
HIERARCHICAL, NON-UNIFORM LOCALITY SENSITIVE HASHING AND ITS
APPLICATION TO VIDEO IDENTIFICATION

Zixiang Yang
Inst. for Infocomm Research,

Singapore
zixiang@i2r.a-star.edu.sg

Wei Tsang Ooi
School of Computing

National Univ. of Singapore
weitsang@nus.edu.sg

Qibin Sun
Inst. for Infocomm Research,

Singapore
qibin@i2r.a-star.edu.sg

ABSTRACT

Searching for similar video clips in large video database,
or video identification, requires finding nearest neighbor in
high-dimensional feature space. Locality sensitive hashing,
or LSH, is a well-known indexing method that allows us to
efficiently find approximate nearest neighbor in such space.
In this paper, we address two weaknesses of LSH when ap-
plied to the video identification problem. We propose two
enhancements to LSH, and show that our enhancements im-
prove the performance of LSH significantly in terms of effi-
ciency and accuracy.

1. INTRODUCTION

The problem of content-based video identification concerns
identifying the source of a given short query video clip in a
large video database based on content similarity [1, 2, 3, 4].
Video identification has many applications, including news
report tracking on different channels, video copyright man-
agement on the Internet, detection and statistical analysis of
broadcasted commercials, video database management, etc.
Two key steps in building a video database for video iden-
tification are (i) feature extractions from each of the video
in the database, (ii) indexing of the feature vectors to allow
efficient search of similar video.

This paper focuses on building efficient indexing struc-
ture for video identification. We first show that approximate
ε-nearest neighbor search, or ε-NNS [5], is an appropriate
method for identifying similar frames in two video clips.
Here, an ε-nearest neighbor (ε-NN) is a neighbor of the
query point that is within a factor of (1+ε) of the distance
to the true nearest neighbor. We then present a well-known
ε-NSS indexing structure called locality sensitive hashing,
or LSH. We argue that LSH is good for indexing uniformly
distributed high-dimensional points, but is not suitable for
video identification where data points maybe clustered. We
propose two enhancements to LSH. By building a hierarchi-
cal hash table, we adapt the number of dimensions hashed
based on the density of points. We also choose the hashed
dimensions carefully such that the points are more evenly

hashed, thus reducing the number of comparisons needed
when searching for the nearest neighbor. Experimental re-
sults verify that our enhancements improve LSH signifi-
cantly in both accuracy and efficiency.

The rest of this paper is organized as follows. Section
2 defines the problem of video identification and shows that
ε-NNS can be applied to solve the video identification prob-
lem with low probability of errors. We describe locality sen-
sitive hashing and our improvements in Section 3. Our ex-
perimental results are presented in Section 4 and the future
work is in Section 5.

2. VIDEO IDENTIFICATION

2.1. Measuring Video Similarity

In [4], Sen-Ching Chung gave a video similarity definition
between two short video clips. We adapt it to judge if a short
query video clip X is contained in a long database video
clip Y . The definition is based on the percentage of visually
similar frames between query video X and database video
Y . We first find the total number of frames from X that have
visually similar frames in Y , and then compute the ratio of
this number to the number of frames in X .

Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be
two video sequences, xi ∈ X and yi ∈ Y are frames, and
|X| � |Y | where |X|, |Y | denote the length of videos X
and Y respectively. Let d(x, y) be the dissimilarity between
frame x and frame y, and δth be a small threshold that mea-
sures if two frames are visually similar or not. Then, the
video similarity between X and Y , denoted S(X,Y, δth),
can be defined as follows:

S(X,Y, δth) =
∑

x∈X T (x)
|X| (1)

where x is any frame in video X and

T (x) =
{

1 if miny∈Y d(x, y) ≤ δth

0 if miny∈Y d(x, y) > δth
(2)

From the above definition, the value for S(X,Y, δth)
falls between 0 and 1, and S(X,Y, δth) = 1 implies that X

0-7803-8603-5/04/$20.00 ©2004 IEEE.

is contained in Y . To locate video X in Y , we denote the
set of all the visually similar frames of X in Y as:

Ysim = {ȳj |ȳj = arg min
y∈Y

d(xj , y), j = 1, 2, .., |X|} (3)

Then, we compare all the equal length video segments in Y
around every frame ȳ ∈ Ysim with X . The video segment
with the smallest difference is the best match.

2.2. Using ε-NNS for Video Identification

Based on the above video similarity definition, a key to
compute S(X,Y, δth) and Ysim is finding the closest frame
y ∈ Y for every frame x ∈ X , which is equivalent to nearest
neighbor search problem in the feature vector space. Since
the number of dimensions involved in the feature space is
usually very large for video applications, finding the near-
est neighbor efficiently is a difficult problem. We argue that
finding an approximate nearest neighbor is good enough.
Even though using approximate nearest neighbor will intro-
duce some errors in video identification, it will not affect
the results much.

Let dε(x, Y) be the distance of the approximate nearest
neighbor from x to points in Y . By the definition of ε-NNS
[5], we have

min
y∈Y

d(x, y) ≤ dε(x, Y) ≤ (1 + ε)min
y∈Y

d(x, y) (4)

Suppose we use dε instead of true nearest neighbor to
compute S(X,Y, δth), T (x) in equation (2) becomes:

Tε(x) =
{

1 if dε(x, Y) ≤ δth

0 if dε(x, Y) > δth
(5)

From equations (4) and (5), we can see that Tε(x) =
T (x) when dε(x, Y) ≤ δth or dε(x, Y) > (1 + ε)δth.

Hence, by not using true nearest neighbor, we may in-
troduce error only when δth < dε(x, Y) ≤ (1 + ε)δth.
Since both ε and δth are small, the probability of dε(x, Y) ∈
(δth, (1 + ε)δth] is small as well.

Another reason why we can use ε-NNS is this. Suppose
a query frame x ∈ X has the true closest frame yt ∈ Y .
Because of the continuity of videos, the frames around yt

are similar to yt, and therefore similar to the query frame x.
The ε-NNS approach is likely to choose these frames as the
nearest neighbor. In other words, if ε-NNS find the wrong
closest frame yw ∈ Y , yw is likely to be a frame around yt.
Therefore, using ε-NNS will not greatly affect the locating
position of video X in Y .

3. LOCALITY SENSITIVE HASHING

3.1. Description of Locality Sensitive Hashing

In the previous section, we show that ε-NNS can be used to
effectively search for similar videos with low probability of

A

U1

L1

UoLo

U1

L1

UoLo

A

Fig. 1: Locality Sensitive Hashing

errors. We now describe a well-known method for ε-NNS,
called locality sensitive hashing, or LSH [5].

The idea behind LSH is rather simple. It randomly parti-
tions a high-dimensional space into high-dimensional cubes.
Each cube is a hash bucket1. A point is likely to be located
in the same bucket as its nearest neighbor. Given a query
point, we determine which bucket the point is located in,
and perform linear search within a bucket to find the nearest
neighbor. The hash function is therefore a mapping from
the high-dimensional point to the bitstring representing the
bucket the point is in. It is possible that we may miss the
nearest neighbor if a point has been hashed to a different
bucket than its nearest neighbor (e.g. point A in Figure 1,
left). To reduce the likelihood of this, LSH maintains multi-
ple hash tables, hashing a point multiple times using differ-
ent hash functions. The probability that a point and its near-
est neighbor are hashed into different buckets for all these
hash functions can be reduced by reducing the number of
buckets and increasing the number of hash tables.

We can now describe LSH more formally. Let d be the
dimension of the vector space, and [Li, Ui] be the range of
possible values for dimension i. Each hash table in LSH
is parameterized by k, the number of hashed dimensions,
D = 〈D0,D1, ..,Dk−1〉, the hashed dimensions, and T =
〈t0, t1, .., tk−1〉, a threshold vector. Di is chosen uniformly
at random from [0, d− 1] while ti is randomly chosen from
[LDi

, UDi
].

Given a point P = 〈p0, p1, ..., pd−1〉, we hash it into a
k-bit bitstring b = 〈b0, b1, ..., bk−1〉 representing the bucket,
where bi is 1 if pDi

> tDi
and is 0 otherwise.

LSH builds N such hash tables, each with different D
and T . The values of N and k can be tuned to change the
error bound ε.

Figure 1 illustrates LSH in 2-dimensional space with
k = 4 and N = 2.

3.2. Improvements to Locality Sensitive Hashing

The major factor that determines the efficiency of LSH is
the size of the bucket the query points hashed to. Since

1In practice, we may hash the bitstring representing the cube using tra-
ditional hash functions, resulting in multiple cubes in a bucket.

U1

U1

Lo Uo

L1

(b)

(c)

A

AA

B

B

Lo Uo

L1

Lo Uo

L1

(a)

U1

Lo Uo

L1

U1

Fig. 2: Hierarchical Partitioning in Locality Sensitive Hashing

for each query point, we need to search through all points
in the same bucket to find the nearest neighbor. We would
like the points to be evenly distributed among the buckets.
However, LSH does not always give such distribution. In
this subsection, we illustrate two such problems with LSH
and propose two improvements to it.

Hierarchical LSH Currently, LSH partitions the space
without considering the distribution of points. In most cases,
the real dataset is not uniformly distributed [6]. For exam-
ple, in Figure 2(a), we see that the number of points in the
middle bucket is large. Searching for nearest neighbor of
point A will involve many comparisons, thus reducing the
efficiency of LSH. One way to solve this problem is to in-
crease k, the number of hashed dimensions. The resulting
partitions are shown in Figure 2(b). While this reduces the
number of points in each bucket, it reduces the accuracy as
well since some query points in sparse area such as point B
will miss the true nearest neighbor.

Our solution to this problem is illustrated in Figure 2(c).
When the number of points hashed to a bucket exceeds a
threshold, we repartition the bucket, and rehash all points
in this bucket. This scheme establishes a hierarchy of hash
tables in dense area. It reduces the size of the candidate set
for linear search while keeping the error low.

LSH with non-uniform partition Another problem of
LSH is that the space is partitioned randomly using uniform
distribution. This works well when the values of each di-
mension are evenly distributed. In real dataset, points may
be denser in one dimension compared to another. For exam-
ple, in the case of video identification, some features may be
more sensitive than others in differentiating frames. Figure
3(a) illustrates the problem.

To solve the second problem, we should choose the par-
tition dimensions Di according to the distribution of values
in that dimension. Densely distributed dimensions should

U1

L1

UoLo

U1

L1

UoLo

(b)(a)

Fig. 3: Non-uniform Selection of Partitioned Dimensions in Lo-
cality Sensitive Hashing

be chosen with lower probability while dimensions with
uniformly distributed values should be chosen with higher
probability. In the example shown in Figure 3, it is better to
partition the horizontal dimension compared to the vertical
dimension.

We can prove that to reduce the probability that we miss
the true nearest neighbor, we should partition the dimension
whose values’ distribution is closer to uniform distribution
with higher probability. However, maintaining the distri-
bution of every dimension is too costly. We choose to use
the normalized distribution variance σ2 as a criterion. Nor-
mally, for nearly unimodally distributed dataset, if the dis-
tribution of one dimension is close to uniform distribution,
its variance is large. So we set the probability of selecting
dimension j in proportion to its distribution variance σ2, i.e.

P{choose j} =
σ2

j∑d−1
i=0 σ2

i

where the denominator is the sum of the variance for all d
dimensions.

We call our improved LSH, “hierarchical, non-uniform
locality sensitive hashing”, or HNLSH.

4. PERFORMANCE EVALUATION

4.1. Performance of HNLSH

To evaluate the performance of our improvements, we im-
plemented the original LSH plus the improvements, and use
them to index feature vectors for video identification pur-
poses. We use 6 MPEG news video clips, about 3 hours
in length in total. We decode the I frames and use 52-bin
normalized color histograms on the Hue-Saturation-Value
(HSV) color space to represent each frame (same as [7]).
We get 15177 feature vectors with 52 dimensions each. We
apply LSH and HNLSH to search the nearest neighbor on
this feature vectors dataset. Each indexing structure con-
sists of 4 hash tables (N = 4). For each experiment, we
vary the number of hashed dimensions (k) from 10 to 30,
and issue 200 queries. The performance measured is the
average over the 200 queries.

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
um

be
r

of
 P

oi
nt

s
S

ea
rc

he
d

Effective Error

Performance vs Effective Error

Original LSH
LSH with non-uniform partition

Hierarchical LSH
HNLSH

0

200

400

600

800

1000

1200

1400

1600

1800

0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
um

be
r

of
 P

oi
nt

s
S

ea
rc

he
d

Miss Rate

Performance vs Miss Rate

Original LSH
LSH with non-uniform partition

Hierarchical LSH
HNLSH

Fig. 4: Experimental Results

We use the size of the bucket which the query point is
hashed to as a measurement for efficiency. The error is mea-
sured in two ways. One is the effective error [5] for ε-NNS,

E =
1
|Q|

∑
q∈Q

dε − dmin

dmin

where dε denotes the distance from a query point q to a point
found by ε-NNS, dmin is the distance from q to the closest
point, and Q is the set of all query points.

The other error measurement is the rate of which we
miss the nearest neighbor, or miss rate,

R =
1
|Q|

∑
q∈Q

U(q),

where U(q) is 1 if dε > dmin and is 0 otherwise.
We compare the cost of linear search and error metrics

for 4 different implementations of LSH: the original, LSH
with hierarchical partitioning, LSH with non-uniform selec-
tion of partitioned dimensions, and LSH with both improve-
ments combined (HNLSH). Figure 4 shows our results.

Compared with LSH, HNLSH is significantly better in
terms of both performance and accuracy. With HNLSH,
we can get the effective error of 0.056 by only 206 linear
searches, about 1.3% of the whole dataset size.

4.2. Performance of Video Identification

We use 12 news video clips, with total length of 6 hours
to build our video database. 10 query clips of about 5 sec-
onds each are extracted from the database and transcoded
to different spatial and temporal resolutions. There are 18
matches from the database. Using HNLSH with N = 4 and
k = 10, we successfully locate 17 correct matches. Each
query takes 8.34 milliseconds on the Pentium4, 1.7GHz ma-
chine with 384MB memory. This preliminary result is very
encouraging and we are currently building a larger video
database to further evaluate the performance.

5. FUTURE WORK

We are currently comparing the performance of HNLSH
with VA+-file [8] and VQ-index [9], two recently proposed
methods for indexing multimedia database. We are also
studying how changes to the points distributions, due to
database updates, can affect the quality of the hash tables.

Finally, we would like to thank Dr.Wong Lim Soon for
his many helpful suggestions and comments on this research.

6. REFERENCES

[1] M. Naphade, M. Yeung, and B. Yeo, “A novel scheme for fast
and efficient video sequence matching using compact signa-
tures,” in SPIE, Storage and Retrieval for Media Databases,
Jan 2000.

[2] A. Hampapur and R. Bolle, “Feature based indexing for media
tracking,” in Proceedings of ICME, Aug 2000.

[3] J. Oostveen, T. Kalker, and J. Haitsma, “Feature extraction
and a database strategy for video fingerprinting,” LNCS 2314,
pp. 117–128, 2002.

[4] S. C. Cheung and A. Zakhor, “Efficient video similarity mea-
surement with video signature,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 13, pp. 59–74,
Jan 2003.

[5] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in
high dimensions via hashing,” in Proceedings of VLDB, 1999,
pp. 518–529.

[6] N. Katayama and S. Satoh, “The SR-tree: An index structure
for high-dimensional nearest neighbor queries,” in Proceed-
ings of SIGMOD, May 1997, pp. 369–380.

[7] J. R. Smith and S. F. Chang, “Tools and techniques for color
image retrieval,” in SPIE, Storage and Retrieval for Image
and Video Databases, 1996, pp. 426–437.

[8] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Ab-
badi, “Vector approximation based indexing for non-uniform
high dimensional data sets,” in Proceedings of CIKM, Nov
2000, pp. 202–209.

[9] E. Tuncel, H. Ferhatosmanoglu, and K. Rose, “VQ-index:
An index structure for similarity searching in multimedia
databases,” in Proceedings of ACM Multimedia, Dec 2002,
pp. 543–552.

