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Hierarchical Nearest-Neighbor Gaussian Process Models

for Large Geostatistical Datasets

Abhirup Datta, Sudipto Banerjee, Andrew O. Finley and Alan E. Gelfand

Abstract

Spatial process models for analyzing geostatistical data entail computations that

become prohibitive as the number of spatial locations become large. This manuscript

develops a class of highly scalable Nearest Neighbor Gaussian Process (NNGP) models

to provide fully model-based inference for large geostatistical datasets. We establish

that the NNGP is a well-defined spatial process providing legitimate finite-dimensional

Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-

inducing prior within a rich hierarchical modeling framework and outline how compu-

tationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed

without storing or decomposing large matrices. The floating point operations (flops)

per iteration of this algorithm is linear in the number of spatial locations, thereby

rendering substantial scalability. We illustrate the computational and inferential ben-

efits of the NNGP over competing methods using simulation studies and also analyze

forest biomass from a massive United States Forest Inventory dataset at a scale that

precludes alternative dimension-reducing methods. Supplementary materials for this

article are available online.

Keywords: Bayesian modeling; hierarchical models; Gaussian process; Markov chain Monte

Carlo; nearest neighbors; predictive process; reduced-rank models; sparse precision matrices;

spatial cross-covariance functions.
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1 Introduction

With the growing capabilities of Geographical Information Systems (GIS) and user-friendly

software, statisticians today routinely encounter geographically referenced datasets contain-

ing a large number of irregularly located observations on multiple variables. This has, in

turn, fueled considerable interest in statistical modeling for location-referenced spatial data;

see, for example, the books by Stein (1999), Moller and Waagepetersen (2003), Banerjee

et al. (2014), Schabenberger and Gotway (2004), and Cressie and Wikle (2011) for a variety

of methods and applications. Spatial process models introduce spatial dependence between

observations using an underlying random field, {w(s) : s ∈ D}, over a region of interest

D, which is endowed with a probability law that specifies the joint distribution for any fi-

nite set of random variables. For example, a zero-centered Gaussian process ensures that

w = (w(s1), w(s2) . . . , w(sn))
′ ∼ N(0,C(θ)), where C(θ) is a family of covariance matrices,

indexed by an unknown set of parameters θ. Such processes offer a rich modeling framework

and are being widely deployed to help researchers comprehend complex spatial phenomena

in the sciences. However, model fitting usually involves the inverse and determinant of C(θ),

which typically require ∼ n3 floating point operations (flops) and storage of the order of n2.

These become prohibitive when n is large and C(θ) has no exploitable structure.

Broadly speaking, modeling large spatial datasets proceeds from either exploiting “low-

rank” models or using sparsity. The former attempts to construct spatial processes on a

lower-dimensional subspace (see, e.g., Higdon 2001; Kammann and Wand 2003; Stein 2007,

2008; Banerjee et al. 2008; Cressie and Johannesson 2008; Crainiceanu et al. 2008; Rasmussen

and Williams 2005; Finley et al. 2009) by regressing the original (parent) process on its

realizations over a smaller set of r << n locations (“knots” or “centers”). The algorithmic

cost for model fitting typically decreases from O(n3) to O(nr2 + r3) ≈ O(nr2) flops since

n >> r. However, when n is large, empirical investigations suggest that r must be fairly

large to adequately approximate the parent process and the nr2 flops becomes exorbitant (see
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Section 5.1). Furthermore, low rank models perform poorly when neighboring observations

are strongly correlated and the spatial signal dominates the noise (Stein 2014). Although

bias-adjusted low-rank models tend to perform better (Finley et al. 2009; Banerjee et al.

2010; Sang and Huang 2012), they increase the computational burden.

Sparse methods include covariance tapering (see, e.g., Furrer et al. 2006; Kaufman et al.

2008; Du et al. 2009; Shaby and Ruppert 2012), which introduces sparsity in C(θ) using

compactly supported covariance functions. This is effective for parameter estimation and

interpolation of the response (“kriging”), but it has not been fully developed or explored

for more general inference on residual or latent processes. Introducing sparsity in C(θ)−1 is

prevalent in approximating Gaussian process likelihoods using Markov random fields (e.g.,

Rue and Held 2005), products of lower dimensional conditional distributions (Vecchia 1988,

1992; Stein et al. 2004), or composite likelihoods (e.g., Bevilacqua and Gaetan 2014; Eidsvik

et al. 2014). However, unlike low rank processes, these do not, necessarily, extend to new

random variables at arbitrary locations. There may not be a corresponding process, which

restricts inference to the estimation of spatial covariance parameters. Spatial prediction

(“kriging”) at arbitrary locations proceeds by imputing estimates into an interpolator de-

rived from a different process model. This may not reflect accurate estimates of predictive

uncertainty and is undesirable.

Our intended inferential contribution is to offer substantial scalability for fully process-

based inference on underlying, perhaps completely unobserved, spatial processes. Moving

from finite-dimensional sparse likelihoods to sparsity-inducing spatial processes can be com-

plicated. We first introduce sparsity in finite-dimensional probability models using specified

neighbor sets constructed from directed acyclic graphs. We use these sets to extend these

finite-dimensional models to a valid spatial process over uncountable sets. We call this pro-

cess a Nearest-Neighbor Gaussian Process (NNGP). Its finite-dimensional realizations have

sparse precision matrices available in closed form. While sparsity has been effectively ex-
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ploited by Vecchia (1988); Stein et al. (2004); Emory (2009); Gramacy and Apley (2014);

Gramacy et al. (2014) and Stroud et al. (2014) for approximating expensive likelihoods

cheaply, a fully process-based modeling and inferential framework has, hitherto, proven elu-

sive. The NNGP fills this gap and enriches the inferential capabilities of existing methods

by subsuming estimation of model parameters, prediction of outcomes and interpolation of

underlying processes into one highly scalable unifying framework.

To demonstrate its full inferential capabilities, we deploy the NNGP as a sparsity-inducing

prior for spatial processes in a Bayesian framework. Unlike low rank processes, the NNGP

always specifies non-degenerate finite dimensional distributions making it a legitimate proper

prior for random fields and is applicable to any class of distributions that support a spatial

stochastic process. It can, therefore, model an underlying process that is never actually ob-

served. The modeling provides structured dependence for random effects, e.g. intercepts or

coefficients, at a second stage of specification where the first stage need not be Gaussian. We

cast a multivariate NNGP within a versatile spatially-varying regression framework (Gelfand

et al. 2003; Banerjee et al. 2008) and conveniently obtain entire posteriors for all model pa-

rameters as well as for the spatial processes at both observed and unobserved locations. Using

a forestry example, we show how the NNGP delivers process-based inference for spatially-

varying regression models at a scale where even low-rank processes, let alone full Gaussian

processes, are unimplementable even in high-performance computing environments.

Here is a brief outline. Section 2 formulates the NNGP using multivariate Gaussian

processes. Section 3 outlines Bayesian estimation and prediction within a very flexible hi-

erarchical modeling setup. Section 4 discusses alternative NNGP models and algorithms.

Section 5 presents simulation studies to highlight the inferential benefits of the NNGP and

also analyzes forest biomass from a massive USDA dataset. Finally, Section 6 concludes the

manuscript with a brief summary and pointers toward future work.
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2 Nearest-Neighbor Gaussian Process

2.1 Gaussian density on sparse directed acyclic graphs

We will consider a q-variate spatial process over ℜd. Let w(s) ∼ GP (0,C(·, · |θ)) denote a

zero-centered q-variate Gaussian process, where w(s) ∈ ℜq for all s ∈ D ⊆ ℜd. The process

is completely specified by a valid cross-covariance function C(·, · |θ), which maps a pair of

locations s and t inD×D into a q×q real valued matrixC(s, t) with entries cov{wi(s), wj(t)}.

Here, θ denotes the parameters associated with the cross-covariance function. Let S =

{s1, s2, . . . , sk} be a fixed collection of distinct locations in D, which we call the reference

set. So, wS ∼ N(0,CS(θ)), where wS = (w(s1)
′,w(s2)

′, . . . ,w(sk)
′)′ and CS(θ) is a positive

definite qk× qk block matrix with C(si, sj) as its blocks. Henceforth, we write CS(θ) as CS ,

the dependence on θ being implicit, with similar notation for all spatial covariance matrices.

The reference set S need not coincide with or be a part of the observed locations, so k need

not equal n, although we later show that the observed locations are a convenient practical

choice for S. When k is large, parameter estimation becomes computationally cumbersome,

perhaps even unfeasible, because it entails the inverse and determinant of C̃S . Here, we

benefit from expressing the joint density of wS as the product of conditional densities, i.e.,

p(wS) = p(w(s1)) p(w(s2) |w(s1)) . . . p(w(sk) |w(sk−1), . . . ,w(s1)) , (1)

and replacing the larger conditioning sets on the right hand side of (1) with smaller, carefully

chosen, conditioning sets of size at most m, where m ≪ k (see, e.g., Vecchia 1988; Stein

et al. 2004; Gramacy and Apley 2014; Gramacy et al. 2014). So, for every si ∈ S, a smaller

conditioning set N(si) ⊂ S \ {si} is used to construct

p̃(wS) =
k∏

i=1

p(w(si) |wN(si)) , (2)
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where wN(si) is the vector formed by stacking the realizations of w(s) over N(si).

Let NS = {N(si); i = 1, 2, . . . , k} be the collection of all conditioning sets over S. We

can view the pair {S, NS} as a directed graph G with S = {s1, s2, . . . , sk} being the set

of nodes and NS the set of directed edges. For every two nodes si and sj, we say sj is a

directed neighbor of si if there is a directed edge from si to sj. So, N(si) denotes the set

of directed neighbors of si and is, henceforth, referred to as the “neighbor set” for si. A

“directed cycle” in a directed graph is a chain of nodes si1 , si2 , . . . , sib such that si1 = sib and

there is a directed edge between sij and sij+1
for every j = 1, 2, . . . , b− 1. A directed graph

with no directed cycles is known as a ‘directed acyclic graph’.

If G is a directed acyclic graph, then p̃(wS), as defined above, is a proper multivariate

joint density (see Appendix A1 or Lauritzen (1996) for a similar result). Starting from a joint

multivariate density p(wS), we derive a new density p̃(wS) using a directed acyclic graph

G. While this holds for any original density p(wS), it is especially useful in our context,

where p(wS) is a multivariate Gaussian density and G is sufficiently sparse. To be precise,

let CN(si) be the covariance matrix of wN(si) and let Csi,N(si) be the q×mq cross-covariance

matrix between the random vectors w(si) and wN(si). Standard distribution theory reveals

p̃(wS) =
k∏

i=1

N(w(si) |Bsi
wN(si),Fsi

) , (3)

where Bsi
= Csi,N(si)C

−1
N(si)

and Fsi
= C(si, si) − Csi,N(si)C

−1
N(si)

CN(si),si . Appendix A2

shows that p̃(wS) in (3) is a multivariate Gaussian density with covariance matrix C̃S ,

which, obviously, is different from CS . Furthermore, if N(si) has at most m members for

each si in S, where m ≪ k, then C̃
−1

S is sparse with at most km(m+1)q2/2 non-zero entries.

Thus, for a very general class of neighboring sets, p̃(wS) defined in (2) is the joint density

of a multivariate Gaussian distribution with a sparse precision matrix.

Turning to the neighbor sets, choosing N(si) to be any subset of {s1, s2, . . . , si−1} ensures

an acyclic G and, hence, a valid probability density in (3). Several special cases exist in
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likelihood approximation contexts. For example, Vecchia (1988) and Stroud et al. (2014)

specified N(si) to be the m nearest neighbors of si among s1, s2, . . . , si−1 with respect to

Euclidean distance. Stein et al. (2004) considered nearest as well as farthest neighbors from

{s1, s2, . . . , si−1}. Gramacy and Apley (2014) offer greater flexibility in choosing N(si), but

may require several approximations to be efficient.

All of the above choices depend upon an ordering of the locations. Spatial locations

are not ordered naturally, so one imposes order by, for example, ordering on one of the

coordinates. Of course, any other function of the coordinates can be used to impose order.

However, the aforementioned authors have cogently demonstrated that the choice of the

ordering has no discernible impact on the approximation of (1) by (3). Our own simulation

experiments (see 5.2) concur with these findings; inference based upon p̃(wS) is extremely

robust to the ordering of the locations. This is not entirely surprising. Clearly, whatever

order we choose in (1), p(wS) produces the full joint density. Note that we reduce (1) to (2)

based upon neighbor sets constructed with respect to the specific ordering in (1). A different

ordering in (1) will produce a different set of neighbors for (2). Since p̃(wS) ultimately relies

upon the information borrowed from the neighbors, its effectiveness is often determined by

the number of neighbors we specify and not the specific ordering.

In the following section, we will extend the density p̃(wS) to a legitimate spatial process.

We remark that our subsequent development holds true for any choice of N(si) that ensures

an acyclic G. In general, identifying a “best subset” of m locations for obtaining optimal

predictions for si is a non-convex optimization problem, which is difficult to implement and

defeats our purpose of using smaller conditioning sets to ease computations. Nevertheless,

we have found Vecchia’s choice of m-nearest neighbors from {s1, s2, . . . , si−1} to be simple

and to perform extremely well for a wide range of simulation experiments. In what ensues,

this will be our choice for N(si) and the corresponding density p̃(wS) will be referred to as

the ‘nearest neighbor’ density of wS .

7



2.2 Extension to a Gaussian Process

Let u be any location in D outside S. Consistent with the definition of N(si), let N(u)

be the set of m-nearest neighbors of u in S. Hence, for any finite set U = {u1,u2, . . . ,ur}

such that S ∩U is empty, we define the nearest neighbor density of wU conditional on wS as

p̃(wU |wS) =
r∏

i=1

p(w(ui) |wN(ui)) . (4)

This conditional density is akin to (2) except that all the neighbor sets are subsets of S.

This ensures a proper conditional density. Indeed (2) and (4) are sufficient to describe the

joint density of any finite set over the domain D. More precisely, if V = {v1,v2, . . . ,vn} is

any finite subset in D, then, using (4) we obtain the density of wV as,

p̃(wV) =

∫
p̃(wU |wS) p̃(wS)

∏

{si∈S\V}

d(w(si)) where U = V \ S . (5)

If U is empty, then (4) implies that p̃(wU |wS) = 1 in (5). If S \ V is empty, then the

integration in (5) is not needed.

These probability densities, defined on finite topologies, conform to Kolmogorov’s consis-

tency criteria and, hence, correspond to a valid spatial process over D (Appendix A3). So,

given any original (parent) spatial process and any fixed reference set S, we can construct

a new process over the domain D using a collection of neighbor sets in S. We refer to this

process as the ‘nearest neighbor process’ derived from the original parent process. If the

parent process is GP (0,C(·, · |θ)), then

p̃(wU |wS) =
r∏

i=1

N(w(ui) |Bui
wN(ui),Fui

) = N(BUwS ,FU) (6)

for any finite set U = {u1,u2, . . . ,ur} in D outside S, where Bui
and Fui

are defined

analogous to (3) based on the neighbor sets N(ui), FU = diag(Fu1 ,Fu2 , . . . ,Fur
) and BU is
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a sparse nq×kq matrix with each row having at mostmq non-zero entries (see Appendix A4).

For any finite set V in D, p̃(wV) is the density of the realizations of a Gaussian Process

over V with cross covariance function

C̃(v1,v2;θ) =





C̃si,sj , if v1 = si and v2 = sj are both in S,

Bv1C̃N(v2),sj if v1 /∈ S and v2 = sj ∈ S,

Bv1C̃N(v1),N(v2)B
′
v2

+ δ(v1=v2)Fv1 if v1 and v2 are not in S

(7)

where v1 and v2 are any two locations in D, C̃A,B denotes submatrices of C̃S indexed by the

locations in the sets A and B, and δ(v1=v2) is the Kronecker delta. Appendix A4 also shows

that C̃(v1,v2 |θ) is continuous for all pairs (v1,v2) outside a set of Lebesgue measure zero.

This completes the construction of a well-defined Nearest Neighbor Gaussian Process,

NNGP (0, C̃(·, · |θ)), derived from a parent Gaussian process, GP (0,C(·, · |θ)). In the

NNGP, the size of S, i.e., k, can be as large, or even larger than the size of the dataset.

The reduction in computational complexity is achieved through sparsity of the NNGP pre-

cision matrices. Unlike low-rank processes, the NNGP is not a degenerate process. It is a

proper, sparsity-inducing Gaussian process, immediately available as a prior in hierarchical

modeling, and, as we show in the next section, delivers massive computational benefits.

3 Bayesian estimation and implementation

3.1 A hierarchical model

Consider a vector of l dependent variables, say y(t), at location t ∈ D ⊆ ℜd in a spatially-

varying regression model,

y(t) = X(t)′β + Z(t)′w(t) + ǫ(t) , (8)
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where X(t)′ is the l×p matrix of fixed spatially-referenced predictors, w(t) is a q×1 spatial

process forming the coefficients of the l × q fixed design matrix Z(t)′, and ǫ(t)
iid
∼ N(0,D)

is an l × 1 white noise process capturing measurement error or micro-scale variability with

dispersion matrix D, which we assume is diagonal with entries τ 2j , j = 1, 2, . . . , l. The matrix

X(t)′ is block diagonal with p =
∑l

i=1 pi, where the 1 × pi vector xi(t)
′, including perhaps

an intercept, is the i-th block for each i = 1, 2, . . . , l. The model in (8) subsumes several

specific spatial models. For instance, letting q = l and Z(t)′ = Il×l leads to a multivariate

spatial regression model where w(t) acts as a spatially-varying intercept. On the other hand,

we could envision all coefficients to be spatially-varying and set q = p with Z(t)′ = X(t)′.

For scalability, instead of a customary Gaussian process prior for w(t) in (8), we assume

w(t) ∼ NNGP (0, C̃(·, · |θ)) derived from the parent GP (0,C(·, · |θ)). Any valid isotropic

cross covariance function (see, e.g., Gelfand and Banerjee 2010) can be used to construct

C(·, · |θ). To elucidate, let T = {t1, t2, . . . , tn} be the set of locations where the outcomes

and predictors have been observed. This set may, but need not, intersect with the reference

set S = {s1, s2, . . . , sk} for the NNGP. Without loss of generality, we split up T into S∗ and

U , where S∗ = S ∩ T = {si1 , si2 , . . . , sir} with sij = tj for j = 1, 2, . . . , r and U = T \ S =

{tr+1, tr+2, . . . , tn}. Since S ∪ T = S ∪ U , we can completely specify the realizations of

the NNGP in terms of the realizations of the parent process over S and U , hierarchically,

as wU |wS ∼ N(BUwS ,FU) and wS ∼ N(0, C̃S). For a full Bayesian specification, we

further specify prior distributions on β, θ and the τ 2j ’s. For example, with customary prior

specifications, we obtain the joint distribution

p(θ)×

q∏

j=1

IG(τ 2j | aτj , bτj)×N(β |µβ,Vβ)×N(wU |BUwS ,FU)

×N(wS |0, C̃S)×
n∏

i=1

N(y(ti) |X(ti)
′β + Z(ti)

′w(ti),D) , (9)

where p(θ) is the prior on θ and IG(τ 2j | aτj , bτj) denotes the Inverse-Gamma density.
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3.2 Estimation and prediction

To describe a Gibbs sampler for estimating (9), we define y = (y(t1)
′,y(t2)

′, . . . ,y(tn)
′)′,

and w and ǫ similarly. Also, we introduce X = [X(t1) : X(t2) : . . . : X(tn)]
′, Z =

diag(Z(t1)
′, . . . ,Z(tn)

′), and Dn = Cov(ǫ) = diag(D, . . . ,D). The full conditional distri-

bution for β is N(V∗
βµ

∗
β,V

∗

β), where V
∗
β = (V−1

β +X′D−1
n X)−1, µ∗

β = (V−1
β µβ +X′D−1

n (y−

Zw)). Inverse-Gamma priors for the τ 2j ’s leads to conjugate full conditional distribution

IG(aτj +
n
2
, bτj +

1
2
(y∗j −X∗jβ − Z∗jw)′(y∗j −X∗jβ − Z∗jw) where y∗j refers to the n × 1

vector containing the jth co-ordinates of the y(ti)’s, X∗j and Z∗j are the corresponding fixed

and spatial effect covariate matrices respectively. For updating θ, we use a random walk

Metropolis step with target density p(θ)×N(wS |0, C̃S)×N(wU |BUwS ,FU), where

N(wS |0, C̃S) =
∏k

i=1 N(w(si) |Bsi
wN(si),Fsi

) and

N(wU |BUwS ,FU) =
∏n

i=r+1 N(w(ti) |Bti
wN(ti),Fti

)
(10)

Each of the component densities under the product sign on the right hand side of (10) can

be evaluated without any n-dimensional matrix operations rendering the NNGP suitable for

efficient Metropolis (Hastings) block updates for θ.

Since the components of wU |wS are independent, we can update w(ti) from its full

conditional N(Vti
µ

ti
,Vti

) for i = r+1, r+2, . . . , n where Vti
=
(
Z(ti)D

−1Z(ti)
′ + F−1

ti

)−1

and µ
ti
= Z(ti)D

−1 (y(ti)−X(ti)
′β) + F−1

ti
Bti

wN(ti). Finally, we update the components

of wS individually. For any two locations s and t in D, if s ∈ N(t) and is the l-th component

of N(t), i.e., say s = N(t)(l), then define Bt,s as the l × l submatrix formed by columns

(l − 1)q + 1, (l − 1)q + 2, . . . , lq of Bt. Let U(si) = {t ∈ S ∪ T | si ∈ N(t)} and for every

t ∈ U(si) define, at,si = w(t)−
∑

s∈N(t),s 6=si
Bt,sw(s). Then, for i = 1, 2, . . . , k, we have the

full conditional wsi
| · ∼ N(Vsi

µ
si
,Vsi

) where Vsi
= (In(si ∈ S∗)Z(si)D

−1Z(si)
′ + F−1

si
+

∑
t∈U(si)

B′
t,si

F−1
t
Bt,si)

−1, µ
si

= In(si ∈ S∗)Z(si)D
−1(y(si) − X(si)

′β) + F−1
si
Bsi

wN(si) +
∑

t∈U(si)
B′

t,si
F−1

t
at,si and In(·) denotes the indicator function. Hence, the w’s can also be
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updated without requiring storage or factorization of any n× n matrices.

Turning to predictions, let t be a new location where we intend to predict y(t) given

X(t) and Z(t). The Gibbs sampler for estimation also generates the posterior samples

wS |y. So, if t ∈ S, then we simply get samples of y(t) |y from N(X(t)′β + Z(t)′w(t),D).

If t is outside S, then we generate samples of w(t) from its full conditional, N(Vtµt
,Vt),

where Vt =
(
Z(t)D−1Z(t)′ + F−1

t

)−1
and µ

t
= Z(t)D−1 (y(t)−X(t)′β)+F−1

t
BtwN(t), and

subsequently generate posterior samples of y(t) |y similar to the earlier case.

3.3 Computational complexity

Implementing the NNGP model in Section 3.2 reveals that one entire pass of the Gibbs

sampler can be completed without any large matrix operations. The only difference between

(9) and a full geostatistical hierarchical model is that the spatial process is modeled as an

NNGP prior as opposed to a standard GP. For comparisons, we offer rough estimates of the

flop counts to generate θ and w per iteration of the sampler. We express the computational

complexity only in terms of the sample size n, size of the reference set k and the size of the

neighbor sets m as other dimensions are assumed to be small. For all locations, t ∈ S ∪ T ,

Bt and Ft can be calculated using O(m3) flops. So, from (10) it is easy to see that p(θ | ·)

can be calculated using O((n+ k)m3) flops. All subsequent calculations to generate a set of

posterior samples for w and θ require around O((n+ k)m2) flops.

So, the total flop counts is of the order (n + k)m3 and is ,therefore, linear in the to-

tal number of locations in S ∪ T . This ensures scalability of the NNGP to large datasets.

Compare this with a full GP model with a dense correlation matrix, which requires O(n3)

flops for updating w in each iteration. Simulation results in Section 5.1 and Appendix A5

indicate that NNGP models with usually very small values of m (≈ 10) provides inference

almost indistinguishable to full geostatistical models. Therefore, for large n, this linear flop

count is drastically less. Also, linearity with respect to k ensures a feasible implementation
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even for k ≈ n. This offers substantial improvement over low rank models where the com-

putational cost is quadratic in the number of “knots,” limiting the size of the set of knots.

Also, both the full geostatistical and the predictive process models require storage of the

n × n distance matrix, which can potentially exhaust storage resources for large datasets.

An NNGP model only requires the distance matrix between neighbors for every location,

thereby storing n+k small matrices, each of order m×m. Hence, NNGP accrues substantial

computational benefits over existing methods for very large spatial datasets and may be the

only feasible option for fully model-based inference in certain cases, as seen in the forestry

data example (Section 5.3).

3.4 Model comparison and choice of S and m

As elaborated in Section 2, given any parent Gaussian process and any fixed reference set

of locations S, we can construct a valid NNGP. The resulting finite dimensional likelihoods

of the NNGP depend upon the choice of the reference set S and the size of each N(si),

i.e., m. Choosing the reference set is similar to selecting the knots for a predictive process.

Unlike the number of “knots” in low rank models, the number of points in S do not thwart

computational scalability. From Section 3.3, we observe that the flop count in an NNGP

model only increases linearly with the size of S. Hence, the number of locations in S can,

in theory, be large and this provides a lot of flexibility in choosing S.

Points over a grid across the entire domain seem to be a plausible choice for S. For exam-

ple, we can construct a large S using a dense grid to improve performance without adversely

affecting computational costs. Another, perhaps even simpler, option for large datasets is

to simply fix S = T , the set of observed locations. Since the NNGP is a legitimate process

for any fixed S, this choice is legitimate and it reduces computational costs even further

by avoiding additional sampling of wU in the Gibbs sampler. Our empirical investigations

(see Section 5.1) reveal that choosing S = T deliver inference almost indistinguishable from
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choosing S to be a grid over the domain for large datasets.

Stein et al. (2004) and Eidsvik et al. (2014) proposed using a sandwich variance estimator

for evaluating the inferential abilities of neighbor-based pseudo-likelihoods. Shaby (2012)

developed a post sampling sandwich variance adjustment for posterior credible intervals of

the parameters for quasi-Bayesian approaches using pseudo-likelihoods. However, all these

adjustments concede accrual of additional computational costs. Also, the asymptotic results

used to obtain the sandwich variance estimators are based on assumptions which are hard to

verify in spatial settings with irregularly placed data points. Moreover, we view the NNGP

as an independent model for fitting the data and not as an approximation to the original

GP. Hence, we refrain from such sandwich variance adjustments. Instead, we can simply

use any standard model comparison metrics such as DIC (Spiegelhalter et al. 2002), GPD

(Gelfand and Ghosh 1998) or RMSPE(RMSECV) (Yeniay and Goktas 2002) to compare

the performance of NNGP and any other candidate model. The same model comparison

metrics are also used for selecting m. However, as we illustrate later in Section 5.1, usually

a small value of m between 10 to 15 produces performance at par with the full geostatistical

model. While larger m may be beneficial for massive datasets, perhaps under a different

design scheme, it is still going to be much smaller than the number of knots required in low

rank models (see Section 5.1).

4 Alternate NNGP models and algorithms

4.1 Block update of wS using sparse Cholesky

The Gibbs’ sampling algorithm detailed in Section 3.2 is extremely efficient for large datasets

with linear flop counts per iteration. However, it can sometimes experience slow convergence

issues due to sequential updating of the elements in wS . An alternative to sequential updat-

ing is to perform block updates of wS . We choose S = T so that si = ti for all i = 1, 2, . . . , n
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and we denote wS = wT by w. Then,

w|· ∼ N(VSZ
′D−1

n (y−Xβ),VS) , where VS = (Z′D−1
n Z+ C̃

−1

S )−1 . (11)

Recall that C̃
−1

S is sparse. Since Z and Dn are block diagonal, V−1
S retains the sparsity of

C̃
−1

S . So, a sparse Cholesky factorization of V−1
S will efficiently produce the Cholesky factors

of VS . This will facilitate block updating of w in the Gibbs sampler.

4.2 NNGP models for the response

Another possible approach involves NNGPmodels for the response y(s). Ifw(s) is a Gaussian

Process, then so is y(s) = Z(s)′w(s) + ǫ (without loss of generality we assume β = 0). One

can directly use the NNGP specification for y(s) instead of w(s). That is, we derive y(s) ∼

NNGP (0, Σ̃(·, ·)) from the parent Gaussian process GP (0,Σ(·, · |θ)). The Gibbs sampler

analogous to Section 3 now enjoys the additional advantage of avoiding full conditionals forw.

This results in a Bayesian analogue for Vecchia (1988) and Stein et al. (2004) but precludes

inference on the spatial residual surface w(s). Modeling w(s) provides additional insight into

residual spatial contours and is often important in identifying lurking covariates or eliciting

unexplained spatial patterns. Vecchia (1992) used the nearest neighbor approximation on a

spatial model for observations (y) with independent measurement error (nuggets) in addition

to the usual spatial component (w). However, it may not be possible to recover w using

this approach. For example, a univariate stationary process y(s) with a nugget effect can

be decomposed as y(s) = w(s) + ǫ(s) (letting β = 0) for some w(s) ∼ GP (0,C(·, · |θ)) and

white noise process ǫ(s). If y = w+ ǫ, where w ∼ N(0,C), ǫ ∼ N(0, τ 2In), then Cov(y) =

C + τ 2I = Σ, all eigenvalues of Σ are greater than τ 2 and Cov(w |y) = τ 2In − τ 4Σ−1. For

y(s) ∼ NNGP (0, Σ̃(·, ·)), however, the eigenvalues of Σ̃may be less than τ 2, so τ 2In−τ 4Σ̃
−1

need not be positive definite for every τ 2 > 0 and p(w |y) is no longer well-defined.

A different model is obtained by using an NNGP prior for w, as in (9), and then in-
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tegrating out w. The resulting likelihood is N(y |Xβ,Σy), where Σy = ZC̃SZ
′ + Dn and

the Bayesian specification is completed using priors on β, τ 2j ’s and θ as in (9). This model

drastically reduces the number of variables in the Gibbs sampler, while preserving the nugget

effect in the parent model. We can generate the full conditionals for the parameters in the

marginalized model as follows: β| y,φ ∼ N((V−1
β +X′Σ−1

y X)−1(V−1
β µβ+X′Σ−1

y y) , (V−1
β +

X′Σ−1
y X)−1). It is difficult to factor out τ 2j ’s from Σ−1

y , so conjugacy is lost with respect to

any standard prior. Metropolis block updates for θ are feasible for any tractable prior

p(θ). This involves computing X′Σ−1
y X, X′Σ−1

y y and (y − Xβ)′Σ−1
y (y − Xβ). Since

Σ−1
y = D−1

n −D−1
n Z(C̃

−1

S +Z′D−1
n Z)−1Z′D−1

n = D−1
n −D−1

n ZVSZ
′D−1

n , where VS is given by

(11), a sparse Cholesky factorization of V−1
S will be beneficial. We draw posterior samples

for w from p(w |y) =
∫
p(w |θ,β, {τ 2j },y)p(θ,β, {τ

2
j } |y) using composition sampling—we

draw w(g) from p(w |θ(g),β(g), {τ 2j
(g)
},y) one-for-one for each sampled parameter.

Using block updates for wS in (9) and fitting the marginalized version of (9) both require

an efficient sparse Cholesky solver for V−1
S . Note that computational expenses for most

sparse Cholesky algorithms depend on the precise nature of the sparse structure (mostly

on the bandwidth) of C̃
−1

S (see, e.g. Davis 2006). The number of flops required for Gibbs

sampling and prediction in this marginalized model depends upon the sparse structure of

C̃
−1

S and may, sometimes, heavily exceed the linear usage achieved by the unmarginalized

model with individual updates for wi. Therefore, a prudent choice of the precise fitting

algorithms should be based on the sparsity structure of C̃
−1

S for the given dataset.

4.3 Spatiotemporal and GLM versions

In spatiotemporal settings where we seek spatial interpolation at discrete time-points (e.g.,

weekly, monthly or yearly data), we write the response (possibly vector-valued) as yt(s) and

the random effects as wt(s). One could, for example, envision that the data arise as a time

series of spatial processes, i.e., there is a time series at each location. An alternative scenario
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is cross-sectional data being collected at a set of locations associated with each time point

and these locations can differ from time point to time point. Desired inference includes

spatial interpolation for each time point. Spatial dynamic models incorporating the NNGP

are easily formulated as below:

yt(s) = Xt(s)
′βt + ut(s) + ǫt(s), ǫt(s)

iid
∼ N(0, D)

βt = βt−1 + ηt, ηt

iid
∼ N(0,Ση), β0 ∼ N(m0,Σ0)

ut(s) = ut−1(s) +wt(s), wt(s)
ind
∼ NNGP (0, C̃(·, · |θt)) .

(12)

Thus, one retains exactly the same structure of process-based spatial dynamic models, e.g.,

as in Gelfand et al. (2005), and simply replaces the independent Gaussian process priors for

wt(s) with independent NNGP’s to achieve computational tractability.

The above is illustrative of how attractive and extremely convenient the NNGP is for

model building. One simply writes down the parent model and subsequently replaces the full

GP with an NNGP. Being a well-defined process, the NNGP ensures a valid spatial dynamic

model. Similarly NNGP versions of dynamic spatiotemporal Kalman-filtering (Wikle and

Cressie 1999, as, e.g., in) can be constructed.

Handling non-Gaussian (e.g., binary or count) data is also straightforward using spatial

generalized linear models (GLM’s) (Diggle et al. 1998; Lin et al. 2000; Kammann and Wand

2003; Banerjee et al. 2014). Here, the NNGP provides structured dependence for random

effects at the second stage. First, we replace E[y(t)] in (8) with g(E(y(t))) where g(·) is

a suitable link function such that η(t) = g(E(y(t))) = X(t)′β + Z(t)′w(t). In the second

stage, we model the w(t) as an NNGP. The benefits of the algorithms in Sections 3.2 and 3.3

still hold, but some of the alternative algorithms in Section 4 may not apply. For example,

we do obtain tractable marginalized likelihoods by integrating out the spatial effects.
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5 Illustrations

We conduct simulation experiments and analyze a large forestry dataset. Additional sim-

ulation experiments are detailed in Appendices A5 through A8. Posterior inference for

subsequent analysis were based upon three chains of 25000 iterations (with a burn-in of 5000

iterations). All the samplers were programmed in C++ and leveraged Intels Math Kernel

Library’s (MKL) threaded BLAS and LAPACK routines for matrix computations on a Linux

workstation with 384 GB of RAM and two Intel Nehalem quad-Xeon processors.

5.1 Simulation experiment

We generated observations using 2500 locations within a unit square domain from the model

(8) with q = l = 1 (univariate outcome), p = 2, Z(t)′ = 1 (scalar), the spatial covariance

matrix C(θ) = σ2R(φ), where R(φ) is a n×n correlation matrix, and D = τ 2 (scalar). The

model included an intercept and a covariate x1 drawn from N(0, 1). The (i, j)th element of

R(φ) was calculated using the Matérn function

ρ(ti, tj;φ) =
1

2ν−1Γ(ν)
(||ti − tj||φ)

νKν(||ti − tj||φ); φ > 0, ν > 0, (13)

where ||ti − tj|| is the Euclidean distance between locations ti and tj, φ = (φ, ν) with φ

controlling the decay in spatial correlation and ν controlling the process smoothness, Γ is

the usual Gamma function while Kν is a modified Bessel function of the second kind with

order ν (Stein 1999) Evaluating the Gamma function for each matrix element within each

iteration requires substantial computing time and can obscure differences in sampler run

times; hence, we fixed ν at 0.5 which reduces (13) to the exponential correlation function.

The first column in Table 1 gives the true values used to generate the responses. Figure 2(a)

illustrates the w(t) surface interpolated over the domain.

We then estimated the following models from the full data: i) the full Gaussian Process
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Table 1: Univariate synthetic data analysis parameter estimates and computing time in min-
utes for NNGP and full GP models. Parameter posterior summary 50 (2.5, 97.5) percentiles.

NNGP (S 6= T ) NNGP (S = T )
True m = 10, k = 2000 m = 20, k = 2000 m = 10 m = 20

β0 1 0.99 (0.71, 1.48) 1.02 (0.73, 1.49) 1.00 (0.62, 1.31) 1.03 (0.65, 1.34)
β1 5 5.00 (4.98, 5.03) 5.01 (4.98, 5.03) 5.01 (4.99, 5.03) 5.01 (4.99, 5.03)

σ2 1 1.09 (0.89, 1.49) 1.04 (0.85, 1.40) 0.96 (0.78, 1.23) 0.94 (0.77, 1.20)

τ2 0.1 0.07 (0.04, 0.10) 0.07 (0.04, 0.10) 0.10 (0.08, 0.13) 0.10 (0.08, 0.13)
φ 12 11.81 (8.18, 15.02) 12.21 (8.83, 15.62) 12.93 (9.70, 16.77) 13.36 (9.99, 17.15)
pD – 1491.08 1478.61 1243.32 1249.57
DIC – 1856.85 1901.57 2390.65 2377.51
G – 33.67 35.68 77.84 76.40
P – 253.03 259.13 340.40 337.88
D – 286.70 294.82 418.24 414.28

RMSPE – 1.22 1.22 1.2 1.2
95% CI cover % – 97.2 97.2 97.6 97.6
95% CI width – 2.19 2.18 2.13 2.12

Time – 14.2 47.08 9.98 33.5

Predictive Process Full
True 64 knots Gaussian Process

β0 1 1.30 (0.54, 2.03) 1.03 (0.69, 1.34)
β1 5 5.03 (4.99, 5.06) 5.01 (4.99, 5.03)

σ2 1 1.29 (0.96, 2.00) 0.94 (0.76, 1.23)

τ2 0.1 0.08 (0.04, 0.13) 0.10 (0.08, 0.12)
φ 12 5.61 (3.48, 8.09) 13.52 (9.92, 17.50)
pD – 1258.27 1260.68
DIC – 13677.97 2364.80
G – 1075.63 74.80
P – 200.39 333.27
D – 1276.03 408.08

RMSPE – 1.68 1.2
95% CI cover % – 95.6 97.6
95% CI width – 2.97 2.12

Time – 43.36 560.31

(Full GP); ii) the NNGP with m = {1, 2, . . . , 25} for S 6= T and S = T , and; iii) a Gaussian

Predictive Process (GPP) model (Banerjee et al. 2008) with 64 knots placed on a grid over

the domain. For the NNGP with S 6= T we considered 2000 randomly placed reference

locations within the domain. The 64 knot GPP was chosen because its computing time was

comparable to that of NNGP models. We used an efficient marginalized sampling algorithm

for the Full GP and GPP models as implemented in the spBayes package in R (Finley et al.

2015). All the models were trained using 2000 of the 2500 observed locations, while the

remaining 500 observations were withheld to assess predictive performance.

For all models, the intercept and slope regression parameters, β0 and β1, were given

flat prior distributions. The variance components σ2 and τ 2 were assigned inverse-Gamma

IG(2, 1) and IG(2, 0.1) priors, respectively, and the spatial decay φ received a uniform prior

U(3, 30), which corresponds to a spatial range between approximately 0.1 and 1 units.

Parameter estimates and performance metrics for the NNGP (with m = 10 and m = 20),

GPP, and the Full GP models are provided in Table 1. All model specifications produce
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Figure 1: Choice ofm in NNGP models: Out-of-sample Root Mean Squared Prediction Error
(RMSPE) and mean width between the upper and lower 95% posterior predictive credible
intervals for a range of m for the univariate synthetic data analysis

similar posterior median and 95% credible intervals estimates, with the exception of φ in the

64 knot GPP model. Larger values of DIC and D suggest that the GPP model does not fit

the data as well as the NNGP and Full GP models. The NNGP S = T models provide DIC,

GPD scores that are comparable to those of the Full GP model. These fit metrics suggest

the NNGP S 6= T models provide better fit to the data than that achieved by the full GP

model which is probably due to overfitting caused by a very large reference set S. The last

row in Table 1 shows computing times in minutes for one chain of 25000 iterations reflecting

on the enormous computational gains of NNGP models over full GP model.

Turning to out-of-sample predictions, the Full model’s RMSPE and mean width between

the upper and lower 95% posterior predictive credible interval is 1.2 and 2.12, respectively.

As seen in Figure 1, comparable RMSPE and mean interval width for the NNGP S = T

model is achieved within m ≈ 10. There are negligible difference between the predictive

performances of the NNGP S 6= T and S = T models. Both the NNGP and Full GP model

have better predictive performance than the Predictive Process models when the number of

knots is small, e.g., 64. All models showed appropriate 95% credible interval coverage rates.
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(a) True w (b) Full GP (c) GPP 64 knots

(d) NNGP (S = T ) m = 10 (e) NNGP (S = T ) m = 20 (f) NNGP (S 6= T ) m = 10

Figure 2: Univariate synthetic data analysis: Interpolated surfaces of the true spatial random
effects and posterior median estimates for different models

Figures 2(b-f) illustrate the posterior median estimates of the spatial random effects from

the Full GP, NNGP (S = T ) with m = 10 and m = 20, NNGP (S 6= T ) with m = 10 and

GPP models. These surfaces can be compared to the true surface depicted in Figure 2(a).

This comparison shows: i) the NNGP models closely approximates the true surface and that

estimated by the Full GP model, and; ii) the reduced rank predictive process model based

on 64 knots greatly smooths over small-scale patterns. This last observation highlights one

of the major criticisms of reduced rank models Stein (2014) and illustrates why these models

often provide compromised predictive performance when the true surface has fine spatial

resolution details. Overall, we see the clear computational advantage of the NNGP over the

Full GP model, and both inferential and computational advantage over the GPP model.
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5.2 Robustness of NNGP to ordering of locations

We conduct a simulation experiment demonstrating the robustness of NNGP to the ordering

of the locations. We generate the data for n = 2500 locations using the model in Section

5.1. However instead of a square domain we choose a long skinny domain (see Figure 3(a))

which can bring out possible sensitivity to ordering due to scale disparity between the x

and y axes. We use three different orderings for the locations: ordering by x-coordinates,

by y-coordinates and by the function f(x, y) = x + y. Table 2 demonstrates that the point

estimates and the 95% credible intervals for the process parameters from all three NNGP

models are extremely consistent with the estimates from the full Gaussian process model.

Posterior estimates of the spatial residual surface from the different models are shown in

Figure 3. Again, the impact of the different ordering is negligible.

Table 2: Univariate synthetic data analysis parameter estimates and computing time in
minutes for NNGP m=10 and full GP models. Parameter posterior summary 50 (2.5, 97.5)
percentiles.

NNGP (S = T )
Full Order by Order by Order by

True Gaussian Process y-coordinates x-coordinates x+ y-coordinates
σ2 1 0.64 (0.41, 1.30) 0.71 (0.45, 1.53) 0.76 (0.48, 1.50) 0.72 (0.46, 1.44)
τ 2 0.1 0.11 (0.10, 0.12) 0.11 (0.10, 0.11) 0.11 (0.10, 0.12) 0.11 (0.10, 0.12)
φ 6 8.26 (4.06, 13.41) 8.29 (3.56, 12.88) 7.13 (3.41, 11.27) 7.50 (3.60, 11.91)

5.3 Forest biomass data analysis

Information about the spatial distribution of forest biomass is needed to support global,

regional, and local scale decisions, including assessment of current carbon stock and flux,

bio-feedstock for emerging bio-economies, and impact of deforestation. In the United States,

the Forest Inventory and Analysis (FIA) program of the USDA Forest Service collects the

data needed to support these assessments. The program has established field plot centers

in permanent locations using a sampling design that produces an equal probability sample
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(a) True w

(b) Full GP

(c) NNGP order by y-coordiantes

(d) NNGP order by x-coordiantes

(e) NNGP order by x+ y-coordiantes

Figure 3: Robustness of NNGP to ordering: Figures (a) and (b) show interpolated surfaces of
the true spatial random effects and posterior median estimates for full geostatistical model
respectively. Figures (c), (d), and (e) show interpolated surfaces of the posterior median
estimates for NNGP model with S = T , m = 10, and alternative coordinate ordering.
Corresponding true and estimated process parameters are given in Table 2.
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(Bechtold and Patterson 2005). Field crews recorded stem measurements for all trees with

diameter at breast height (DBH); 1.37 m above the forest floor) of 12.7 cm or greater. Given

these data, established allometric equations were used to estimate each plot’s forest biomass.

For the subsequent analysis, plot biomass was scaled to metric tons per ha then square root

transformed. The transformation ensures that back transformation of subsequent predicted

values have support greater than zero and helps to meet basic regression models assumptions.

Figure 4(a) illustrates the georeferenced forest inventory data consisting of 114, 371

forested FIA plots measured between 1999 and 2006 across the conterminous United States.

The two blocks of missing observations in the Western and Southwestern United States cor-

respond to Wyoming and New Mexico, which have not yet released FIA data. Figure 4(b)

shows a deterministic interpolation of forest biomass observed on the FIA plots. Dark blue

indicates high forest biomass, which is primarily seen in the Pacific Northwest, Western

Coastal ranges, Eastern Appalachian Mountains, and in portions of New England. In con-

trast, dark red indicates regions where climate or land use limit vegetation growth.

A July 2006 Normalized Difference Vegetation Index (NDVI) image from the MODerate-

resolution Imaging Spectroradiometer (MODIS); http://glcf.umd.edu/data/ndvi) sensor

was used as a single predictor. NDVI is calculated from the visible and near-infrared light

reflected by vegetation, and can be viewed as a measure of greenness. In this image, Fig-

ure 4(c), dark green corresponds to dense vegetation whereas brown identifies regions of

sparse or no vegetation, e.g., in the Southwest. NDVI is commonly used as a covariate

in forest biomass regression models, see, for e.g., Zhang and Kondraguanta (2006). Results

from these and similar studies show a positive linear relationship between forest biomass and

NDVI. The strength of this relationship, however, varies by forest tree species composition,

age, canopy structure, and level of reflectance. We expect a space-varying relationship be-

tween biomass and NDVI, given tree species composition and disturbance regimes generally

exhibit strong spatial dependence across forested landscapes.
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The ∼38 gigabytes of memory in our workstation was insufficient for storage of distance

matrices required to fit a Full GP or GPP model. Subsequently, we explore the relation-

ship between forest biomass and NDVI using a non-spatial model, a NNGP space-varying

intercept (SVI) model (i.e., q = l = 1 and Z(t) = 1) in (8), and a NNGP spatially-varying

coefficients (SVC) regression model with l = 1, q = p = 2 and Z(t) = X(t) in (8). The

reference sets for the NNGP models were again the observed locations and m was chosen

to be 5 or 10. The parent process w(t) is a bivariate Gaussian process with a isotropic

cross-covariance specification C(ti, tj |θ) = AΓ(φ)A′, where A is 2 × 2 lower-triangular

with positive diagonal elements, Γ is 2× 2 diagonal with ρ(ti, tj;φb) (defined in (13)) as the

bth diagonal entry, b = 1, 2 and φb = (φb, νb)
′ (see, e.g., Gelfand and Banerjee 2010).

For all models, the intercept and slope regression parameters were given flat prior dis-

tributions. The variance components τ 2 and σ2 were assigned inverse-Gamma IG(2, 1) pri-

ors, the SVC model cross-covariance matrix AA′ followed an inverse-Wishart IW (3, 0.1),

and the Matérn spatial decay and smoothness parameters received uniform prior supports

U(0.01, 3) and U(0.1, 2), respectively. These prior distributions on φ and ν correspond to

support between approximately 0.5 and 537 km. Candidate models are assessed using the

metrics described in Section 3.4, inference drawn from mapped estimates of the regression

coefficients, and out-of-sample prediction.

Parameter estimates and performance metrics for NNGP with m = 5 are shown in

Table 3. The corresponding numbers for m = 10 were similar. Relative to the spatial

models, the non-spatial model has higher values of DIC and D which suggests NDVI alone

does not adequately capture the spatial structure of forest biomass. This observation is

corroborated using a variogram fit to the non-spatial model’s residuals, Figure 4(d). The

variogram shows a nugget of ∼0.42, partial sill of ∼0.05, and range of ∼150 km. This residual

spatial dependence is apparent when we map the SVI model spatial random effects as shown

in Figure 4(e). This map, and the estimate of a non-negligible spatial variance σ2 in Table 3,
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Table 3: Forest biomass data analysis parameter estimates and computing time in hours for
candidate models. Parameter posterior summary 50 (2.5, 97.5) percentiles.

NNGP NNGP
Non-spatial Space-varying intercept Space-varying coefficients

β0 1.043 (1.02, 1.065) 1.44 (1.39, 1.48) 1.23 (1.20, 1.26)
βNDV I 0.0093 (0.009, 0.0095) 0.0061 (0.0059, 0.0062) 0.0072 (0.0071, 0.0074)
σ2 – 0.16 (0.15, 0.17) –

AA′
1,1 – – 0.24 (0.23, 0.24)

AA′
2,1 – – -0.00088 (-0.00093, -0.00083)

AA′
2,2 – – 0.0000052 (0.0000047, 0.0000056)

τ 2 0.52 (0.51, 0.52) 0.39 (0.39, 0.40) 0.39 (0.38, 0.40)
φ1 – 0.016 (0.015, 0.016) 0.022 (0.021, 0.023)
φ2 – – 0.030 (0.029, 0.031)
ν1 – 0.66 (0.64, 0.67) 0.92 (0.90, 0.93)
ν2 – – 0.92 (0.89, 0.93)
pD 2.94 6526.95 4976.13
DIC 250137 224484.2 222845.1
G 59765.30 42551.08 43117.37
P 59667.15 47603.47 46946.49
D 119432.45 90154.55 90063.86

Time – 14.53 41.35

suggests the addition of a spatial random effect was warranted and helps satisfy the model

assumption of uncorrelated residuals.

The values of the SVC model’s goodness of fit metrics suggest that allowing the NDVI

regression coefficient to vary spatially improves model fit over that achieved by the SVI

model. Figures 5(a) and 5(b) show maps of posterior estimates for the spatially varying

intercept and NDVI, respectively. The clear regional patterns seen in Figure 5(b) suggest

the relationship between NDVI and biomass does vary spatially—with stronger positive re-

gression coefficients in the Pacific Northwest and northern California areas. Forest in the

Pacific Northwest and northern California is dominated by conifers and support the greatest

range in biomass per unit area within the entire conterminous United States. The other

strong regional pattern seen in Figure 5(b) is across western New England, where near zero

regression coefficients suggest that NDVI is not as effective at discerning differences in forest
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Figure 4: Forest biomass data analysis: (a) locations of observed biomass, (b) interpolated
biomass response variable, (c) NDVI regression covariate, (d) variogram of non-spatial model
residuals, and (e) surface of the SVI model random spatial effects posterior medians. Fol-
lowing our FIA data sharing agreement, plot locations depicted in (a) have been “fuzzed”
to hide the true coordinates.
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biomass. This result is not surprising. For deciduous forests, NDVI can explain variability in

low to moderate vegetation density. However, in high biomass deciduous forests, like those

found across western New England, NDVI saturates and is no longer sensitive to changes

in vegetation structure (Wang et al. 2005). Hence, we see a higher intercept in this region

but lower slope coefficient on NDVI. Figures 5(c) and 5(d) map each location’s posterior

(a) β0(t) (b) βNDV I(t)

(c) Fitted biomass (d) 95% CI width

Figure 5: Forest biomass data analysis using SVC model: (a) Posterior medians of the
intercept, (b) NDVI regression coefficients, (c) median of biomass posterior predictive distri-
bution, and (d) range between the upper and lower 95% percentiles of the posterior predictive
distribution.

predictive median and the range between the upper and lower 95% credible interval, respec-

tively, from the SVC model. Figure 5(c) shows strong correspondence with the deterministic

interpolation of biomass in Figure 4(b). The prediction uncertainty in Figure 5(d) provides a
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realistic depiction of the model’s ability to quantify forest biomass across the United States.

We also used prediction mean squared error (PMSE) to assess predictive performance.

We fit the candidate models using 100, 000 observations and withheld 14, 371 for validation.

PMSE for the non-spatial, SVI, and SVC models was 0.52, 0.41, and 0.42 respectively. Lower

PMSE for the spatial models, versus the non-spatial model, corroborates the results from the

model fit metrics and further supports the need for spatial random effects in the analysis.

6 Summary and conclusions

We regard the NNGP as a highly scalable model, rather than a likelihood approximation, for

large geostatistical datasets. It significantly outperforms competing low-rank processes such

as the GPP, in terms of inferential capabilities as well as scalability. A reference set S and

the resulting neighbor sets (of size m) define the NNGP. Larger m’s would increase costs, but

there is no apparent benefit to increasing m for larger datasets (see Appendix A5). Selecting

S is akin to choosing the “knots” or “centers” in low-rank methods. While some sensitivity to

m and the choice of points in S is expected, our results indicate that inference is very robust

with respect to S and very modest values of m (≪ 20) typically suffice. Larger reference

sets may be needed for larger datasets, but its size does not thwart computations. In fact,

we observed that a very convenient choice for the reference set is the observed locations.

A potential concern with this choice is that if the observed locations have large gaps, then

the resulting NNGP may be a poor approximation of the full Gaussian Process. This arises

from the fact that observations at locations outside the reference set are correlated via their

respective neighbor sets and large gaps may imply two very near points have very different

neighbor sets leading to low correlation. Our simulations in Appendix A6 indeed reveal that

in such a situation, the NNGP covariance field is very flat at points in the gap. However,

even with this choice of S the NNGP model performs at par with the full GP model as the

latter also fails to provide strong information about observations located in large gaps. Of
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course, one can always choose a grid over the entire domain as S to construct a NNGP with

covariance function similar to the full GP (see Figure A8). Another choice for S could be

based upon configurations for treed Gaussian processes (Gramacy and Lee 2008). .

Our simulation experiments revealed that estimation and kriging based on NNGP models

closely emulate those from the true Matérn GP models, even for slow decaying covariances

(see Appendix A7). The Matérn covariance function is monotonically decreasing with dis-

tance and satisfies theoretical screening conditions, i.e. the ability to predict accurately

based on a few neighbors (Stein 2002). This, perhaps, explains the excellent performance

of NNGP models with Matérn covariances. We also investigated the performance of NNGP

models using a wave covariance function, which does not satisfy the screening conditions, in a

setting where a significant proportion of nearest neighbors had negative correlation with the

corresponding locations. The NNGP estimates were still close to the true model parameters

and the kriged surface closely resembled the true surface (see Appendix A8).

Most wave covariance functions (like the damped cosine or the cardinal sine function)

produce covariance matrices with several small eigenvalues. The full GP model cannot

be implemented for such models because the matrix inversion is numerically unstable. The

NNGP model involves much smaller matrix inversions and can be implemented in some cases

(e.g. for the damped cosine model). However, for the cardinal sine covariance, the NNGP also

faces numerical issues as even the small m×m covariance matrices are numerically unstable.

Bias-adjusted low-rank GPs (Finley et al. 2009) possess a certain advantage in this aspect as

the covariance matrix is guaranteed to have eigen values bounded away from zero. However,

computations involving low-rank processes with numerically unstable covariance functions

cannot be carried out with the efficient Sherman-Woodbury-Morrison type matrix identities

and more expensive full Cholesky decompositions will be needed.

Apart from being easily extensible to multivariate and spatiotemporal settings with dis-

cretized time, the NNGP can fuel interest in process-based modeling over graphs. Examples
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include networks, where data arising from nodes are posited to be similar to neighboring

nodes. It also offers new modeling avenues and alternatives to the highly pervasive Markov

random field models for analyzing regionally aggregated spatial data. Also, there is scope for

innovation when space and time are jointly modeled as processes using spatiotemporal covari-

ance functions. One will need to construct neighbor sets both in space and time and effective

strategies, in terms of scalability and inference, will need to be explored. Comparisons with

alternate approaches (see, e.g., Katzfuss and Cressie 2012) will also need to be made. Finally,

a more comprehensive study on the alternate algorithms, including direct methods for execut-

ing sparse Cholesky factorizations, in Section 4 is being undertaken. More immediately, we

plan to migrate our lower-level C++ code to the existing spBayes package (Finley et al. 2015)

in the R statistical environment (http://cran.r-project.org/web/packages/spBayes) to

facilitate wider user accessibility to NNGP models.
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Appendix

A1 Densities on directed acyclic graphs

We will show that if G = (S, NS) is acyclic then p̃(wS) defined in (3) corresponds to a true

density over S. For any directed acyclic graph, there exists a node with zero in-degree i.e.

no directed edge pointing towards it. We denote this node by sπ(1) This means sπ(1) does not

belong to the neighbor set of any other location in S. The only term where it appears on

the right hand side of (2) is p(w(sπ(1) |wN(sπ(1))) which integrates out to one with respect to

dw(sπ(1)). We now have a new acyclic directed graph G1 obtained by removing vertex sπ(1)

and its directed edges from G. Now we can find a new vertex sπ(2) with zero out-degree in

G1 and continue as before to get a permutation π(1), π(2), . . . , π(k) of 1, 2, . . . , k such that

∫ k∏

i=1

p(w(si) |wN(si))dw(sπ(1))dw(sπ(2)) . . . dw(sπ(k)) = 1

An easy application of Fubini’s theorem now ensures that this is a proper joint density.

A2 Properties of C̃
−1

S

If p(wS) = N(wS |0,CS), then w(si) |wN(si) ∼ N(Bsi
wN(si),Fsi

), where Bsi
and Fsi

are

defined in (3). So, the likelihood in (2) is proportional to

1
∏k

i=1

√
det(Fsi

)
exp

(
−
1

2

k∑

i=1

(w(si)−Bsi
wN(si))

′F−1
si
(w(si)−Bsi

wN(si))

)
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For any matrix A, let A[, j : j′] denote the submatrix formed using columns j to j′ where

j < j′. For j = 1, 2, . . . , k, we define q × q blocks Bsi,j as

Bsi,j =





Iq if j = i;

−Bsi
[, (l − 1)q + 1 : lq] if sj = N(si)(l) for some l;

O otherwise,

where, for any location s, N(s)(l) is the l-th neighbor of s. So, wsi
− Bsi

wN(si) = B∗
si
wS ,

where B∗
si
= [Bsi,1,Bsi,2, . . . ,Bsi,k] is q× kq and sparse with at most m+1 non-zero blocks.

Then,

k∑

i=1

(w(si)−Bsi
wN(si))

′F−1
si
(w(si)−Bsi

wN(si)) =
k∑

i=1

w′
S(B

∗
si
)′F−1

si
B∗

si
wS = w′

SB
′
SF

−1
S BSwS ,

where F = diag(Fs1 ,Fs2 , . . . ,Fsk
) and BS = ((B∗

s1
)′, (B∗

s2
)′, . . . , (B∗

sk
)′)′. So, we have:

(C̃S)
−1 = B′

SF
−1
S BS (A14)

From the form of Bsi,j, it is clear that BS is sparse and lower triangular with ones on

the diagonals. So, det(BS) = 1, det((B′
SF

−1
S BS)

−1) =
∏

det(Fsi
) and (2) simplifies to

N(wS |0, C̃S).

Let C̃
ij

S denote the (i, j)th block of C̃
−1

S . Then from equation (A14) we see that for i < j,

C̃
ij

S =
∑k

l=j(B
∗
sl,i

)′F−1
sl
B∗

sl,j
. So, C̃

ij

S is non-zero only if there exists at least one location sl

such that si ∈ N(sl) and sj is either equal to sl or is in N(sl). Since every neighbor set has

at most m elements, there are at most km(m+1)/2 such pairs (i, j). This demonstrates the

sparsity of C̃
−1

S for m ≪ k.
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A3 Kolmogorov Consistency for NNGP

Let {w(s) | s ∈ D} be a random process over some domain D with density p and let p̃(wS) be

a probability density for observations over a fixed finite set S ⊂ D. The conditional density

p̃(wU |wS) for any finite set U ⊂ D outside of S is defined in (4).

We will first show that for every finite set V = {v1,v2, . . . ,vn} in D, n ∈ {1, 2, . . .} and

for every permutation π(1), π(2), . . . , π(n) of 1, 2, . . . , n we have,

p̃ (w(v1),w(v2), . . . ,w(vn)) = p̃
(
w(vπ(1)),w(vπ(2)), . . . ,w(vπ(n))

)
.

. We begin by showing that for any finite set V , the expression given in (5) is a proper

density. Let U = V \ S. Since V ∪ (S \ V) = S ∪ U , we obtain

∫
p̃(wV)

∏

vi∈V

d(w(vi)) =

∫
p̃(wU |wS)p̃(wS)

∏

vi∈U

d(w(vi))
∏

si∈S

d(w(si))

=

∫
p̃(wS)

(∫
p̃(wU |wS)

∏

vi∈U

d(w(vi))

)
∏

si∈S

d(w(si)) =

∫
p̃(wS)

∏

si∈S

d(w(si)) = 1

Note that S is fixed. Therefore, the expression for the joint density of wV depends only on

the the neighbor sets N(vi) for vi ∈ U . So the NNGP density for V is invariant under any

permutation of locations inside V .

We now prove that for every location v0 ∈ D, we have, p̃(wV) =
∫
p̃(wV∪{v0})d(w(v0)).

let V1 = V ∪ {v0}. We split the proof into two cases. If v0 ∈ S, then using the fact

V1 \ S = V \ S = U , we obtain

∫
p̃(wV1)d(w(v0)) =

∫
p̃(wS)p̃(wV1\S |wS)

∏

si∈S\V1

d(w(si))d(w(v0)

=

∫
p̃(wS)p̃(wV\S |wS)

∏

si∈S\V

d(w(si)) = p̃(wU) .
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If v0 /∈ S, then w(v0) does not appear in the neighborhood set of any other term. So,

p(w(v0) |wS) integrates to one with respect to d(w(v0)). The result now follows from
∫
p(wV1 |wS)d(w(v0)) = p(wV |wS).

A4 Properties of NNGP

Standard Gaussian conditional distribution facts reveal that the conditional distribution

w(ui) |wS ∼ N(Bui
wN(ui),Fui

) where Bui
and Fui

be defined analogous to (3) based on

the neighbor sets N(ui). From (4), we see that

p̃(wU |wS) =
1

∏r

i=1

√
det(Fui

)
exp

(
−
1

2

r∑

i=1

(w(ui)−Bui
wN(ui))

′F−1
ui
(w(ui)−Bui

wN(ui))

)

It then follows that p̃(wU |wS) ∼ N(BUwS ,FU) where BU = (B′
u1
,B′

u2
, . . . ,B′

ur
)′ and FU =

diag(Fu1 ,Fu2 , . . . ,Fur
). Since each row of BU has at most m non-zero entries, BU is sparse

for m ≪ k.

As the nearest neighbor densities of wS and wU |wS for every finite U outside S are

Gaussian, all finite dimensional realizations of an NNGP process will be Gaussian. Let v1

and v2 be any two locations in D and let Ẽ and C̃ov denote, respectively, the expectation

and covariance operator for a NNGP. Then, if v1 = si and v2 = sj are both in S then we

obviously have C̃ov(w(v1),w(v2) |θ) = C̃si,sj . If v1 is outside S and v2 = sj, then

C̃ov(w(v1),w(v2) |θ) = Ẽ(C̃ov(w(v1),w(v2) |wS ,θ)) + C̃ov(Ẽ(w(v1)), Ẽ(w(v2)) |wS ,θ))

∴ C̃(v1,v2 |θ) = 0 + C̃ov(Bv1wN(v1),w(sj) |θ) = Bv1C̃N(v1),sj

If both v1 and v2 are outside S, then C̃(v1,v2 |θ) = δ(v1 = v2)Fv1 + Bv1C̃N(v1),N(v2)B
′
v2
,

which yields (7).

For any two set of locations A and B, let ||A,B|| denote the pairwise Euclidean distance

matrix. Let Z1 denote set of all points v such that v is equidistant from any two points in
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S. Since S is finite, the set Z2 = (Z1 ×Z1) ∪ {(v,v) |v ∈ D} has Lebesgue measure zero in

the Euclidean domain ℜd × ℜd. We will show that C̃(v1,v2 |θ) is continuous for any pair

(v1,v2) in D×D \Z2. Observe that for any pair of points (v1,v2) in D×D \Z2, it is easy

to verify that lim
hi→0

||(vi+hi, N(vi+hi)|| → ||vi, N(vi)||, for i = 1, 2, and lim
h1→0,h2→0

||N(v1+

h1), N(v2 + h2)|| → ||N(v1), N(v2)||. We prove the continuity of C̃(v1,v2 |θ) for the case

when v1 is outside S and v2 = sj. The other cases are proved similarly. We assume that the

covariance function for the original GP is isotropic and continuous. The two distance results

yield Bv1+h1 = Cv1+h1,N(v1+h1)C
−1
N(v1+h1)

→ Cv1,N(v1)C
−1
N(v1)

= Bv1 . Also, as v2 + h2 →

v2 = sj, then sj ∈ N(v2 + h2) for small enough h2. Let sj = N(v2 + h2)(1) and, hence,

Cv2+h2,N(v2+h2)C
−1
N(v2+h2)

→ e1 where e1 = (1, 0, . . . , 0)m×1. Therefore,

lim
h1→0,h2→0

C̃(v1 + h1,v2 + h2 |θ) = Bv1 limh1→0,h2→0 C̃ov(wN(v1+h1),wN(v2+h2) |θ)e1

= Bv1 limh1→0 C̃ov(wN(v1+h1),w(sj) |θ) = Bv1C̃N(v1),sj = C̃(v1,v2 |θ) .
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A5 Simulation experiment: NNGP credible intervals

as function of m

From a classical viewpoint, NNGP can be regarded as a computationally convenient approx-

imation to the full GP model. The accuracy of the approximation is expected to improve

with increase in m as NNGP model becomes identical to the full model when m equals the

sample size. However, we construct the NNGP as an independent model and found that

inference from this model closely emulates that from the full GP model. Figure 1 demon-

strates how root mean square predictive error and parameter CI width vary with choice of

m. We conduct another simulation experiment to investigate how the parameter estimation

of the hierarchical NNGP model depends on m.

We generated a dataset of size 1000 using the model described in Section 5.1 for 4

combination of values of φ and σ2. Other parameters and prior choices were similar to those

in section A7. Figure A6 gives true values of σ2 and effective range (3/φ) alongwith the

posterior medians and credible intervals for the full GP, NNGP with m = 10 and m = 100.

We see that the CI’s for NNGP m = 10 and m = 100 are almost identical and are very close

to the CI for full GP. This suggests that even for small values of m NNGP, parameter CI’s

closely resemble full GP parameter CI’s.
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Figure A6: NNGP credible intervals for small and large values of m
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A6 Simulation experiment: Data with gaps

One possible area of concern for NNGP is that if the data have large gaps and the NNGP is

constructed using the data locations as the reference set S, then NNGP covariance function

may be a poor approximation of the full GP covariance function. This arises from the fact

that if the reference set has large gaps then two very close locations outside S can have very

different neighbor sets. Since, in a NNGP, locations outside S are correlated through their

neighbors sets this may lead to little correlation among very close points in certain regions

of the domain.

Figure A7: Full GP and NNGP (m = 10) covariance function for data with gaps
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Figure A7 demonstrates this issue. We generate a set T of 100 locations (topleft) on

the domain [0, 3] × [0, 1] with half the locations in [0, 1] × [0, 1] and the remaining half in

[2, 3] × [0, 1]. This creates a large gap in the middle where there are no datapoints. The

topright panel shows the heatmap of the full GP covariance function with σ2=1 and φ = 2

(so that the effective range is 1.5). The NNGP is a non-stationary process and the covariance

function depends on the locations. We evaluate this covariance at two points (red dots in the

topleft figure) — (0.5, 0.5) (which is surrounded by many points in S) and (1.5, 0.5) (which

is at the middle of the gap and equidistant from the two sets of locations in S).

The NNGP field at (0.5, 0.5) (bottomleft) closely resembles the GP field. This is because

the neighbors of (0.5, 0.5) are close to the point and provides strong information about the

true GP at that point. The NNGP field at (1.5, 0.5) (bottomright) is almost non-existent

with near zero correlations even at very small distances. This is an expected consequence of

the way NNGP is constructed. Any two points outside S are correlated via their neigbhor sets

only. The neighbors for (1.5, 0.5) are far away from the point it provides weak information

about the point as it is in the middle of the gap.

This suggests that a NNGP constructed using a reference set with large gaps is a poor

approximation to the full GP as a process in certain regions of the domain. If the data

locations do have large gaps, perhaps a NNGP with S as a grid over the domain provides a

much better approximation to the full GP. To observe this we used a 14 × 7 grid over the

domain [0, 3] × [0, 1] as S. So the size of this new S was similar to the original sample size

of 100. Figure A8 demonstrates the NNGP covariance function at the two points using this

new S. We see that using the grid S, the NNGP covariance function at the two points are

very similar and closely resemble the true GP covariance function. This suggests that in

order for the NNGP to resemble full GP, the reference set needs to have points uniformly

distributed over the domain.

However, from a kriging perspective, if the data have large gaps, inference from a NNGP
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Figure A8: NNGP covariance function using a grid S

with S = T may not differ a lot from the full GP inference. Even when one uses the full

GP, kriging is usually done one point at a time and thereby ignores the covariances between

points outside the data locations and assumes conditional independence. Figure A9 plots

Figure A9: Kriging means and variances for full GP and NNGP (S = data locations)

the kriging mean and variances over the entire domain for the full GP and the NNGP. They
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True Full GP NNGP m=10 NNGP m=20
β 1 0.72 (0.00, 1.32) 0.65 (-0.14, 1.30) 0.69 (0.02, 1.16)
τ 0.01 0.03 (0.01, 0.05) 0.03 (0.01, 0.06) 0.03 (0.01, 0.06)
σ2 1 0.63 (0.38, 1.31) 0.65 (0.39, 1.29) 0.62 (0.38, 1.27)
φ 2 2.94 (1.27, 5.19) 2.76 (1.27, 5.25) 2.91 (1.34, 5.20)

RMSPE – 0.58 (ind) 0.57 0.57
– 0.58 (joint) – –

95% CI cover – 94.00 (ind) 95.66 95.33
– 95.33 (joint) – –

Mean 95% CI width – 2.12 (ind) 2.12 2.13
– 2.11 (joint) – –

Table A4: Data analysis for locations with gaps

are very close. This suggests even for data with gaps the kriging performance of NNGP and

GP are similar.

We also generated a dataset over T and fitted the full GP and NNGP (S = T ) model

to compare parameter estimation and kriging performance. In addition to the conventional

independent kriging, we also used the computationally expensive joint kriging for the full GP

to see if it improves kriging quality at locations in the gap. Table A4 provide the parameter

estimates and model fitting metrics. Figures A10 and A11 gives the posterior median and

the variance surface over the domain. We see that the the NNGP and full GP produce very

similar parameter estimates and kriging. Hence, for data with large gaps both the full GP

and NNGP (S = T ) doesn’t provide enough information for locations inside the gaps. So

even if NNGP (S = T ) poorly approximates the full GP as a process, in terms of model

fitting, their performances are very similar.
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(b) Full GP (joint)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Easting

N
o
r
t
h
i
n
g

−0.5
0.0
0.5
1.0
1.5
2.0
2.5

(c) NNGP m = 10
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(d) NNGP m = 20

Figure A10: Posterior median surface for data with gaps
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Figure A11: Posterior variance surface for data with gaps
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A7 Simulation experiment: Slow decaying covariance

functions

We note in Section 2.1 that several valid choices of neighbor sets can be used to construct

a NNGP. However, our choice of using m-nearest neighbors to construct neighbor sets per-

formed extremely well for all the data analysis in Section 5. Since, our design of NNGP just

includes m-nearest neighbors it is natural to be skeptical of the performance of NNGP when

the data arises from a Gaussian process with very flat tailed covariance function. Such a

covariance function implies that even distant observations are significantly correlated with

the given observation and m-nearest neighbors may fail to capture all the information about

the covariance parameters.

We generate datasets of size 2500 in a unit domain using the model described in Section

5.1 for a wide range of values for the parameters σ2 and φ. The marginal variance σ2

was varied over (0.05, 0.1, 0.2, 0.5) and the ‘true effective range’ 3/φ phi was varied over

(0.1, 0.2, . . . , 1). Larger values of the ‘true effective range’ indicate higher correlation between

points at large distances. The nugget variance τ 2 was held constant at 0.1. The prior on φ was

U(3,300) or 0.01 to 1 distance units. Also both τ 2 and σ2 were given Inverse Gamma(2, 0.1)

priors in all cases.

Figure A12 gives the results for NNGP and full GP CIs. We see that for all choices of

parameters, the posterior samples from the NNGP and full GP look identical. This strongly

suggests that the NNGP model deliver inference similar to that of a full GP even for slow

decaying covariance functions and justifies the choice of the neighbor sets.
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Figure A12: Univariate synthetic data analysis: true versus posterior 50% (2.5%, 97.5%)
percentiles for the effective spatial range simulated for various values of σ2 and τ 2 = 0.1.
NNGP model fit with S = T and m = 10.
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A8 Simulation experiment: Wave covariance function

We have restricted most of our simulation experiments to Matérn (or in particular exponen-

tial) covariance functions. Matérn covariance functions like many other covariance functions

decrease monotonically with distance and hence nearest neighbors of a location have high-

est correlation with that location. We wanted to investigate the performance of NNGP

for covariance functions which do not monotonically decrease with distance. We use the

two-dimensional damped cosine covariance function given by:

C(d) = exp(−d/a) cos(φd) , a ≤ 1/φ (A15)

First, we generated the Kullback-Leibler (KL) divergence numbers for the NNGP model

with respect to the full GP model using damped cosine covariance. In addition to the default

neighbor selection scheme, we also used an alternate scheme of composing neighbor sets using

75% nearest neighbors and 25% farthest neighbors. Stein et al. (2004) suggested that the

latter choice often improves parameter estimation. The two schemes are referred to as NNGP

and NNGP (alt) respectively. We used φ = 10, a = .099, sample sizes of 100, 200 and 500

and varied m from 5 to 50 in increments of 5.

Figure A13 plots the KL divergence numbers for varying m, n and neighbor selection

schemes. We see that larger sample size implies higher KL divergence numbers which is

expected as with increasing sample size the size of the neighbor set m becomes smaller in

proportion. Also, we see that KL numbers for the alternate neighbor selection scheme are

always higher indicating that nearest neighbors perform better even for such wave covariance

functions. In general we observed that the KL numbers are quite small for m ≥ 25 for all n

and neighbor selection schemes indicating that the NNGP models closely approximate the

true damped cosine GP.

Next, we conducted a data analysis using the wave covariance function. We choose n =
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Figure A13: NNGP KL divergence numbers for damped cosine covariance

500,m = 10, 20. The two values ofm yielded around 3.4% and 18.7% nearest neighbors which

were negatively correlated with the corresponding locations. Table A5 gives the parameter

estimates for the NNGP model. Figure A14 demonstrates how the NNGP approximates the

wave covariance function while figure A15 plots the true and fitted random effect surface.

We observe that NNGP provides an excellent approximation of the the true wave GP in

terms of model parameter estimation and kriging.

True m=10 m=20
β0 1 1.03 (0.65, 1.34) 1.06 (0.70, 1.32)
β1 5 5.00 (4.95, 5.06) 5.00 (4.95, 5.06)
τ 2 0.1 0.06 (0.02, 0.12) 0.05 (0.03, 0.11)
σ2 1 1.13 (0.90, 1.57) 1.14 (0.90, 1.57)
φ 10 7.41 (1.63, 11.59) 6.31 (1.61, 10.50)
a 0.099 0.093 (0.067, 0.135) 0.09 (0.07, 0.14)

Table A5: Damped cosine GP data analysis using NNGP
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Figure A14: Wave covariance function estimates using NNGP
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