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Hierarchical Morphological Segmentation 

for Image Sequence Coding 
Philippe Salembier and Montse Pardas 

Abstract-This paper deals with a hierarchical morphological 
segmentation algorithm for image sequence coding. Mathemat- 
ical morphology is very attractive for this purpose because it 
efficiently deals with geometrical features such as size, shape, 
contrast, or connectivity that can be considered as segmentation- 
oriented features. The algorithm follows a Top-Down procedure. 
It first takes into account the global information and produces 
a coarse segmentation, that is, with a small number of regions. 
Then, the segmentation quality is improved by introducing re- 
gions corresponding to more local information. The algorithm, 
considering sequences as being functions on a 3-D space, directly 
segments 3-D regions. A 3-D approach is used to get a segmen- 
tation that is stable in time and to directly solve the region 
correspondence problem. 

Each segmentation stage relies on four basic steps: simpli- 
fication, marker extraction, decision, and quality estimation. 
The simplification removes information from the sequence to 
make it easier to segment. Morphological filters based on partial 
reconstruction are proven to be very efficient for this purpose, 
especially in the case of sequences. The marker extraction iden- 
tifies the presence of homogeneous 3-D regions. It is based 
on constrained flat region labeling and morphological contrast 
extraction. The goal of the decision is to precisely locate the 
contours of regions detected by the marker extraction. This 
decision is performed by a modified watershed algorithm. Finally, 
the quality estimation concentrates on the coding residue all the 
information about the 3-D regions that have not been properly 
segmented and therefore coded. The procedure allows the intro- 
duction of the texture and contour coding schemes within the 
segmentation algorithm. The coding residue is transmitted to the 
next segmentation stage to improve the segmentation and coding 
quality. Finally, segmentation and coding examples are presented 
to show the validity and interest of the coding approach. 

I. INTRODUCTION 

NE of the most popular techniques for high compression 0 of visual data follows the so-called “second generation 

image coding” approach [6].  This approach consists of taking 

into account the characteristics of the human visual system to 

define the coding scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA rather high number of second 
generation coding techniques have been proposed in the past. 

One of the most promising ones relies on a contour-texture 

approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] ,  which leads to a segmentation-based coding 

system involving three steps. The first one is the segmenta- 

tion that splits the original data into various homogeneous 

components corresponding as much as possible to semantic 
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units. The second step, called “contour coding,” consists of 

coding the information about the partition of the space. Finally, 

the last step deals with the information inside each region. It 

generally involves a gray level or color function describing 

the “texture.” The coding procedure takes into account the 
sensitivity difference of the human visual system with respect 

to contours and textures. This segmentation-oriented approach 

contrasts with more classical pixel-based approaches [4]. In 

pixel-based techniques, performances at high compression are 

limited because the processing does not take into account the 

objects geometry or the discontinuities. Segmentation-based 

approaches have proved to be very useful for still images 

[6]; however, they are even more efficient for sequences 

because they handle precisely the difference between spatial 

and temporal discontinuities or correlation [ I  I], [20]. 

The present study is concerned with a segmentation-oriented 

approach to image sequence coding relying on morphological 

tools zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161, [17]. Mathematical morphology is indeed very 

attractive for this purpose because i t  is a geometrical approach 

to signal processing and easily deals with criteria such as 

shape, size, contrast, connectivity, etc. Moreover, morpholog- 

ical transformations can be very efficiently implemented in 

both software and hardware. This point is of prime importance 

because the major bottleneck in segmentation-based coding 

schemes is the complexity and the computational load of the 

segmentation step. In this study, the main focus of interest is 

the segmentation step, but as will be seen in the sequel, the 

segmentation algorithm leads to the entire codec structure. 

The algorithm described here is an extension of the approach 

proposed in [15], which was originally developed for still 

images. In [ 151, the usefulness of mathematical morphology 

for segmentation-based coding has been shown to rely on three 

major points: first, morphological $filters by reconstruction are 

extremely useful for segmentation because they simplify the 

data producing flat zones without corrupting the contour infor- 

mation. Second, the morphological approach to segmentation 

consists of separating the feature extraction step, which has 

to locate the presence of homogeneous regions, from the 

decision, which precisely locates the contours of the regions. 

This two-step procedure gives a large degree of freedom and 

flexibility in  the segmentation design. Third, the decision step 

can be very efficiently performed by the so-called watershed 
algorithm. The extension of the algorithm for still image to 

sequence is. in a first step, done by considering that the signal 

is not defined on a 2-D space but on a 3-D space. A 3- 

D approach is used to get a segmentation that is stable in 

time and to directly solve the region correspondence problem. 
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However, this approach leads to theoretical as well as practical 

problems [lo]. The major theoretical problem concerns the 

image sequence itself, which cannot be simply considered as 

a 3-D signal. Indeed, the time axis does not play the same role 

as the spatial axis. Moreover, motion creates 3D components 

which have specific geometry and connectivity. To solve 

this set of problems, we will see that morphological filters 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApartial reconstruction constitute an efficient approach. 

On the practical side, the major concem deals with the 

computational complexity and the volume of data to be 

processed. As a consequence, we will propose a region-based 

algorithm in place of the contour-based algorithm of [I51 
which implies to work on interpolated signals. This choice 

will result in the use of new marker extraction techniques and 

in a redefinition of the watershed algorithm similar to that 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. 
The segmentation algorithm is hierarchical following a Top- 

Down procedure. In other words, it is a purely splitting 

process. Good results can be achieved because of the use 

of specific morphological filters, based on reconstruction pro- 

cesses, allowing the simplification of the signal by retaining 

global information while preserving the contour information. 

As a result, the first segmentation level produces a seg- 

mentation which is coarse in the sense that it contains a 

few regions, however the contours are perfectly localized. 
Then, the remaining steps only introduce new regions without 

modifying the previous segmentation result. In the framework 

of coding, this approach is particularly interesting for pro- 
gressive transmission or storage: from the first level of the 

hierarchy, one can derive a coarse coded sequence composed 

of a few regions, which will lead to moderate visual quality 

but very high compression ratio. This first coded sequence 

can then be refined by introducing the regions segmented 

by the lower levels of the hierarchy. As a result, the visual 

quality will increase at the expenses of the compression 

ratio. 

The organization of this paper is as follows: the next section 

discusses the basic hierarchical structure. Section I11 presents 

the morphological tools for the algorithm. Special attention 

is paid to notions and issues of interest for sequences. The 

basic steps of the codec structure are analyzed in detail in 
Section IV. Finally, Section V is devoted to the presentation 

of segmentation and coding results. 

11. HIERARCHICAL SEGMENTATION FOR CODING 

As discussed above, the segmentation and coding are 

achieved by successive steps. All levels of the hierarchy 

have basically to perform a segmentation, and therefore, 

they involve the same elementary steps described in Fig. 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: simplification, marker extraction, and decision and quality 

estimation. Let us briefly give their functional descriptions 

(see [13] and [15] for more details): 

The simplification goal is to make the signal easier to 

segment. It controls the nature and amount of information 

that is kept for segmentation at this level. It actually 

defines the notion of hierarchy. We will comment later on 
the meaning of the input signal called “coding residue.” 

The marker extraction is used to assess the local homo- 

geneity. It makes use of the simplified sequence and of 
the information about the current segmentation. Markers 

indicate the presence of 3-D homogeneous areas. They 

identify the regions interior and do not intend to solve 

the problem of contour localization. This is the purpose 

of the third step called decision. 

The decision step needs two different inputs: a signal 

to segment (in our case, the original data) and the 

set of markers defining the presence of objects. The 

output is the segmentation result that is a label sequence 

(sequence whose gray-level values correspond to the 

partition classes). An individual and arbitrary number is 

assigned to each region. 

The quality estimation indicates to the following hierar- 

chical level where the segmentation has to be improved 

or refined. In our case, the segmentation goal is coding. 

This means that the quality estimation should indicate 

the areas that are not properly coded. This estimation 

can be achieved by actually coding each region, that is, 

by generating the sequence that will be reconstructed 

in the receiver side, and by computing the difference 

between the coded image and the original one. A high 

difference indicates the presence of a region that is poorly 

represented by the current segmentation and should be 

better represented by the next levels. By contrast, a 

low difference characterizes a region that has been well 

represented by the current coding process. Let us call this 

difference the coding residue. This process is illustrated 

in Fig. 1, where the coding block makes use of the new 

label image and the original image to compute an estimate 

of the coded sequence, which, in turn, is used to calculate 

the coding residue. 

The whole hierarchy is made of a succession of schemes 

as the one illustrated in Fig. 1. The information that is 

transmitted between two levels is the coding residue, the 

current segmentation result (Label sequence), and the original 

sequence. At the very first level, the coding residue is defined 

as the original sequence itself, and the segmentation result is 

composed of a single region. The progressive or multilevel 

approach of the entire scheme relies on the simplification 

step that controls the amount of information kept for the 

Segmentation. At the first level, this simplification is very 
strong and discards the major part of the information. Then, the 

simplification is progressively reduced to get a more precise 

result. Because it constitutes the heart of the multiresolution 

representation, an important part of this work is dedicated to 

the study and selection of a proper simplification tool. 

The segmentation structure proposed in [ 151 was defined in 

the context of still image coding. Our objective in this paper 

is to extend it to image sequences. This extension is done by 

considering that the signals are not defined on a 2-D space but 

on a 3-D space with the time axis playing the role of the third 

dimension. Note that no difference is made between interlaced 

or progressive sequences. This distinction only affects the 

geometry of the working space: a progressive sequence can 

be considered as a function from a 3-D space sampled on a 
cubic grid, whereas an interlaced sequence is a function from 



SALEMBIER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND PARDAS. HIERARCHICAL MORPHOLOGICAL SEGMENTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA641 

ORIGINAL. SEQUENCE 

Fig. 1. Hierarchical structure for segmentation and coding. 

a 3-D space sampled on an octahedral grid. The geometry of 

the sampling grid only modifies the definition of the local 

neighborhood, but all morphological transforms remain the 

same. Let us now briefly review some morphological tools 

of interest for the algorithm. 

111. MORPHOLOGICAL TOOLS FOR 

HIERARCHICAL SEGMENTATION 

The goal of this section is to briefly describe some mor- 

phological tools of interest for the algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA complete 

description about mathematical morphology can be found in 

[16] and [17]. This presentation is divided into three parts. 

The first one is devoted to morphological operators and 
filters that will be mainly useful for the simplification step. 

The second part concentrates on morphological gradients and 

discusses why they should be avoided in the case of sequences. 

Finally, the last part deals with the decision tool known as the 

watershed algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Morphological Operators and Filter5 

A large number of morphological tools relies on two basic 

sets of transformations known as erosions and dilations. In this 

study, two sets of erosions and dilations are used. The first one 

deals with erosion and dilation with flat structuring element. 

DeJinition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: If f ( x )  denotes an input signal and MrL a 

window or flat structuring element of size 11, the erosion and 

dilation by the flat structuring element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA4, are given by 

~,(f)(r) = Min{f(.r + y).y E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMn) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6, (f) ( r )  = Max { f( .E - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg) . y E MTL} .  ( 1 ) 

Erosion: 

Dilation: 

The second set of erosion and dilation involves geodesic 

transforms [13]. They are always defined with respect to a 

reference function T .  

Definition 2: The geodesic dilation of size one (that is, the 

smallest size on the discrete space) is defined as the minimum 

and the reference function ( r ) .  The geodesic erosion is defined 

by duality: 

Geodesic dilation of size one: 6(l) ( f, T )  = Min{ 61 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f), T }  

(2) 

Geodesic erosion of size one: E ( ' ) ( ~ , T )  = -6( ' ) ( - . f ,  - ?-). 

Geodesic dilations and erosions of arbitrary size are defined 

by iterations. For example, the geodesic dilation (erosion) of 

infinite size, which is also called reconstruction by dilation ( 
by erosion) is given by 

Reconstruction by dilation: 

p c ) ( f .  r )  = S("(.f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7- )  = . ' .  S(1)(. . . P(f, ?-) . . . , T )  

c p ( T e C ) ( f . r )  = & ' " ' ( f , T )  = ' .  '&(1)(. . . E ' l ' ( f , T ) .  . . , r ) .  

(3) 

Reconstruction by erosion: 

The choice of the basic dilation of size one defines the 

notion of connectivity and neighborhood. In 2-D spaces with 
squared sampling grid, the classical choices are the cross, 

which leads to 4-connectivity or the square (3 x 3), which 

leads to 8-connectivity. In 3-D spaces with a cubic sampling 

grid, the corresponding examples are the cross and the cube. 

They respectively lead to 6 or 26-connectivity. In the sequel, 
when a reconstruction process will be used, it will be based 

on 6-connectivity. Finally, reconstruction processes can be 

implemented very efficiently by using queues that avoid any 

iterating process and lead to extremely fast algorithms(see 

[181). 
Elementary erosions and dilations allow the definition of 

morphological filters such as the morphological opening and 

closing: 

Morphological opening: 

Morphological closing: 
m(f)  = 6 n ( ~ n ( f ) )  denoted by Yn = &E, 

P n ( f )  = E n ( b n ( f ) )  denoted by c p n ( f )  = E,&. 

(4) 

A morphological opening (resp. closing) simplifies the original 

signal by removing the bright (resp. dark) components that do 

not fit within the structuring element. If the simplification has 

to deal with both bright and dark elements, an open-close 

( Y n ( q n ( f ) ) )  or a close-open (Pn(?n(. f ) )> has to be used. 
None of these filters are self-dual, but in practice, they 
approximately remove the same kind of information. Note that 

these filters define the notion of size by reference to their 

structuring elements. A 3-D component is said to be small 

if it does not fit within the structuring element for instance 

a parallelogram. As a consequence, the size of a real object 
in the scene depends on its motion. These filters can be used 

as simplification tool before segmentation, but they do not 

allow a perfect preservation of the contour information [12]. 

In order to improve the contour preservation properties filters 

by reconstruction can be used. 

The first filter by reconstruction that will be used in the 

sequel is the opening by reconstruction of erosion or opening 
between the dilation of size one of the original function ( , f )  (of course, by duality a closing can be defined): 
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Fig. 2. 
second row: open-close filter, third row: open-close by reconstruction. 

Simplification with morphological filters: first row: original sequence, 

Opening (closing) by reconstruction of erosion (dilation): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y(rec)(&n(f)r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ' " " ) ( ~ n ( f ) ,  f). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  

In the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy('"") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E ~  (f), f), the simplification is performed 

by the erosion that eliminates the bright components that are 

smaller than the structuring element. Then, the reconstruction 

process restores the contour of the components that have 

not been totally removed by the erosion. Fig. 2 shows a 

sequence with the results of a morphological open-close and 
an open-close by reconstruction. In both cases, the structuring 

element is a parallelogram of size 31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 31 x 3 (spatial x 
spatial x temporal). Intuitively, images obtained with filters 

by reconstruction seem to be a good starting point for the 

segmentation. They are much simpler than the original images, 

but the objects that are present are precisely defined. However, 

one can see a problem that is typical of moving objects: The 

part of the background (the wall) appearing on the trajectory 

of the moving ball is noisy. In fact, the reconstruction process 

has artificially connected some texture points of the wall on 

the second (respectively third) frame with the ball in the 

first (respectively second) frame. This phenomenon is typical 

of sequences processed as 3-D signals since covered and 

uncovered areas may be connected during the reconstruction 

process. 
To solve this problem, one can consider that it is not 

appropriate to reconstruct totally the contour, especially in 

the time direction. To this end, the reference signal for the 

reconstruction process, that is f, may be smoothed by a small 

opening ~k (f ) . This approach leads to partial reconstruction 
filters [14]: 

Opening, closing by partial reconstruction: 

Y('ec) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(En (f), Yk (f)), drec) (6, (f) , 'Pk (f>>- (6) 

Fig. 3. Partial versus full reconstruction: First image: original frame, second 
image: open-close by reconstruction, third image: open-close with partial 
reconstruction. 

The parameter k allows a smooth tuning of the reconstruc- 

tion from no reconstruction (k = n), that is, morpholog- 

ical opening or closing, to "full" reconstruction (k = 0). 
To avoid any artificial temporal connection, the reference 

signal can be simply a spatial opening by reconstruction 

of small size of the original signal: y ( r e C ) ( ~ n l ( f ) r  f). Spa- 

tial opening means that the erosion and the reconstruction 

are considered as intraframe processing. Fig. 3 presents a 

zoomed part of the sequence. These images have been nor- 

malized to allow a good visualization. The first image is a 

frame of the original sequence, the second and third images, 

respectively, show the results of an open-close by recon- 

struction $recl (&31 31 3( f ), f ), and by partial reconstruction, 

ing partial reconstruction is clearly visible. This subjective 
quality assessment will be confirmed in Section IV-B by 

objective measures. 

y(rec)(&31x31x3(f),  ?' ( reC)(&3~3( f ) ,  f)). The advantage of us- 

B. Morphological Gradients 

The classical morphological approach to segmentation relies 

on gradients. Let us make a few comments about gradients 

and why they should not be used in the case of sequences. In 

morphology, three gradients are generally used: 

Morphological gradient: 

9 = 61 (f) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE1 (f) 

9- = f - &l(f), 
Gradient by erosion, by dilation: 

9+ = &(f) - f. (7) 

All gradients are positive, but the first one is symmetrical with 

respect to the contour position, whereas the two remaining 

ones are not. In 1151, it was mentioned that the use of the 
gradient results in a loss of information. In particular, if the 

original signal involves transitions, its gradient is either biased 

(gradient by erosion or dilation) or thick (2 pixels). In the case 

of still images, this phenomenon is not extremely annoying. 

However, for a precise segmentation, an interpolated gradient 

should be used [ 151. In the case of moving images, the use of 

the gradient results in a much larger loss of information [lo]. 
For instance, Fig. 4 shows a moving circle and its gradient: the 

thickness of the gradient depends on the motion of the object: 

Without motion, the gradient is two pixels wide; however, 

this thickness increases with motion. It is impossible to find 

the contours of the circle only from its gradient (note that the 

first and last frames of the gradient are not equal to the central 

frame because frames before the first and after the last frames 

are supposed to be black). 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 
moving circle; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecond row: morphological gradient. 

Loss of information of the gradient: First row: Original sequence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

M ~ A A  

Fig. 5.  Watershed algorithm. 

C. The Watershed Algorithm 

The watershed algorithm derives from topographic works 

where the catchment basins and their dividing lines, which 

are called watershed lines, have been extensively studied in 

the past (see [ 191). In image processing, this notion has been 

introduced by considering the gray-level values of a picture 

as the altitude of an imaginary relief. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs can be seen in Fig. 

5, watershed lines partition the space by associating a region 

called a catchment basin to each local minimum. A large 
number of algorithms have been proposed for the efficient 

computation of watershed. The most efficient ones are based 

on immersion simulations [ 191 and rely on hierarchical queues 

Immersion simulation consists in flooding the surface from 

its local minimum. Starting from the minimum of lowest 

altitude, the water progressively fills up the catchment basins. 

When the water level reaches the altitude of other minima, 

these minima start to be active, and the flooding process also 

originates from these minima. Now, when the water coming 

from two different minima would merge, an imaginary dam is 

built to prevent any mixing of water. The procedure is ended 

when the water level is higher than the absolute maximum. 

In this case, each minimum is surrounded by water, that is, 

its catchment basin, and a dam delimiting its border, that is, 

its watershed line. The catchment basins constitute a partition 

of the space. It is, in fact, a segmentation based on the signal 

minima. Note that the immersion simulation relies on a double 
ordering: First, a point at a given altitude will be flooded after 

the points of lower altitude, and second, at a given altitude, 

~91, WI. 

points that are close to some flooded points will be flooded 

before points that are far away. Let us describe the algorithm 

implementation with hierarchical queues. 

Efficient implementations of the immersion simulation re- 

quire a clever scanning. Indeed, if classical raster scannings are 

used, the resulting implementations are extremely inefficient 

because a very large number of pixels are only examined 

without being able to decide if they belong to a particular 

catchment basin or to a watershed line. The idea of queue- 
oriented algorithms is to redefine the scanning procedure in 

such a way that it is always possible to make a decision about 

the current pixel. That is to say to which catchment basin it 

belongs or if it is a watershed line point. 

A hierarchical queue is a set of queues with different 

priorities [9], and each queue is a first-in-first-out (FIFO) 

data structure. The elements processed by the queue are the 

pixel positions (the queue is used to define the scanning). 

This structure allows the representation of a double ordering: 

Pixels are put into one of the queues depending on a notion 

of priority. The first pixel to be pulled out of the queue is 

the first one that has entered the queue of highest priority. 

Then, successively, all pixels in the queue of highest priority 

are extracted. Finally, if the queues of highest priority are 

empty, the first pixel to be extracted is the first pixel of the 

first nonempty queue. Note that this procedure differs slightly 

from the one described in [9] in the sense that when a queue 

of high priority is empty, it is not removed and pixels of high 

priority are allowed to come later and fill these empty queues. 

The procedure is illustrated by Fig. 6. As can be seen, the first 

(inner) order is constituted by the order of the pixels inside 

a given queue, and the second (outer) order is represented by 

the priority of the queues themselves. 

Now, the immersion algorithm can be simply implemented 

with these queues. The algorithm works in two distinct steps: 

queue initialization and flooding procedure. The initialization 

consists of putting the locations of all signal local minima in 

the queue with the opposite of their gray-level value as priority. 

Thus, the queue of highest priority corresponds to the pixels 

of absolute minimum. The flooding consists in extracting a 
pixel from the queue: If the pixel does not yet belong to a 

catchment basin, we know, because of the filling procedure, 

that it has at least one neighbor belonging to a catchment 

basin. Therefore, all neighbors of the current pixel belonging 

to a catchment basin are examined, and the pixel is assigned to 

the catchment basin corresponding to the neighbor of closest 

gray-level value. Then, if the current pixel has some neighbors 

that do not belong to any catchment basin, these neighbors are 

put in the queue with a priority defined as the inverse of the 

gray-level value. Note however, that one should check that 

those pixels are not already in the queue. Indeed, these pixels 
can be neighbors of pixels examined previously and may have 

already been put in the queue. As one can see, any pixel that 

is put in the queue has at least one of its neighbors belonging 

to a catchment basin. This is why it will be possible to make 

a decision concerning this pixel when it will come out of the 

queue. The flooding procedure is illustrated in Fig. 6 in the 

case of 2-D images. In the case of 3-D signals, that is, for 

image sequences, the procedure is exactly the same, and the 
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Fig. 6. Implementation of the watershed algorithm with a hierarchical queue 

only difference is the definition of the neighborhood (as in the 

case of reconstruction). 

The watershed algorithm is one of the major decision 

tools in mathematical morphology. To get the contours of 

objects, the watershed should work on the morphological 

gradient of the signal to segment. Indeed, a contour in the 

signal corresponds to a bright line in the morphological 
gradient. However, the direct segmentation of the gradient by 

the watershed results in an extreme oversegmentation. The 

algorithm assigns a different region for each individual local 

minimum of the gradient. To solve this problem, the gradient 

can be simplified to segment only the objects of interest 

that are the objects that have been “marked” in the feature 

extraction step. Refer to [8] and [I91 for more details. We do 

not give more explanations concerning this approach because, 

as discussed in Section 111-B, our algorithm will avoid the use 

of the gradient. 

IV. ELEMENTARY SEGMENTATION STEPS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Sequence Simplification 

The heart of the hierarchical approach relies on the sim- 

plification filter. Indeed, it controls the type and amount of 
information that is removed from the sequence before marker 

extraction and decision. As a consequence, it defines the 

notion of hierarchy in the segmentation result and, ultimately, 

the various levels in coding quality or compression ratio. 

This section is devoted to the study and selection of the 

simplification filter. In a first step, a criterion will be defined. 

Then, the performance of the filters presented in Section 111-B 
will be assessed and discussed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I )  SimpliJication Criterion: Assume that a gray-level seg- 

mentation algorithm is used after simplification. This restric- 

tion is mainly done to avoid very complex and time-consuming 

texture segmentation techniques. With this assumption, an easy 

signal to segment is a signal composed of constant gray-level 

regions with sharp contours corresponding precisely to those 

of the original signal. To quantitatively assess the quality of 

filters presented in Section 111, synthetic test sequences have 

been used. They are composed of moving objects (triangles, 

polygons, etc.) on a constant background, and they are cor- 

rupted by noise. The advantage of using a synthetic sequence is 

that the optimal segmentation result is a priori known. The test 

sequences are first simplified by a morphological filter and then 

segmented (to have coherent results, the segmentation relies 

on the watershed algorithm to be described in the sequel). 

Once a test sequence has been segmented, two parameters are 

measured: 

Edge Localization: This parameter is defined as the 

number of pixels differing between the current and the 

optimal segmentation divided by the area of the objects 

to segment. It measures the contour preservation property 

of the filter. 

Flatness: This parameter is the variance of the sim- 

plified signal inside each segmented region. It assesses 

the filter efficiency to produce flat, and therefore easily 

segmentable, regions. 

Each measure is plotted on a 2-D (edge localizatiodflatness) 

plane. For each filter, a set of measures is obtained by 

modifying the structuring element size. They create a curve 

in the edge localizatiodflatness plane. For the results reported 

in the following, only the spatial size has been modified while 

the temporal size has been fixed to 3. Note that this procedure 

is similar to the one reported in [14]. The main difference is 

the flatness criterion used here because the filters are studied 

in the context of segmentation. 

Finally, several tests have been performed with various 

test sequences and noise probability density functions such 

as Laplacian, Gaussian, and uniform. As far as the criteria 

described above are concerned, they lead to very similar 

results. Therefore, only the result obtained with a specific 

sequence and Gaussian noise will be presented here. 

2) Simplification Pe$ormance: Fig. 7 presents the perfor- 

mance of a median and three morphological filters. Ideally, 

a good simplification filter has low edge localization and 

flatness parameters. Its curve should lie close to the origin 

of the plane. It can be seen that the worst filters are the 

median and morphological open-close filters. They produce a 

relatively poor flatness, and their contour preservation becomes 

quickly bad. The points on the left (resp. right) side of the 

curve represent the filter performances for small (resp. large) 

structuring elements. The same experiments were done with 

linear low-pass filters that give extremely bad results. The 

morphological open-close by reconstruction achieves a much 
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Fig. 7. Flatness versus edge localization of simplification filters 

better flatness but at the expense of the contour information. 

A precise study of the simplified images reveals that this 

degradation results from the artificial temporal connections 

created by the reconstruction process. Finally, the best filter 

for both criteria is the open-close by partial reconstruction, 

which produces flat regions with well-localized contours. The 

partial reconstruction is obtained by using as reference signal 

the result of a small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3  x 3) spatial opening by reconstruction. 

Fig. 8 presents similar results but with the alternating 
sequential version of these filters: Let us recall the definition 

of alternating sequential filters: If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, denotes a morphological 

filter of the type open-close involving a structuring element of 

size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, its alternating sequential version is given by 

Alternating sequential filter of Q n  : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q,(Q,-l(. , ‘ Q k  ‘ ’ ‘ (Ql(.)))). (8) 

These filters can also be viewed as a multiresolution approach 

to the filtering problem [14]. As far as the relative perfor- 

mances are concerned, the conclusions are similar to that of 
the previous experiment. On the average, the results are better 

in the case of alternating sequential filters, and the major 

improvement concerns the region flatness. In fact, the first 

filtering stages with small structuring elements progressively 

remove small noise components that would otherwise be re- 

sponsible for some fluctuations after filtering. The open-close 

by partial reconstruction still exhibits the best performance for 

both parameters. In this case, the major advantage of using the 

altemating sequential approach is the robustness regarding the 

structuring element size. 

These experiments allow the selection of simplification 

filters for segmentation. For a general-purpose algorithm, a 

good complexity/performance scheme is based on open-close 

by partial reconstruction with a simplified alternating sequen- 

tial version, for instance, Q,(Qnl2( .)). In the following, this 

filtering scheme is assumed to be used for simplification. This 

conclusion differs from the one reported in [ 151 for still images 

where the use of partial reconstruction was not so attractive. 

In the case of moving sequences, partial reconstruction has a 

much higher interest. 

10‘’ 
FAg Localizaztion 

IO 

Fig. 8. 
tial filters. 

Flatness versus edge localization of simplification alternating sequen- 

B. Marker Extraction 

As discussed in [8], a very efficient morphological approach 

to segmentation relies on “marker extraction” followed by the 

watershed algorithm. We will follow this approach but will 

avoid the use of the gradient. Indeed, as discussed in Section 

111, the use of gradient results in a severe loss of information 

in the case of moving objects and the solution proposed in 

[ 151 of using interpolated signals is not practical in the case 

of sequences. The output of the marker extraction step is 

a set of “labeled markers.” Labeled markers are gray-level 

signals (sequences in our case) identifying the presence of 

homogeneous 3-D regions that will be precisely delimited by 

the decision step. The interior of each homogeneous region 

is “marked” by a label, that is, a constant gray level value, 

which is unique for this region. Moreover, the zones that are 

not homogeneous or in between two homogeneous regions are 

not “marked,” and a zero label is associated with them. They 
represent uncertainty areas. 

The marker extraction has to make use of several sources 

of information to identify homogeneous regions. The first one 

is the current segmentation. Indeed, the previous segmentation 

levels have produced a current segmentation result that may 

not be very complete but already defines some homogeneous 

regions. Note that the segmentation result can be viewed as a 

labeled marker without uncertainty areas. The second source 

of information is the simplified image (see Fig. 1). Several 

techniques can be jointly used to extract the sets of markers. 

Let us describe the marker extraction from the simplified 

sequence. It has to rely on the features of the simplification. 

As shown previously, open-close filters with partial recon- 

struction simplify the signal by producing flat regions while 

retaining the edge information. This remark leads us to use 

two techniques: one extracting flat regions and another one 

looking for high contrast. The first marker extraction is based 

on “constrained flat region labeling,” whereas the second one 

relies on residues of morphological centers. 

I )  Marker Extraction for Flat Regions: This first marker 

extraction technique aims at finding flat regions in the 

simplified image. These regions can very simply be identified 

by labeling flat regions, that is, by labeling the connected 
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Fig. 9. Example of labeling of flat regions: First row: original and simplified 
image, second row: labeling of all flat regions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3540 regions) and labeling of 
flat regions larger than 1000 pixels (eight regions). 

components of the space where the function is of constant 
gray-level value. Let us briefly describe the labeling algorithm. 

As in the case of the watershed, a very efficient implementa- 

tion of a labeling algorithm uses a queue structure (hierarchical 

queue with one level of hierarchy): The first pixel of the 

sequence is put in the queue as well as its neighbors (3-D 
neighbors in the case of sequences) that have the same gray- 

level value. When a pixel is extracted from the queue, because 

of the filling procedure, we know that this pixel has at least one 

neighbor of same gray-level value that has already a label. This 
label is assigned to the current pixel. Then, all its neighbors of 

the same gray-level value without a label are put in the queue, 

and the procedure is iterated until the queue is empty. When 

the queue is empty, it means that the current flat zone has 
been entirely labeled; therefore, the label number is increased, 

and the first nonlabeled pixel of the signal is searched and put 

in the queue. Finally, the sequence has been labeled when all 

pixels have a label. Note that a flat region can very well be 

composed of a single pixel. 
This labeling algorithm has to be modified for two rea- 

sons: first, the labeling should take into account the current 

segmentation result, that is the segmentation performed by 

the previous hierarchical segmentation levels. Second, the 

flat regions of interest are not all flat regions but, because 

of the simplification filter, flat regions of size larger than 

a minimum. Indeed, the simplification filter has removed 
signal components smaller than a given limit. Therefore, flat 

regions of size smaller than this limit are not of interest and 

constitute uncertainty areas, that is transition pixels between 

two large flat zones. As a result the labeling algorithm has 

to check not only that the current pixel and its neighbors are 

of the same gray level value (that is the local flatness) but 

also that they correspond to the same region with respect to 

the current segmentation. Moreover, once a flat region has 

been labeled, if its size (number of pixels) is smaller than 

ORIGINAL 
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0 20 40 60 80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 
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Fig. 10. Contrast extraction. 

the minimum size defined by the simplification, its label is 

removed and the region is considered as uncertainty area. This 

labeling algorithm can be viewed as a constrained labeling 

algorithm. As an illustration, the upper part of Fig. 9 shows 

an original frame and its simplification by an open-close by 

partial reconstruction. The lower left image gives the result of 

the labeling of all flat regions. The number of regions is equal 

to 3540. Finally, the lower right image gives the labels of all 

regions larger than 1000. There are only eight such regions. 

The regions without labels are represented in black. 

This simple marker extraction technique gives good results; 

however, it can be completed by another technique. Indeed, 

in the lower levels of the hierarchy, the simplification filter 

only removes very small components, and the size criterion 

used in the labeling algorithm is not pertinent. A more useful 

information on the lower levels is the contrast of the residue: 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMarker Extraction for Contrasted Regions: The marker 

extraction based on contrast [15] can be achieved by comput- 

ing the difference between the identity and the morphological 

center of Id,yncp,, and Vnyn: 

Contrast extraction: 

I I d  - M i n { ~ n ~ , ,  Max{~,y,,Id})I. (9) 

This transform is illustrated in Fig. 10, where it can be 

seen that the open-close zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cpnyn) and close-open (y,cp,) fil- 

ters generate upper and lower noise envelopes that allow a 

very reliable marker extraction. The contrast-oriented marker 

extraction uses opening and closing by reconstruction to obtain 

markers whose shapes are close to the real ones. The size of 

the structuring element is chosen in accordance with that of the 
simplification step. Indeed, the simplification at level k should 

remove all components of size smaller than its structuring 

element. Let us denote by n k  this size. The marker extraction 
works on this signal representing objects of size larger than 

n k .  Therefore, the structuring element of the marker extraction 

should be larger than n k .  However, in the previous level of the 

hierarchy k - 1, objects of size larger than n k - 1 ( 7 3 k - 1  > n k )  

have been segmented. This means that there is no need to 

use a structuring element of size larger than n k - 1 .  The results 

that will be shown in the next section have been obtained by 

setting the size of the structuring element to n k - 1 .  

r 
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The marker extraction based on contrast information leads 

to a binary marker, that is, a bivalued signal indicating if 

the signal is in between the envelopes or not. To transform 

it into a labeled marker, the constrained labeling algorithm 

described previously has to be used. The constraint signal of 

this labeling is simply the result of the constrained labeling 

of the flat regions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Decision with a Modijed Watershed Algorithm 

Once the markers have been defined, the decision can be 

taken by the watershed algorithm. The classical way of using 
the watershed algorithm to get the objects contours is to work 

on the morphological gradient of the signal to segment (see 

Section 111-C). However, as discussed in Section 111-B, the 

use of the gradient results in a loss of information that is 

especially important in the case of moving objects. Therefore, 
we are going to use a modified watershed algorithm working 

directly on the signal and not on its gradient. The idea of 

using the watershed algorithm directly on the signal to segment 

was proposed in [9] to deal with color images. Our approach 

follows these principles with some slight modifications. 

With respect to the algorithm described in Section 111-C, 

the modifications rely on two points: First, the pixels that are 

processed by the algorithm are not pixels of the gradient but 

pixels of the signal itself. Second, in the algorithm of Section 

111-C, the priority of a pixel was defined by its gray-level 

value: A high (low) priority was assigned to a dark (bright) 

pixel. Note that independently of the time instant a pixel is 

introduced in the queue, it will always have the same priority. 

In this modified watershed, the priority is defined as the degree 

of certainty with which a pixel belongs to a given region. 

Let us call this distance the degree of certainty. Of course, 

various distances and, therefore, priorities can be used. In the 

following, the distance is defined as the absolute difference 

between the pixel gray-level value and the mean gray-level 

value of the pixels belonging to the neighboring region. The 

pixel priority is the opposite of its distance to a region. As in 

Section 111-C, the algorithm involves two steps: initialization 

and flooding. 

The initialization puts in the queue the location of all 

pixels corresponding to the interior of a region in the 

labeled marker (pixels not belonging to uncertainty areas). 

These pixels have the highest priority (distance 0) because 

they certainly belong to their respective regions. 

The flooding assigns pixels to regions following a region 

growing procedure. To constrain the current segmentation 

to the segmentation obtained in the previous levels, the 

algorithm checks that the region and the pixel under 

consideration are compatible, that is, if they belong to 

the same partition class in the previous segmentation. 

Two incompatible pixels should not be part of the same 

region. The flooding extracts a pixel from the queue. 

If the pixel does not belong yet to a region, we know 

that at least one of its compatible neighbors belongs to 

a region. Therefore, all compatible neighboring regions 
are examined, the distances between these neighboring 

regions and the current pixel are assessed, and the pixel 

is assigned to the region giving the highest certainty. 

Of course, if there is only one compatible neighboring 

region, the pixel is directly assigned to it. Note that once 

a new pixel has been assigned to a region, the mean gray- 

level value of the region should be updated in order to 

accurately compute its distance with respect to new pixels. 

Then, if the pixel that has been assigned to a given region 

A has some compatible neighbors that do not belong to 

any region, these neighbors are put in the queue with a 

priority defined by their distance to the region A. Note, 

however, that these pixels can be neighbors of pixels 

previously examined and assigned. As a result they may 

already be in the queue with an arbitrary priority. This 

contrasts with the classical watershed algorithm where 

the pixel’s priority is uniquely defined by its gray-level 

value, and if a pixel is already in the queue, it is not 

necessary to put i t  in again. Here, since the priority does 

not only depend on the pixel gray-level value but also 

on characteristics of one of its neighboring regions, its 

priority may change. As a result, the pixel should always 

be introduced in the queue again except if it is already 

in the queue with a higher (or equal) priority. This is the 

reason why, as discussed in Section 111-C, if a queue of a 
particular priority is empty, it should not be removed so 

that pixels of high priority are allowed to come later (note 
that in the classical watershed, this distinction is useless). 

D. Qualih Estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby Sequence Coding 

The result of the segmentation is a label sequence defining 

the 3-D partition of the sequence. To have a multilevel 

procedure, information should be transmitted to the next level 

that will improve the segmentation results. The coding residue 

concentrates the information about the final quality of the 

image sequence. A low coding residue corresponds to an area 
that is well represented by the coding process and should not 

be modified. By contrast, a high coding residue represents a 

region that is not well coded and should be split into two or 

more regions to improve the coding. 

The coding residue is created by actually coding the contour 
and the texture of each region and by computing the difference 

between the original sequence and the coded one. Because the 

goal is to represent the objects of a given size that have been 

extracted, a large number of coding techniques may be used. 

Since the algorithm involves various successive segmentation 

steps, the concept of working with the coding residue allows 

the introduction and the handling of coding models within the 

segmentation. 

V. RESULTS 

The goal of this section is to illustrate the hierarchical 

segmentation and coding techniques discussed in Section 

IV. Specific coding techniques will be used for the quality 

estimation. It has to be mentioned that they only constitute 

examples and any coding technique can be used. This is one 

of the important features of the algorithm that allows the 

introduction of the coding process in the segmentation itself. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Example of one step of segmentation and coding: First 
row-original sequence; second row: Simplified sequence, segmentation, 
transmitted contours; third row: coded image with low-order polynomial, 
coded image with BTC, coding residue. 

An illustration of the segmentation and coding procedure is 

shown in Fig. 11. The original frame, which has been extracted 

from the “Miss America” sequence, is presented on the first 
row. In a first step, the sequence is simplified by an open-close 

by partial reconstruction with a structuring element of size 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 7 x 3 (spatial x spatial x temporal). The result is shown 

in the first image of the second row of Fig. 11. Markers 

are extracted from the simplified sequence. As described in 

Section IV, the extraction works on the flatness of the regions 

and their contrast. From our experience, it seems that the most 

useful information in the higher levels of the hierarchy (when 

the simplification filter uses a large structuring element) is the 

flatness, whereas in the lower levels (when the simplification 

filter uses a small structuring element), the contrast is more 

useful. Then, the decision precisely states on the contours of 

the objects identified by the marker extraction. These contours 

are shown in the image in the middle of the second row of 

Fig. 11. The fourth segmentation step is the quality estimation 

which is the actual region coding. 

First, contours are coded with the method proposed in 

[3]. This method starts by coding the spatial contour of the 

first frame in intramode by using the so-called “chain code” 

technique proposed in [2] and improved in [7]. It leads to an 

average number of 1.3 bkontour point (this figure includes 

both the contour description and the location of the starting 

points of each contour). For the following frames, the coding 

procedure consists of the following steps: 

Prediction of the contours of the future frame by using 

computation of the contour prediction error 

simplification of the error with morphological tools 

transmission of the useful prediction error. 

motion compensation 

The motion information consists of one vector describing the 

translation of one region between two frames. On the average, 

the prediction error and the motion information can be coded 

with 0.4 bkontour point. As can be seen in the last image of 

the second row of Fig. 11 showing the contours restored in the 

receiver, this contour coding technique is not lossless, but the 

loss is really small. Let us mention that motion compensation 

has been used for the coding step to remove as much as 
possible the temporal correlation. It is basically a coding of 

spatial contours. However, the compensation is efficient if the 

contours are stable in time and if the region correspondence 

problem has been solved. These two requirements are reached 

because of the use of a 3-D segmentation algorithm. 

The texture within each region is first coded by low-order 

polynomials. An illustration of this step can be seen in the first 

image of the third row of Fig. 1 1. Then, the difference between 

each region and its approximation by low-order polynomials is 

computed. If the difference signal has a high-variance gradient, 

it means that the region is very active and has not been 

properly represented by low-order polynomials. In this case, 

a second texture coding technique is applied. We have used 

a region-oriented version of the well-known block truncation 

coding technique (BTC) [l]. The classical BTC takes a block 

of the image, thresholds it, and sends it as a binary signal using 

roughly 1 b/pixel. On the receiver side, the binary signal is 

restored with two gray levels. The threshold and restitution 

levels are computed so that the mean and the variance of 

the block be preserved by the coding. The same approach 

is used here but on a region basis instead of on a block 

basis. Moreover, it is applied on a subsampled (factor 4) 

version of the difference between the original image and its 

approximation by low-order polynomials. Since it works on 

subsampled signals, the BTC technique requires a little more 

than 0.25 b/texture pixel. Its cost is rather expensive, but first, 

it is used in a reduced number of regions, and second, it is very 

efficient to represent complex active regions that would lead to 

a very high number of contour points if the algorithm segments 

them. Here, once these regions have been coded with BTC, 

they will produce a low coding residue, and the following 

segmentation steps will not split these regions. To save bits, all 

frames except the first one are coded by motion compensation, 

that is, the texture is predicted as in the case of contours, and 

the prediction error is coded by low-order polynomials plus 

the region-based BTC described previously if necessary. The 
results of the coding procedure are shown on the central image 

of the third row of Fig. 11. In order to improve the quality of 

the first coded sequence, new segmentation steps are applied 

to the coding residue, which is presented on the right side 

of the last row of Fig. 11. The main difference between these 

following steps and the first one is the simplification involying 

a smaller structuring element. 

Examples of hierarchical coding are shown in Figs. 12 and 

13. They respectively correspond to the “Miss America” se- 

quence in QCIF format (176 pixels x 144 lines) and the ‘Table 
Tennis” sequence in CIF (352 pixels x 288 lines) format. 

The first row of Fig. 12 shows four frames of the original 

sequence. The second row corresponds to the first hierarchical 

level and represents the coded image after segmentation in five 

regions and coding of contours and texture (with the mean of 

each region). As can be seen in Table I, apart from the first 

frame, the remaining frames require, on average, 210 b. If a 

transmission of 10 Hz of frame rate is assumed, this will lead to 



649 

Sequence 
(CIF 

Format) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Second row zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of Fig. 13 
Third row 
of Fig. 13 

Fourth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArow 
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First frame Remaining frames (average figures) 
Number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ Bits Bits for Bits for Bits for Total number 

regions contour motion mean of Bits 

3 2008 352 64 12 428 

9 3032 362 200 36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA598 

TABLE I 
CODING RESULTS FOR SEQUENCES OF FIG. 12 

2,l Kb/s. Of course, this image is of low quality, and it should 

be improved by another hierarchical level. The result involves 

23 regions and is shown in the third row of Fig. 12. For this 

sequence, the texture of each region has been coded with the 

mean only. It leads to an average number of 582 b/frame. 

To further improve the quality of this sequence, two different 

strategies can be used: Either segment more of the image, or 

improve the quality of the texture coding. This second option 

is illustrated in the fourth row of Fig. 12, where the texture 

has been coded by the mean plus the region-based BTC in the 

active regions (mainly the face). As can be seen in Table I, on 

average, this sequence requires 1065 blframe. Finally, the last 

row of Fig. 12 illustrates a third hierarchical step, leading to 

an efficiency of 1536 b/frame. As can be seen, the proposed 

approach is perfectly suited for very low bit rate video coding. 

Moreover, it is flexible both in terms of the coding techniques 

that are used and in terms of the qualitykost tradeoff. Note 

that the proposed approach makes no assumption about the 

sequence content. To illustrate this point, the last example 

shown in Fig. 13 presents a sequence that is very different from 

a “head and shoulder” sequence. Three hierarchical levels are 

shown. They, respectively, correspond to an average number 

of bits per frame of 428, 598, and 774. If a frame rate of 10 
Hz is used, the resulting bitrates are equal to 4,2, 6, and 7,7 
Kb/s. Detailed figures can be found in Table II (note that this 

sequence is in CIF format zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(352 x 288)). 

These results show the interest of the morphological ap- 

proach to segmentation-based sequence coding. Note that this 

scheme is particularly suitable for progressive coding since the 
contours of coarse segmented and coded sequences are well 

defined; when they appear on one level, they will remain until 
the last level. This result would be very difficult to obtain 

without morphological tools such as filters by reconstruction 

(see [ l l ]  or [20], for example). This approach allows the 

integration of various coding techniques (for contour and 

inside). In particular, if the modeling technique is able to 

Fig. 12. Hierarchical segmentation and coding (See Table I for fig- 
ures)-First row: original sequence; second row: first level (2lOblframe); 
third row: second level with texture coding by the mean value (582 b/frame); 
fourth row: second level with texture coding by mean and BTC (1065 

b/frame); fifth row: third level (1536 blframe). 

perfectly represent one region, by construction, this region will 

not be further divided by the lower levels of the hierarchy. 
A very important point of the algorithm is that it makes no 

assumption about the scene content and works for any kind 

of sequences. Finally, an attractive feature of the approach is 

its low computational complexity: For the examples presented 

in this section, each segmentation level requires typically 15 

s of CPU per CIF frame on a regular Sparc workstation. 

This figure obtained without specialized hardware is very 

low compared with classical 3-D split-and-merge or region- 
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Fig. 13. Hierarchical segmentation and coding (See Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 for fig- 
ures+First row: original sequence; second row: first level (428b/frame); 
third row: second level (598 b/frame); fourth row: third level (774 b/frame). 

growing algorithms [ l l ], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20]. It reflects the low complexity 

of the algorithm. 

VI. CONCLUSION 

In this paper, an unsupervised hierarchical segmentation 

algorithm for image sequence coding based on morphological 

tools has been presented. It follows a purely Top-Down 

procedure. One of the advantages of the scheme is its low 

computational cost. Moreover, the approach is particularly 

suitable for progressive coding. The algorithm relies on a struc- 

ture involving four steps that are iterated to get a multilevel 

segmentation: simplification, marker extraction, decision, and 
quality estimation. 

The simplification removes part of the signal while retaining 

the contours information. Several filtering schemes have been 

compared on the basis of two segmentation-oriented criteria: 
flatness and edge localization. It has been concluded that the 

simplification for segmentation can be efficiently achieved by 

filters based on opening and closing by partial reconstruction. 

The introduction of partial reconstruction results from the 

apparition of problems (arbitrary temporal connection) created 

by the “classical” reconstruction process in the case of image 

sequences. The first segmentation level uses a filter with a large 

structuring element, keeping only the largest and more global 

components. On the other levels, the size of the structuring 

element is progressively decreased to allow the introduction 

of more local information to improve the segmentation. 

The marker extraction takes advantage of the simplifi- 

cation that produces flat or contrasted regions. These two 

characteristics are used by two different schemes. The first 

one identifies flat regions larger than a minimum value by 

means of constrained labeling algorithm. The second scheme 

extracts zones of high contrast by computing the residue with 

a morphological center. The marker extraction output is an 

image indicating the presence of homogeneous regions whose 

contours zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare not precisely defined. 

The decision stating the location of the contours relies on a 

modified watershed algorithm working directly on the original 

image and not on its gradient. It has been shown that the use 

of the gradient results in a severe loss of contour information. 

The loss increases as a function of the motion of objects. 

To have a precise localization of the contour, a modification 

of the classical watershed algorithm has been proposed and 

discussed. 

Finally, the current segmentation or coding quality is es- 
timated by coding each region, that is, by computing the 

sequence that will be restored on the receiver side. Then, the 

difference between the original sequence and the modeled one, 

which is called the coding residue, is computed and transmitted 

to the next level. The coding residue concentrates all the 

information about the regions that have to be split by the 

segmentation to improve the coding quality. This approach 

has the advantage of taking into account by construction the 

effects of the texture and contour coding techniques in the 

segmentation process. 

As demonstrated by several examples, this segmentation- 

based coding approach is robust and simple. It makes no 
assumption about the input sequences. It produces several 

coded results from the simplest to the most complex one 

while preserving the contour information. It is therefore well- 

suited for progressive coding and transmission applications. 

The various examples shown demonstrate the interest of the 

approach for very low bit rate video coding. Finally, let us 

mention, that the approach presented here works on the basis 

of a block of frames, and this may present some drawbacks 

for interactive applications. However, the approach can be 
extended to a time-recursive version where the concept of 

block of frames is replaced by a sliding window of frames. 
This is the topic of our current investigation. 
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