ent with the conclusions from a number of studies that
these structures result from universal and fundamental
organizing principles for efficiency and robustness, rather
than frozen accidents of evolution. On the other hand,
such nested bow-tie topology may also be the result of
natural selection of biological evolution, which could be
conceived as a process where the same patterns and proc-
esses repeat at each stage, and are nested at multilevel. The
perspectives of this paper would provide useful hints for
understanding the function and evolution of metabolic
networks, as well as the modeling and simulation of com-
plex biological systems.

Methods
Data preparation and network reconstruction

In this study, the metabolic data were extracted from the
database developed by Ma and Zeng based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [30]. In this
database, the information concerning the reversible reac-
tions was specified. In addition, some small molecules,
such as adenosine triphosphate (ATP), adenosine diphos-
phate (ADP), nicotinamide adenine dinucleotide (NAD)
and H2O, are normally used as carriers for transferring
electrons or certain functional groups and participate in
many reactions, while typically not participating in prod-
uct formation. Therefore, in order to reflect biologically
relevant transformations of substrates, these kinds of
small molecules, as well as their connections were manu-
ally excluded from the database when no products were
formed from them. It should be noted that this method of
exclusion is not determined by compounds, but by the
reaction. For example, glutamate (GLU) and 2-oxoglutar-
ate (AKG) are currency metabolites for transferring amino
groups in many reactions, but in the following reaction:

AKG + NH3 + NADPH = GLU + NADP+ + H2O,

AKG participates in producing GLU, i.e., they are primary
metabolites. Hence the connections through them should
be considered. A metabolic network reconstructed from
this database is represented by a directed graph whose

Table 3: Node distributions in the sub-networks of the cell compartment reactions for S. cerevisiae

Subnetwork Total nodes Nodes in GSC Percent of GSC Nodes in S Percent of S Nodes in P Percent of P Nodes in IS Percent of IS Bow -tie

[c] 427 206 48.24% 33 7.73% 154 36.07% 34 7.96% Y

[m] 72 35 48.61% 9 12.50% 26 36.11% 2 2.78% Y

[X] 48 / / / / / / / / N

Global network 556 269 48.38% 39 7.01% 229 41.19% 19 3.42% Y

Compartment Abbreviations
[c]: cytosol; [m]: mitochondrion; [x] : peroxisome
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nodes correspond to metabolites and whose arcs corre-
spond to reactions between these metabolites, in which
irreversible reactions are presented as directed arcs while
reversible ones as bi-directed arcs. For example, the irre-
versible reaction,

L-Glutamine + 2-Oxoglutarate → L-Glutamate,

corresponds to two directed arcs, i.e., L-Glutamine → L-
Glutamate and 2-Oxoglutarate → L-Glutamate.

The metabolic network iND750, a fully compartmental-
ized genome-scale metabolic model of Saccharomyces cer-
evisiae constructed by Duarte et al. [31], was then studied.
This set of data is the most complete metabolic data in the
public domain that includes information on sub-cellular
localization. Compartmentalization of information,
which includes the localization to the cytosol, Golgi appa-
ratus, mitochondrion, nucleus, endoplasmic reticulum,
vacuole, peroxisome, or extracellular space, is given for
each reaction. Reactions were assigned to the cytosol by
default unless there was evidence that a metabolite was
found in a particular compartment.

Referring all the reactions in iND750 to the database of
[30], we manually removed the connections through cur-
rency metabolites, such as H2O, ATP, NADH, thus the
reconstructed network of S. cerevisiae is represented as a
directed graph.

Topological features and metrics of networks

Bow-tie structure

A network with bow-tie structure consists of four parts:
giant strong component (GSC), substrate subset (S), prod-
uct subset (P) and isolated subset (IS) [19]. The GSC is the
biggest of all strongly connected components and is much
larger than all the other ones, while a strongly connected
component is defined as the largest cluster of nodes
within which any pair of nodes is mutually reachable
from each other. S consists of nodes that can reach the
GSC but cannot be reached from it, while P consists of
nodes that are accessible from the GSC, but do not link
back to it.

The IS contains nodes that cannot reach the GSC, and can-
not be reached from it. The GSC part may include many
linear branches, which consist of several reversible reac-
tions. Removing these linear branches will lead to the
Core of the GSC, which is still strongly connected [19].
See part I of Additional file 1 for visualization of bow-tie
structure of E.coli network.

Clustering coefficient

The clustering coefficient of node v measures the extent
that its neighbours are also linked together, i.e., to form a
clique[29]:

where |N(v)| denotes the number of links between neigh-
bours of node v, d(v) is the degree of node v. The value of
CC (v) is between 0 and 1. To some extent, the clustering
coefficient of a network, i.e., the average of CC (v) over all
v, could reflect the cliquishness of the network [29].

Modularity metric

For a given decomposition of a network, the modularity
metric is defined as the fraction of arcs within clusters
minus the expected fraction of edges if the arcs are wired
with no structural bias [11]:

where r is the number of clusters, eij is the fraction of arcs
that leads between vertices of cluster i and j. Guimera et al.
defined the modularity metric of a network as the largest
modularity metric of all possible partitions of the network
[17], and they also developed a simulated annealing algo-
rithm to compute the modularity metric of a network
[14,18]. The simulated annealing algorithm identifies
modules by maximizing the network's modularity param-
eter so that there are as many as within-module links and
as few as possible between-module links.

When being used for different ways of partition of the
same network, the modularity metric can measure which
partition is better. If used for different networks, the larg-
est modularity metric can measure their modular extents.
In this study, we applied this metric in both of the differ-
ent ways. When decomposing the network by our algo-
rithm, we detected the best cut of the hierarchical tree
based on this metric. While comparing E.coli network
with its randomized counterparts, we measured the mod-
ular extent of the network by its largest modularity metric
computed by simulated annealing algorithm.

Algorithm to decompose the genome-based metabolic 

network

Usually, clustering of a graph starts with a dissimilarity
matrix consisting of dissimilarity indexes, which quantita-
tively measure the extent that two vertices would like to be
in the same sub-network, and then attempt to divide the
nodes into clusters such that dissimilarity between objects
within the same cluster is minimized, while that between
objects from different clusters is maximised. The main dis-
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crimination of different clustering methods is that they
use their own dissimilarity index (see [7] for a review of
different dissimilarity indexes). Our decomposition algo-
rithm is similar to that of [16] which is based on the bow-
tie structure of metabolic networks, while a different dis-
similarity index is used. The algorithm begins with
decomposing the Core part into sub-networks that are still
strongly connected, or most of the nodes are strongly con-
nected. In the viewpoint of graph theory, nodes in the
same strongly connected component are structurally
equivalent in the sense that, (1) any pair of nodes within
this component is mutually reachable from each other;
(2) if an outside node can reach any node in this compo-
nent, it can reach all of its nodes; (3) if a node of this com-
ponent can reach any outside node, all nodes of this
component can reach the same node.

In a directed graph, the distance dij from node i to node j
is defined as the number of arcs in the shortest directed
path from i to j (in general, dij ≠ dji.). The distance between
all node pairs can be computed by Floyd algorithm [28].
For any vertex i, the set {di1,...,di,i-1,di,i+l,...,diN} measures
how far all the other nodes are located from it, while the
set {d1i,...,di-1,i ,di+1,i,...,dNi} measures the reverse distances,
where N is the number of nodes in this network. If two
nodes i and j would belong to the same cluster, the dis-
tance dik and dki(k ≠ i, j) should be quite similar to the dis-
tance djk and dkj respectively, while nodes i and j which
satisfy the condition dij equals dji would fall into the same
cluster. Therefore, the dissimilarity index D (i, j) between
vertex i and j can be defined as the corrected Euclidean-
like dissimilarity [37],

This dissimilarity is compatible with the structural equiv-
alence of nodes within a strongly connected component,
where the three terms of this equation quantitatively
measure the three aspects of the equivalence, respectively.

Having obtained the dissimilarity indexes, Ward's cluster-
ing, a hierarchically agglomerative clustering method, is
used to decompose the network [38]. This method starts
with each node being its own cluster, then at each step,
combines the two most similar clusters to form a new
cluster, until all the nodes have been combined into one
cluster. The algorithm produces a hierarchical clustering
tree, or a dendrogram, for the network. Finally, the
decomposition of the Core part can be expanded to the
global network by using the "majority rule" proposed by
Ma and Zeng [16]. The algorithm steps are presented as
follows:

1. Remove all the linear branches of the GSC part and get
the Core.

2. Decompose the Core of the GSC by Ward's clustering
based on the dissimilarity index of equation (1) and get its
hierarchical clustering tree.

3. Cut the hierarchical clustering tree into m clusters so
that the value of modularity metric is the largest [11].

4. Expand the clusters of the Core to the whole metabolic
network by the "majority rule", i.e., the nodes that are
directly connected to nodes in GSC are placed in the sub-
set to which most of their neighbours in GSC belong; the
other nodes are classified into corresponding subsets to
which most of their neighbours belong.

It is worth to note that with the dissimilarity index of
equation (1), nodes that belong to the same sub-tree own
the highest degree of "structural equivalence", but are not
necessarily connected to each other, see Figure S9(B) and
S10(B) in Additional file 1 for an example. In part II of
Additional file 1, we illustrate each step of this algorithm
using a relatively small genome-based metabolic network
of Aeropyrum pernix (ape).

In Additional file 3, we list metabolite abbreviations of
ape network.

Algorithm to generate random networks

A method similar to that of Maslov et al. [20,21] was used
to generate an ensemble of randomized networks. This
algorithm randomly reshuffles the links of the original
network, while preserving the in- and out-degree of each
node, as well as the total number of directed and bi-
directed arcs. It is presented as follows:

1. Partition all the arcs of the original network into
directed arcs and bi-directed arcs.

2. Reshuffle the bi-directed arcs: Randomly select a pair of
bi-directed arcs A ↔ B and C ↔ D. Rewire the two bi-
directed arcs to get links A ↔ C and B ↔ D, if there are nei-
ther directed nor bi-directed arcs between the pair A-C and
B-D respectively. Otherwise, abandon this pair and chose
another pair of bi-directed arcs. The last restriction pre-
vents the appearance of multiple arcs between the same
pair of nodes. In addition, the network should always
remain connected during the rewiring process.

3. Reshuffle the directed arcs: Randomly select a pair of
directed arcs A → B and C → D. Rewire the two directed
arcs to get links A → D and C → B. As in step 2, during the
rewiring process, multiple links are prohibited, and the
network should always remain connected.

D i j d d d d d dij ji ki kj ik jk
k
k i j

N

( , ) ( ) [( ) ( ) ]

,

= − + − + − ( )
=
≠

∑2 2 2

1

1



BMC Bioinformatics 2006, 7:386 http://www.biomedcentral.com/1471-2105/7/386

Page 15 of 16

(page number not for citation purposes)

Repeating step 2 and step 3 many times will generate a
randomly connected counterpart of the original network.

Method to compare a real metabolic network with 

randomized ones

Following the scheme of Maslov et al. [21], we apply Z-
score to quantify the difference between a real metabolic
network and its randomized counterparts:

where P is the graph metric in the real network, r and

∆Pr are the mean and standard deviation of the corre-

sponding graph metric in the randomized ensemble.
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