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Abstract—Motion can be described in alternative represen-
tations, including joint configuration or end-effector spaces,
but also more complex topological representations that imply
a change of Voronoi bias, metric or topology of the motion
space. Certain types of robot interaction problems, e.g. wrapping
around an object, can suitably be described by so-called writhe
and interaction mesh representations. However, considering mo-
tion synthesis solely in topological spaces is insufficient since
it does not cater for additional tasks and constraints in other
representations. In this paper we propose methods to combine
and exploit different representations for motion synthesis, with
specific emphasis on generalization of motion to novel situations.
Our approach is formulated in the framework of optimal con-
trol as an approximate inference problem, which allows for a
direct extension of the graphical model to incorporate multiple
representations. Motion generalization is similarly performed by
projecting motion from topological to joint configuration space.
We demonstrate the benefits of our methods on problems where
direct path finding in joint configuration space is extremely
hard whereas local optimal control exploiting a representation
with different topology can efficiently find optimal trajectories.
Further, we illustrate the successful online motion generalization
to dynamic environments on challenging, real world problems.

I. INTRODUCTION

Many relevant robotic tasks concern close interactions with
complex objects. While standard motion synthesis methods
describe motion in configuration space, tasks that concern
the interaction with objects can often more appropriately be
described in representations that reflect the interaction more
directly. For instance, consider the wrapping of arms around
an object, e.g. embracing a human. Described in joint space,
such a motion is complex and varies greatly depending on the
embraced object. When describing the motion more directly
in terms of the interaction of arm segments with object parts
(e.g. using the interaction mesh representation that we will
introduce below) we gain better generalization to objects of
different shape or position and online adaptation to dynamic
objects. Similar arguments apply to other scenarios, e.g. multi-
link articulated robots reaching through small openings and
complex structures, surfaces wrapping around objects and
fingers grasping and manipulating objects. In such cases,
the alternate representations greatly simplify the problems of
motion generalization as well as planning.

There are several formal views on the implication of an
alternate abstract representation: 1) In the context of ran-
domized search, such representations alter the Voronoi bias
and therefore, the efficiency of RRT or randomized road
maps. [9] demonstrate this effect in the case of RRTs. 2)

Fig. 1. KUKA LWR 4 robotic arm reaching through a hollow box with task
being defined in combined Writhe and interaction mesh space, showing an
example of planning and dynamic remapping using topological representations
as described in Section V-B.

An alternate representation may imply a different metric, such
that a trajectory that is a complex path in one space becomes a
simple geodesic in another. 3) An alternate representation may
change the topology of the space such that local optimization
in one space is sufficient for finding a solution whereas global
optimization (randomized search) would be needed in the
other. 4) Finally, different representations may allow us to
express different motion priors, for instance, a prior preferring
“wrapping-type motions” can be expressed as a simple Brow-
nian motion or Gaussian process prior in one space, whereas
the same Brownian motion prior in configuration space renders
wrapping motions extremely unlikely.

As opposed to the computer animation domain, where
topological representation have recently been used [5], syn-
thesizing motion in such abstract spaces for planning and
control of robotic systems come with additional challenges.
Typically, control tasks are specified in world (or end effector)
coordinates, the obstacles may be observed in visual (or
camera) coordinates, and the joint limits of the actuators are
typically described in joint coordinates. Therefore, the general
challenge is to devise motion synthesis methods that combine
the benefits of reasoning in topological coordinates while
preserving consistency across the control coordinates and
managing to incorporate dynamic constraints from alternate
representations seamlessly.

In this paper, we propose methods that can combine the
different representations at the abstract and lower level and
plan simultaneously at these different levels to efficiently
generate optimal, collision free motion that satisfy constraints.
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Each representation has their own strength and weaknesses and
coupling them can help solve a wider range of problems. More
specifically, our contributions are:
• The introduction of topological representations tuned to

the domain of robot motion synthesis and manipulation,
with a strong focus on the interaction of manipulation
and the environment.

• An extension of a stochastic optimal control framework
that combines various representations for motion synthe-
sis. This is expressed in a graphical model that couples
motion priors at different levels of representations.

• A method for motion generalization (remapping) to novel
situations via a topological representation.

• Experiments that validate the benefit of Bayesian infer-
ence planning with topological representations in prob-
lems involving complex interactions.

In the rest of this section, we will first review previous
work on the use of topological representations for character
animation and abstract spaces used for robot motion synthesis.
Section II then introduces two specific types of alternate
representations, one of which has the origin in topological
properties of strings—the writhe—and the other capturing
the relative distances between interacting parts. Section III
presents our approach to combining topological and configura-
tion space representations in an optimal control setting through
the Approximate Inference Control (AICO) [17, 13, 12])
framework. This naturally leads to an extension that includes
random variables for both the topological and configuration
space representations, with their specific motion priors coupled
via the graphical model. Section IV addresses using topolog-
ical representation to generalize motion to novel situations
by “remapping” it using this more abstract space. Finally,
in Section V we present experiments on using the proposed
methods to solve motion synthesis problems like unwrapping
that are infeasible (e.g. for RRT methods) without exploiting
alternate representations and demonstrate generalizability to
novel, dynamic situations.

A. Previous Work

There is strong interest in reducing the dimensionality of the
state space of robots to simplify the control strategy. In [14],
the dimensionality is reduced by projecting the states into the
task space and biasing the exploration of random trees towards
the goal in the task space. Although such an approach is valid
if the work space is an open area with low number of obstacles,
it is difficult to use when the task involves close interactions
between the robot and objects in the scene.

Machine learning techniques have been used to reduce the
dimensionality of the task space. In [2], a latent manifold
in joint space is computed using Gaussian process from
sample configurations produced by an expert. This manifold
is, however, defined by samples from a valid trajectory in joint
space and it does not capture state of the environment directly.

In order to cope with problems of close interactions, it
is necessary to abstract the state space based on the spatial
relations between the body parts and objects. Several robotics

researchers have developed knotting robots that abstract the
status of the strands and plan the maneuvers by probabilistic
road maps [15, 18]. These approaches represent the rope
state based on how it is overlapping with itself when viewing
it from a specific direction [4]. Then, the state transition is
achieved by moving the end points toward a specific direction.
Such a representation is not very convenient due to the view-
dependence and the difficulty of manipulating the rope.

Alternate topological representations that describes the re-
lationships between 1D curves using their original configura-
tions are proposed for motion synthesis [5, 16] and classifying
paths into homotopy groups [1]. In [5], a representation called
Topology Coordinates that is based on the Gauss Linking
Integral is proposed to synthesize tangling movements. Bodies
are mapped from the new representation to the joint angles by
the least squares principle. In [16], the same representation
is applied for controlling the movement of a robot that puts a
shirt on a human. The mapping from the new representation to
the low level representation is learned through demonstrations
by humans. Such an approach is applicable only when the
desired movement is consistent and simple, but not when the
planning needs to be done between arbitrary sample points in
the state space. An idea to abstract the paths connecting a start
point and the end point using homotopy classes in 2D based on
complex numbers and in 3D based on the Ampere’s law [1] are
also proposed. Here the paths are only classified into homotopy
groups and there is no discussion about the mapping from the
topological representation to the low level control coordinates.
These representations are only applicable for 1D curves and
is not applicable for describing the relationship between 2D
surfaces, which is often needed for controlling robots.

Another representation called interaction mesh that abstracts
the spatial relationship of the body parts is introduced in [6].
The relationship is quantified by the Laplacian coordinates of
the volumetric mesh whose points are sampled on the body
parts composing the scene. The advantage of this approach is
that it is not restricted to describe the relationship between 1D
curves but is extendable to those between 2D surfaces. On the
contrary, it is a discrete representation which is only valid in
the neighborhood of the posture that the volumetric mesh is
computed.

In summary, using a representation based on the spatial
relations is a promising direction to reduce the dimensionality
of the control, although little work has been done for path
planning or optimal control in such state spaces.

II. TOPOLOGICAL REPRESENTATIONS

The topological spaces we will introduce significantly mod-
ify the metric and topology of the search space. For instance,
points that are near in the topology space might be far in
configuration space, or a linear interpolation in topology space
may translate to complex non-linear motion in configuration
space. The motion synthesis methods proposed in the next sec-
tion are independent of the specific choice of representation.
Here we will introduce two specific examples of topological
representations which we will also use in the experiments.



Fig. 2. Illustration of the definition of writhe for two segments. One - ab -
belongs to the manipulator and another - cd - is a part of the obstacle.

These representations have previously been used in the context
of computer animation, namely the writhe representation [5]
that captures the “windedness” of one object around another,
and the interaction mesh representation [6] that captures the
relative positioning of keypoints between interacting objects.

Both types of representations can be formalized by a map-
ping φ : q 7→ y from configuration space to the topological
space, where q ∈ Rn is the configuration state with n degrees
of freedom. To be applicable within our motion synthesis
system, we need to compute φ and its Jacobian J for any
q.

A. Writhe matrix and scalar
The writhe [7] is a property of the configuration of two

kinematic chains (or in the continuous limit, of two strings).
Intuitively the writhe describes to what degree (and how and
where) the two chains are wrapped around each other.

Let us describe two kinematic chains by positions p1,21:K of
their joints, where pik ∈ R3 is the kth point of the ith chain.
Using standard kinematics, we know how these points depend
on the configuration q ∈ Rn, that is, we have the Jacobian
J i
k :=

∂pi
k

∂q for each point. The writhe matrix is a function of
the link positions p1,21:K .

More precisely, the writhe matrix Wij describes the rel-
ative configuration of two points (p1i , p

1
i+1) on the first chain

and two points (p2j , p
2
j+1) on the second where i, j are indexes

of points along the first and the second chain respectively. For
brevity, let us denote these points by (a, b) = (p1i , p

1
i+1) and

(c, d) = (p2j , p
2
j+1), respectively (see Fig. 2). Then

Wij=sin-1 n
>
and

|na||nd|
+sin-1 n

>
bnc

|nb||nc|
+sin-1 n

>
cna

|nc||na|
+sin-1 n

>
dnb

|nd||nb|
(1)

where na, nb, nc, nd are normals at the points a, b, c, d with
respect to the opposing segment (c.f. Fig. 2),

na=ac×ad , nb=bd×bc , nc=bc×ac , nd=ad×bd . (2)

The above equations for computing the Writhe are an analyt-
ical expression for Gauss integral along two segments which
is the solid angle formed by all view directions in which
segments (a, b) and (c, d) intersect [7].

Since the writhe matrix is a function of the link positions
p1,21:K we can compute its Jacobian using the chain rule

∂Wij

∂q
=
∂Wij

∂p1i
J1
i +

∂Wij

∂p1i+1
J1
i+1+

∂Wij

∂p2j
J2
j +

∂Wij

∂p2j+1
J2
j+1 . (3)

Fig. 3. Interaction mesh created from the obstacles (red), the goal (green)
and the KUKA LWR 4 arm. Edges of the interaction mesh are shown as red
lines. Edges between the obstacles have been removed.

The writhe matrix W is a detailed description of the relative
configuration of two chains. Fig. 5 illustrates 2 configurations
together with their writhe matrix representation. Roughly, the
amplitude of the writhe (shading) along the diagonal illustrates
which segments are wrapped around each other.

From the full writhe matrix we can derive simpler metrics,
usually by summing over writhe matrix elements. For instance,
the Gauss linking integral, which counts the mean number of
intersections of two chains when projecting from all directions,
is the sum of all elements of the writhe matrix. In our
experiments, we will also use the vector wj =

∑
iWij as a

representation of the current configuration. Writhe, however,
does not provide a unique mapping to joint angles which is
why we require additional constraints and cost terms especially
in scenarios where wrapping motion is not dominant.

B. Interaction mesh

An interaction mesh describes the spatial interaction of the
robot with its environment [6]. The interaction mesh is a
function of a graph connecting a set of landmark points on the
robot and in the environment. More precisely, assume we have
a set of points P = {pi}i including landmarks on a kinematic
robot configuration and on objects in the environment. Let G
be a (fully or partially connected) graph on P . The selection of
landmarks and the graph connectivity should reflect the desired
interaction of the environment and the robot. To each vertex
p ∈ G in the graph, we associate the Laplace coordinate

LG(p) = p−
∑

r∈∂Gp

r

|r − p|W
(4)

where ∂Gp is the neighborhood of p in the graph G and
W =

∑
s∈∂Gp |s − p|−1 is the normalization constant for

the weighting inversely proportional to |r − p|. This constant
ensures that the weights sum up to one and therefore make
the representation invariant to scale. The collection of Laplace
coordinates of all points,

M = (LG(p))p∈P , (5)

is a 3|P |-dimensional vector which we denote as interaction
mesh. As with the writhe matrix, we assume the Jacobian of
all robot landmarks in P is given and the Jacobian of other
environmental landmarks is zero. The Jacobian ∂M

∂q of the
interaction mesh is given via the chain rule.



We would like to point out that the squared metric in M -
space has a deformation energy interpretation [6]. To see
this, consider a change of position of a single vertex p to
a new position p′. The deformation energy associated to such
a change in position is defined based on the neighborhood in
a tetrahedronisation T of the point set:

ET (p
′) =

1

2
‖LT (p

′)− LT (p)‖2 (6)

where LT (p) are the Laplace coordinates of p w.r.t. the
tetrahedronisation T . The difference to our definition of the
interaction mesh is that we consider Laplace coordinates LG

w.r.t. the fully connected graph G instead of only T , which is
a subgraph of the fully connected graph G. Since different
configurations lead to topologically different T , using LG

has the benefit of more continuous measures (deformation
energies as well as Jacobian). Neglecting this difference,
minimizing squared distances in M -space (as is implicit,
e.g., in inverse kinematics approaches as well as the optimal
control approaches detailed below) therefore corresponds to
minimizing deformation energies.

III. OPTIMAL CONTROL COMBINING TOPOLOGICAL AND
CONFIGURATION SPACE REPRESENTATIONS

The motivation for introducing topological spaces is that
they may provide better metrics or topology for motion
synthesis, ideally such that local optimization methods within
topological space can solve problems that would require more
expensive global search in configuration space. In this section,
we describe our method for exploiting topological spaces for
motion synthesis in an optimal control context. We formulate
the approach within the framework of Approximate Infer-
ence Control[13, 17], which is closely related to differential
dynamic programming [10] or iLQG [8, 11, 3] (see details
below), and will allow us to use a graphical model to describe
the coupling of motion estimation on both representations. The
main difference between iLQG and AICO is that iLQG (and
other classical methods) do not have have an counterpart of
the forward messages (see [17] for more details). AICO also
allows for easy definition of the problem by extending the
graphical model. In the following, we first briefly introduce
this framework before we explain how to couple additional
representations in the probabilistic inference framework.

A. Approximate Inference Control

Approximate Inference Control (AICO) frames the problem
of optimal control as a problem of inference in a dynamic
Bayesian network. Let xt be the state of the system—we
will always consider the dynamic case where xt = (qt, q̇t).
Consider the problem of minimizing (the expectation of) the
cost

C(x0:T , u0:T ) =

T∑
t=0

[cx(xt) + cu(ut)] (7)

where cu describes costs for the control and cx describes task
costs depending on the state (usually a quadratic error in some

task space). The robot dynamics are described by the transition
probabilities P (xt+1 |ut, xt). The AICO framework translates
this to the graphical model

p(x0:T , u0:T ) ∝ P (x0)
T∏

t=0

P (ut)

T∏
t=1

P (xt |ut-1, xt-1) (8)

·
T∏

t=0

exp{−cx(xt)} .

The control prior P (ut) = exp{−cu(ut)} reflects the control
costs, whereas the last term exp{−cx(xt)} reflects the task
costs and can be interpreted as “conditioning on the tasks” in
the following sense: We may introduce an auxiliary random
variable zt with P (zt = 1 |xt) ∝ exp{−cx(xt)}, that is,
z = 1 if the task costs cx(xt) are low in time slice t. The
above defined distribution is then the posterior p(x0:T , u0:T ) =
P (x0:T , u0:T | z0:T = 1). AICO in general tries to estimate
p, in particular the posterior trajectory and controls. In [17],
this is done using Gaussian message passing (comparable to
Kalman smoothing) based on local Gaussian approximations
around the current belief model. In [13], theory on the general
equivalence of this framework with stochastic optimal control
is detailed. Generally, the approach is very similar to differ-
ential dynamic programming [10] or iLQG [8] methods with
the difference that not only backward messages or cost-to-go
functions are propagated but also forward messages (“cost-
to-reach functions”), which allows AICO to compute a local
Gaussian belief estimate b(xt) ∝ α(xt)β(xt) as the product of
forward and backward message and utilize it to iterate message
optimization within each time slice.

B. Expressing motion priors in topological spaces and cou-
pling spaces

To estimate the posterior, the controls ut can be marginal-
ized, implying the following motion prior:

P (xt+1 |xt) =
∫
u

P (xt |ut-1, xt-1) P (ut) du . (9)

This motion prior arises as the combination of the system
dynamics and our choice of control costs cu(ut) in x-space;
for LQ systems, it is a linear Gaussian.

This motion prior is a unique view on our motivation for
topological representations. In the introduction, we mentioned
the impact of representations on the Voronoi bias, the metric,
or the topology. In other words, successful trajectories are
likely to be “simpler” (easier to find, shorter, local) in an
appropriate space. In Machine Learning terms, this is ex-
pressed in terms of a prior. In this view, topological spaces
are essentially a means to express priors about potentially
successful trajectories—in our case we employ the linear
Gaussian prior in a topological space to express the belief
that trajectories may appear “simpler” in a suitable topological
space.

However, using AICO with a linear Gaussian motion prior
in topology space is not sufficient to solve general motion
synthesis problems: 1) The computed posterior in topology
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Fig. 4. AICO in configuration and topological space. The blue arcs represent
the approximation used in the end-state posterior estimation.

does not directly specify an actual state trajectory or control
law on the joint level. 2) We neglect the problem of mini-
mization of control and task costs originally defined on the
joint level. To address these issues, we need mechanisms to
couple inference in topological and state space. We do so by
coupling topological and joint state representations in AICO’s
graphical model framework.

Fig. 4 displays a corresponding graphical model. The bot-
tom layer corresponds to the standard AICO setup, with the
motion prior P (xt+1 |xt) =

∫
u
P (xt |ut-1, xt-1) P (ut) du im-

plied by the system dynamics and control costs. Additionally
it includes the task costs represented by P (zt = 1 |xt) =
exp{−cx(xt)}. The top layer represents a process in topolog-
ical space with an a priori given linear Gaussian motion prior
P (yt+1|yt). Both layers are coupled by introducing additional
factors f(xt, yt) = exp{− 1

2ρ||φ(qt)−yt||
2}, which essentially

aim to minimize the squared distance between the topological
state yt and the one computed from the joint configuration
φ(qt), weighted by a precision constant ρ. Note that for
Gaussian message passing between levels using a local lin-
earization of φ (having the Jacobian of the topological space)
is sufficient. These factors essentially treat the topological state
yt as an additional task variable for the lower level inference,
analogous to other potential task variables like end-effector
position or orientation.

C. End-state posterior estimation

Probabilistic inference in the full factor graph given in Fig. 4
would require joint messages over configuration and topolog-
ical variables or loopy message passing. We approximate this
inference problem by a stage-wise inference process:

1) We first focus on approximating directly an end-state
posterior b̂(xT ) for the end-state xT which fulfils the
task defined in configuration space. We explain the
method used for this below.

2) Accounting for the coupling of this end-state posterior to
the topological representation, we compute a trajectory
posterior in topological space.

3) We then project this down to the joint level, using AICO
in configuration space coupled to the topological space
via factors introduced above.

Clearly this scheme is limited in that the initial inference in
topology space only accounts for the task at the final time
step. To overcome this limitation, we would have to iterate
inference between levels. For the problems investigated in our
experiments, the approximation scheme above is sufficient.

End-state posterior estimation computes an approximate
belief b̂(xT ) ≈ P (xT | x0, z0:T = 1) about the final
state given the start state and conditioned on the task. This
approximation neglects all intermediate task costs and assumes
linear Gaussian system dynamics of the form

P (xt | xt-1) = N(xt | Atxt-1 + at,Wt) . (10)

We integrate the system dynamics,

P (xT | x0) =
∑
x1:T -1

T∏
t=1

P (xt |xt-1) , (11)

which corresponds to the blue arc in Fig. 4. For stationary
linear Gaussian dynamics, we have

P (xT |x0) = N(xT |ATx0+

T -1∑
i=0

Aia,

T -1∑
i=0

AiWA
′i
) , (12)

where superscript on A states for a power of matrix, defined
iteratively Ai = A ∗ Ai−1. To estimate b̂(xT ), we condition
on the task,

P (xT | x0, z = 1) =
P (zT =1 | xT ) P (xT | x0)

P (zT =1 | x0)
. (13)

Since we assume P (xT | x0) to be Gaussian, using a local
Gaussian approximation of the task P (zT = 1 | xT ) around
the current mode of b̂(xT ), P (xT | x0, z = 1) can be
approximated with a Gaussian as well. We iterate this by
alternating between updating the end-state estimate b̂(xT ) and
re-computing the local Gaussian approximation of the task
variable. A Levenberg-Marquardt type damping (depending
on monotonous increase of likelihood) ensures robust and fast
convergence.

IV. GENERALIZATION AND REMAPPING USING A
TOPOLOGICAL SPACE

The optimal control approach presented in the previous
section exploits the additional topological space to generate
an optimal trajectory (and controller). However, the computed
optimal trajectories may no longer be valid when there is a
change in the environment, e.g. the obstacles have moved.
In order to cope with this issue, we propose a per-frame re-
mapping approach in which the optimal trajectory in the topo-
logical representation y∗0:T is inverse-mapped to the configura-
tion space according to the novel condition of the environment.

Technically, this is done by computing the configuration
of the system per-frame such that the remapping error from
the original optimal topological trajectory y∗0:T is minimized.
However, topological representations such as the writhe matrix
or the interaction mesh are very high-dimensional—often
higher dimensional than the configuration space itself. This is
in strong contrast to thinking of y∗0:T as a lower dimensional
task space like an endeffector space. Therefore, following y∗0:T
exactly is generally infeasible and requires a regularisation



procedure that minimizes the 1-step cost function:

f(qt+1) = ||qt+1 − qt − h||2 + ||φ(qt+1)− y∗||2C , (14)

argmin
qt+1

f(qt+1) = qt + J](y∗ − yt) + (I − J]J)h (15)

with J] = J>(JJ>+ C-1)-1

where C describes a cost metric in y-space.
For the case of the interaction mesh, we mentioned the

relation of a squared metric C in M -space to the deformation
energy. Therefore, using the per-frame remapping to follow
an interaction mesh reference trajectory M∗0:T essentially tries
to minimize the deformation energy between the reference
M∗t and the actual φ(qt) at each time step. This implies
generalizing to new situations by approximately preserving
relative distances between interacting objects instead of di-
rectly transferring joint angles. In conjunction with the use of
feedback gains, the methodology proposed here is able to cope
with dynamic environments (see Section V-C) and bounded
unpredictable changes.

V. EXPERIMENTS

A. Rope unwrapping and reaching using writhe space

As an example of a possible application of the writhe
space abstraction we simulated a manipulator, consisting of
20 segments and a hand with three fingers, making in total 29
DoF. Initially this rope-like manipulator is twisted two and a
half times around a green pole, giving us approximately 900◦

of writhe density (See Fig. 5(a)).

(a) initial configuration (b) final configuration

(c) initial writhe matrix (d) final writhe matrix

Fig. 5. The experimental task is to grasp the object without collisions.
Corresponding writhe matrices are depicted on lower plots - the darkness
corresponds to the amplitude of the writhe value.
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The task is to plan a trajectory which should grasp the
red cylinder without colliding with the stick (Fig. 5(a),5(b)
and video available at http://goo.gl/fwSxG). Clearly, a local
feedback approach using Inverse Kinematics will experience
failure in this task. On the other hand, a successful trajectory
can be well captured as a linear interpolation in writhe
space and projected back to the configuration space using
the coupling described in Section II-A. Fig. 6 illustrates an
example of a unwrapping trajectory in topological space when
all rows of writhe matrix are summed up into one column,
representing the current state.

Hierarchical AICO conditioned on the end-state in writhe
space yT was able to generate locally optimal trajectories,
consisting of 50 time steps, in only few iterations, requiring
a relatively small number of expensive collision checks (less
than 1000). Comparison with Rapidly-exploring Random Tree
(RRT) planning for this reaching task revealed a dependence of
the performance on distance between end-effector and object
position. Moreover, total costs of obtained trajectories were on
average 100 times higher than those generated with the local
optimizer. Here, the end-state in configuration space qT was
given as a target for RRTs.

For more systematic evaluation of our planning platform
we have designed a sequence of unwrapping trajectories -
gradually increasing the relative angle to be unwrapped. This
sequence of final states was given as goals to uni- and bi-
directional RRT planners. The results demonstrate that for
simple trajectories (e.g. in case of nearby lying objects) all
methods have no difficulties, whereas starting with one and a
half of full twist, unidirectional search fails and bi-directional

http://goo.gl/fwSxG


significantly slows down. (See Fig. 7.)
In this comparison, the RRTs solved a somewhat simpler

problem than our system: For the RRTs we assumed to know
the final state qT in configuration space – we take our final
pose estimate from Section III-C as the target qT for RRTs.
This is in contrast to our planning platform, where we use the
final pose estimate only to estimate a final topological state
yT and then use the hierarchical AICO to compute an optimal
trajectory (including an optimal qT ) conditioned on this final
topological state. Therefore, the RRT’s problem is reduced
to growing to a specific end state. We applied the standard
method of biasing RRT search towards qT by growing the
tree 10% of the time towards qT instead of a random sample
of the configuration space. Knowing qT also allowed us to
test bi-directional RRTs, each with 10% bias to grow towards
a random node of the other tree. Further, RRTs output non-
smooth paths whereas AICO produces (locally) optimal dy-
namic trajectories since it minimizes dynamic control costs1.

B. Dynamic reaching through a loop using writhe and inter-
action mesh

Writhe space is a suitable representation for tasks that
involve interactions with chains—or loops—of obstacles. As a
second demonstration, we have altered the task from Experi-
ment V-A to reaching through a hollow box, where the rim of
the box forms a loop of segments, see Fig. 8(b). The interac-
tion of the manipulator with the box can be described by the
writhe representation between this loop of box segments and
the manipulator. Classically this problem would be addressed
using only an end-effector task variable and collision checks in
joint configuration space. The advantage of using writhe as a
description of the interaction is in defining the task as a relative
configuration of the robot and the loop—this relative descrip-
tion remains effective also when the situation changes or the
box is moved dynamically. The writhe matrix corresponding
to the final configuration contains a peak around the last link
which passes through the box (see Fig. 1 and 8). In addition to
this, target in writhe space does not uniquely define the task for
all arbitrary positions of the box (unlike the unwrapping task
in Experiment V-A). Fig. 8(b) bottom shows configuration that
does not reach through the loop but reaches the writhe space
target. The writhe is computed as absolute value of Gauss
linking integral which means that direction of wrapping is
not clearly defined. This is the reason why one of the arm
segments wraps around the rim of the box in wrong direction.
In this demonstration we use an additional interaction mesh
representation which is well suited to represent movement in
a way that keeps appropriate distance between robot links and
the obstacle and is mostly invariant w.r.t. the concrete position
of the box. Explicit collision avoidance is then superfluous. We
coupled all three representations—writhe, interaction mesh,
and joint configuration space—using AICO by extending the
graphical model to efficiently generate motions for varying

1AICO can also be applied on the kinematic level, where xt = qt and with
the control ut = qt+1− qt being just the joint angle step. This would reduce
the computational cost further.
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Fig. 8. (a) writhe space target for passing the last link of a robotic arm
through a loop. (b) the configuration corresponding to the target in Writhe
space. The loop was built by connecting the colored cylinders attached to the
rim of the hollow box.

positions of the obstacles. For this the position of a hollow box
defining the loop was tracked using magnetic motion tracking
system in our experiment on the real robot. The computation of
locally optimal trajectories using this methods required 3 to 6
AICO iterations. We compared to generating trajectories using
only classical end-effector position and collision avoidance
methods. This required 20 to 30 iterations which shows that
combined writhe and interaction mesh space is a better choice
of representation than end-effector position with collision
avoidance.

We also tested online remapping as described in Section IV
using both, the writhe and interaction mesh space, to test
behavior of the system when the box position is changed
dynamically on the fly. A video of this experiment can be
found at http://goo.gl/fwSxG.

C. Dynamic obstacle avoidance using interaction mesh space

Finally we present an experiment in which the robot ma-
nipulator reaches a target object in an environment where
spherical obstacles dynamically move around. We show that
the cost for the movement stayed close to the optimal value
when the movement is adjusted through the local re-mapping
scheme described in Section IV in response to the unpre-
dictable random displacement of the obstacles.

The experiment proceeded as follows. We used AICO with
work-space target for the end-effector and collision avoidance
task variables to compute the optimal trajectory under a given
obstacle configuration. The obstacles are then randomly moved
in the workspace and the trajectories were recomputed by
(1) re-mapping using Interaction mesh and (2) re-planning
using AICO with complete knowledge of the obstacle motion.
The costs of the two methods with respect to the amplitude
of the obstacle displacement are compared in Fig. 9. While
re-mapping approach (which does not have the benefit of
knowledge of the updated obstacle locations in remaining time
steps) results in a higher cost, it stays within a comparable
range of the full AICO re-planning. If we simply rely on a
generic collision detection / response scheme based on inverse
kinematics to amend the movements, close to an imminent
collision, the cost increases rapidly as shown in the black plot
in Fig. 9. This illustrates that the topological representation
generalizes the state space well such that the local re-mapping

http://goo.gl/fwSxG
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Fig. 9. The average total cost of (1) AICO re-planning, (2) re-mapping the
trajectory using interaction mesh and (3) reaching using inverse kinematics
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position term, a collision term and a control cost term.

scheme can produce an adequate response in real-time with
low computational effort while achieving the overall task aims.

We demonstrate the results on a real time manipulation us-
ing the KUKA LWR 4 robotic manipulator and a vision track-
ing system. The movement of the obstacles was individually
controlled by three uncorrelated individuals, showing that this
method can deal with unpredictable movement of obstacles in
real time (Video is available at http://goo.gl/fwSxG).

VI. CONCLUSIONS

Different motion representations have different strengths
and weaknesses depending on the problem. For certain inter-
action problems there exist suitable topological representations
in which the interaction can be described in a way that general-
izes well to novel or dynamic situations (as with the interaction
mesh), or where local optimization methods can find solutions
that would otherwise require inefficient global search (as
with the writhe representations). However, considering motion
planning only in a topological representation is insufficient
for additionally accounting for tasks and constraints in other
representations.

Previous work with such representations has only tested
basic approaches for inverse mapping of fixed topological
trajectories to the joint configuration [4, 5, 16]. In contrast,
in this paper we presented methods that combine the different
representations at the abstract and lower level for motion
synthesis. For instance, the reaching task in an endeffector
space is coupled with a writhe space that allows a local
optimization method to generate an unwrapping-and-reaching
motion. Considering such a problem only in joint configuration
and endeffector space leads to “deep local minima” that are
practically infeasible to solve—as our comparison to RRTs in
Section V-A demonstrated. Considering such a problem only
in writhe space would not address the actual reaching task.

We chose to formulate our approach in the framework of
optimal control as an approximate inference problem since
this allows for a direct extension of the graphical model to
incorporate multiple representations. Alternative formulations
are possible, for instance as a structured constraint opti-
mization problem (MAP inference in our graphical model)
that could be solved by methods such as SNOPT. What
we coined as a motion prior in topological spaces would

here correspond to pseudo control costs for transitions in
topological space. Which formulation will eventually lead to
computationally most efficient algorithms is a matter of future
research. As an outlook, we aim to apply the proposed methods
for dexterous robot manipulation (including grasping) of more
complex, articulated or flexible objects, where we believe that
multiple parallel representations will enable more robust and
generalizing motion synthesis strategies.
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